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EXECUTIVE SUMMARY 

The impacts of supplemental adaptive intra-volume low-level scan (SAILS) and mid-volume rescan 

of low-level elevations (MRLE) usage on the Weather Surveillance Radar 1988-Doppler (WSR-88D) with 

respect to severe weather warning performance were evaluated. This is an update and expansion of an 

earlier study by Cho et al. (2022). Statistical methods applied to historical data from 2014–2022 yielded the 

following major results. 

Severe thunderstorm (SVR) warning performance metrics are shown in the figure below, where the 

vertical bars represent 95% confidence intervals and the numbers at the bottom correspond to the sample 

sizes. The results are divided according to the scanning option that is estimated to have been used at the 

time the decision to issue (or not issue) a warning was made. The first point to note is that probability of 

detection (POD), false alarm ratio (FAR), and mean lead time (MLT) improvements were associated with 

the usage of supplemental adaptive intra-volume low-level scan (SAILS or MRLE) in a statistically 

meaningful manner. As for the different sub-modes of SAILS, the multiple elevation scan option (MESO), 

i.e., SAILSx2 and SAILSx3, appeared to give more benefit than SAILSx1. However, the fact that the fastest 

base-scan update rates provided by SAILSx3 hardly yielded more benefit than SAILSx2 may indicate that 

the slowdown in volume scan update rates counteracted the more frequent base scans when going from 

SAILSx2 to SAILSx3. For POD and FAR, MRLE+4 significantly outperformed MESO-SAILS, which may 

also indicate that more frequent updates of elevations angle scans higher than the lowest tilt are needed by 

forecasters to make accurate SVR warning decisions.  
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The SVR warning POD and MLT results were further parsed by event type—hail and thunderstorm 

wind—as shown in the figure below. The benefits of using SAILS were clearly greater for thunderstorm 

wind events. For hail events, there seems to be some benefit when choosing MRLE+3 or MRLE+4 over 

SAILS. A possible explanation is that more frequent higher-elevation scans are useful for tracking 

descending hail cores and for automated hail detection algorithms. 
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Flash flood (FF) warning performance metrics are shown in the figure below. As with SVR warnings, 

SAILS utilization corresponded with significant improvement in all three warning performance metrics, 

with SAILSx3 appearing to be the best SAILS sub-mode. There were not enough data for MRLE to form 

definitive conclusions, but it seems to yield similar levels of benefit as SAILS, with MRLE+4 doing best 

with FAR. 
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Tornado (TOR) warning performance metrics are shown in the figure below. SAILS usage had 

significant benefits for POD and FAR performance, with SAILSx3 showing a statistically meaningful 

improvement over the “SAILS and MRLE off” case in MLT. Thus, for TOR warnings, it appears that more 

frequent base scan updates are of paramount importance, even at the expense of slower volume update rates. 

MRLE does not seem to add value beyond SAILS for TOR warnings—in fact, it showed degraded lead 

time performance compared to SAILS. These observations raise the question of whether a new SAILSx4 

option, with even more frequent base scan updates than SAILSx3, might be considered for targeted TOR 

warning use. 
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Since tornadoes form (or fail to form) under various convective conditions, different scanning options 

may be more effective for different situations. To investigate this issue, a further parsing of the TOR 

warning results by storm type was conducted for POD and MLT (FAR could not be parsed in this way 

because storm classification data for non-tornadic storms do not exist). The figure below shows the POD 

results for eight convective mode categories: right-moving (RM) supercell (“RMSup”), RM supercell/cell 

in line (“RMSupLine”), RM supercell/cell in cluster (“RMSupClust”), RM supercell/discrete cell 

(“RMSupDisc”), quasi-linear convective system (“QLCS”), disorganized (“Disorg”), supercell/cell in line 

+ QLCS (“AnyLine”), and supercell/discrete + disorganized/discrete (“Discrete”). For all except the 

supercell/cell in line category (for which the sample size is smallest), SAILS usage was associated with 

significantly higher POD than with SAILS and MRLE turned off. Furthermore, SAILSx3 performed 
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significantly better than SAILSx1 and SAILSx2 for most of the storm types. Therefore, SAILS (especially 

SAILSx3) appears to be a good choice for TOR warning decisions in virtually any type of convective mode. 

 

 

For the hardest-to-warn storm categories, the historical detection probabilities from the pre-SAILS 

era were: POD of 48.6 ± 6.2% for QLCS and 44.2 ± 4.7% for disorganized (Brotzge et al. 2013). 

Comparison with the figure above shows that these values are essentially equal to the current POD with 

SAILS and MRLE turned off. Thus, the significantly higher detection probabilities we see today with 

SAILS on for QLCS and disorganized storms make a strong case for claiming a tangible, likely life-saving, 

benefit of SAILS. Furthermore, SAILSx3 for QLCS was associated with a meaningfully longer MLT than 

SAILS off and the pre-SAILS value of 12.3 minutes (Brotzge et al. 2013). None of the other MLT usage 

and storm type categories showed statistically significant benefits for SAILS. 

In an effort to provide objective input to the radar operational training program, the table below 

summarizes and compares the historically most used SAILS and MRLE options (including the “off” 

alternative) with the options that this study showed to be statistically associated with best warning 

performance. Because the optimal (or best compromise) radar scanning choice in any given situation will 

be dependent on many factors, this table is not meant to be used as a rigid basis for decision making. Since 

this strictly statistical study cannot explain why radar operators select certain scanning modes for certain 

situations, in order to most effectively exploit these study results, a nationwide survey of weather forecast 

offices is recommended to answer those questions. Results from the survey can then be synthesized with 

those from this study to provide enhanced guidance on WSR-88D usage in the future. 
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Category 
SVR  
(hail) 

SVR 
(wind) 

FF TOR 

Historically most used SAILSx1 SAILSx1 SAILSx1 SAILSx1 

Option associated with top warning 
performance  

MRLE+4 MRLE+4 MRLE+4 SAILSx3 

Option(s) associated with second best warning 
performance 

MRLE+3 SAILSx3 
MRLE+3 
SAILSx3 

SAILSx2 

 

Because forecasters sometimes need to monitor multiple threats simultaneously, there may not be one 

optimal scanning mode for any given instance. Furthermore, the different threats may be in different sectors, 

whereas the WSR-88D can only carry out one scanning pattern at a time. In principle, a phased-array radar 

(PAR) could be designed to execute different scan strategies adaptively tailored to different meteorological 

targets in different sectors, which comes closer to the ideal of optimizing surveillance parameters for each 

phenomenon. However, even a PAR would be limited by trade-offs between scan update rates, spatial 

coverage, and data quality, and the trade-off space would, in large part, be dictated by system cost. 

Therefore, it is of interest to understand better what the range of scan update parameters needs to be in 

future radar requirements. Experiments with the new generation of polarimetric PARs, such as the National 

Severe Storm Laboratory’s Advanced Technology Demonstrator (ATD; Torres and Wasielewski 2022), 

where forecasters are tasked to make warning decisions based on a range of sub-sampled data from recorded 

high-update-rate-everywhere data (such as the Phased Array Radar Innovative Sensing Experiment 

[PARISE; Wilson et al. 2017]) could help refine such requirements. 
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1. INTRODUCTION 

Weather forecasters consult different types of information when making severe weather warning 

decisions. For National Weather Service (NWS) forecasters, data from the Weather Surveillance Radar 

1988-Doppler (WSR-88D; Crum and Alberty 1993) often play a leading role in the severe weather warning 

decision process (e.g., Burgess and Lemon 1990; Polger et al. 1994). The quality and timeliness of the radar 

data are, of course, important to the forecaster. For example, long-term statistical analyses have shown that 

higher operational performance for tornado (TOR; Cho and Kurdzo 2019a,b), flash flood (FF; Cho and 

Kurdzo 2020a), and non-tornadic severe thunderstorm (SVR; Cho and Kurdzo 2020b) warnings are 

associated with better radar coverage and spatial resolution. Studies conducted within testbed settings 

utilizing experimental, non-operational radar data have shown that faster radar data updates can also lead 

to improved TOR and SVR warning performance (Heinselman et al. 2015; Wilson et al. 2017).  

Ideally, in terms of timeliness, weather radar observations from every point in space would be 

available continuously and instantaneously. This is impossible, because it takes the radar a finite amount of 

time to obtain high quality data from each resolution volume (e.g., Doviak and Zrnic 1993). In fact, there 

are interdependent trade-offs between spatial coverage, observation update frequency, and data quality. 

With the WSR-88D, the NWS forecaster manages these trade-offs in real time by selecting from a menu of 

available volume coverage patterns (VCPs), based on which VCP best suits the weather phenomenon of 

immediate interest (e.g., Brown et al. 2000). 

The WSR-88D VCPs are defined as automated sets of 360° azimuthal antenna rotations, each at a 

constant elevation angle that make up an entire volume of scans. These have evolved over time in response 

to research outcomes and forecaster input. In the past decade, options to the basic VCPs were introduced 

that further expanded the WSR-88D’s observational flexibility: 1) automated volume scan evaluation and 

termination (AVSET; Chrisman 2013), 2) supplemental adaptive intra-volume low-level scan (SAILS; 

Chrisman 2014), and 3) mid-volume rescan of low-level elevations (MRLE; Chrisman 2016). Briefly, 

AVSET shortens the volume update time whenever possible by adaptively skipping high-elevation-angle 

scans above 5° that contain no precipitation returns. SAILS inserts one to three extra lowest-elevation-angle 

(base) scan(s) dispersed evenly in time throughout the VCP cycle. MRLE is similar to SAILS, except other 

low-level elevations scans (e.g., 0.9°, 1.3°, and 1.8°) are updated more frequently as well. After an initial 

trial period, AVSET has been on by default at all sites since 2012, although it can be manually turned off 

when desired. SAILS and MRLE are options that are selected in real time by NWS weather forecast office 

(WFO) forecasters, and have been available since 2014–2015 and 2018–2019, respectively, depending on 

the date that each site was updated with the corresponding software build. 

It is important to quantify the efficacy of these recent VCP enhancements to 1) provide better 

guidance and training for their usage, 2) aid in the development of future VCPs and options, 3) help inform 

scanning requirements for the eventual WSR-88D replacement, and 4) document benefits gained from 

optimizing scan strategies. Since the WSR-88D has a mechanically steered antenna that places physical 
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constraints on scanning methodologies, electronically scanned phased-array radars (PARs) are being 

considered as a potential future alternative (Weber et al. 2021). Points 3 and 4 inform the research-to-

operations plan (NOAA 2020) for this alternative radar system. 

In a recent study, we focused on the effects of SAILS on SVR, FF, and TOR warning performance 

(Cho et al. 2022). Here we expand on that study to increase the database span through the end of 2022 

(Section 2.2), add an analysis of MRLE impacts (Section 2.3), explore TOR warning performance 

dependence on storm type (Section 2.4), investigate the relative importance of base vs. volume scan update 

rates (section 3), and parse the SAILS impact results by (anonymized) WFOs (section 4). The text in 

Sections 2.1 and 2.2 is almost entirely based on material from Cho et al. (2022), but the results have been 

completely updated based on 2014–2022 data instead of 2014–2020 data. All the other sections are 

composed of new and original material. 
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2. SAILS IMPACT ON WARNING PERFORMANCE 

It is generally thought that faster radar scan updates would help forecasters make more accurate and 

timely severe weather warning decisions. The SAILS option provides more frequent base scan updates, but 

at the price of increasing the time between complete volume scan updates. Therefore, it is not a “slam dunk” 

proposition, a priori, that the usage of SAILS would improve warning performance. SAILS is further 

subdivided into SAILxN, where N = 1, 2, or 3 corresponds to the number of additional base scan(s) inserted 

into the VCP. (The N > 1 cases are referred to as MESO-SAILS, where MESO stands for “multiple elevation 

scan option.”) This trade-off of base vs. volume scan update rates is illustrated in Figure 1. The relative 

impacts of the two update rate types on warning performance will be investigated in Section 3. (Note that, 

for transparency, the data points underlying plots are given as tables in Appendix A.) 

Figure 1. Base scan update period (red) and volume scan update period (blue) vs. SAILS status for VCP 212. The 
thick lines correspond to the medians and the thin lines denote the 25th and 75th percentile values. 
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2.1 ANALYSIS METHODOLOGY 

The basic idea behind our analysis was to find the scan mode that was operating on the primary WSR-

88D used by the forecaster when making the decision to issue or not to issue a severe weather warning. The 

warning performance metrics—probability of detection (POD), mean lead time (MLT), and false alarm 

ratio (FAR)—were then computed, parsed by VCP type. We chose mean lead time over median lead time 

because confidence intervals for the mean are more straightforwardly computed and more commonly 

agreed upon than confidence intervals for the median, and confidence intervals are crucial in establishing 

statistically significant differences. Warnings and events were further categorized as being associated with 

the same event (leading and trailing warnings) or not (solo warnings). This categorization is explained at 

the beginning of Section 2.2. 

The data needed were: 1) storm event data from the National Oceanic and Atmospheric 

Administration (NOAA) National Center for Environmental Information (NCEI; 

https://www.ncdc.noaa.gov/stormevents/), 2) storm warning data from the Iowa Environmental Mesonet 

NWS Watch/Warnings archive (https://mesonet.agron.iastate.edu/request/gis/watchwarn.phtml), and 3) 

WSR-88D Archive III Status Product (ASP). The ASP data, which contain per-volume-scan information 

on time, VCP number, SAILS and MRLE status, and volume scan duration, are available on NCEI 

(https://www.ncdc.noaa.gov/nexradinv/) as well as on Google Cloud 

(https://console.cloud.google.com/storage/browser/gcp-public-data-nexrad-

l3/2019/12?authuser=0&prefix). 

On one hand, input data volume should be maximized to reduce statistical uncertainty in the results. 

On the other hand, background circumstances should be kept constant to reduce unintended biases. Given 

these opposing exigencies, the analysis period was selected to start on the SAILS deployment date at each 

WSR-88D site. This varied from 28 February 2014 at KRAX (Raleigh-Durham, NC) to 15 May 2015 at 

KBYX (Key West, FL). The analysis period end date was 31 December 2022. We set the geographic 

coverage to be the contiguous United States (CONUS).  

To determine the scan mode used at the time of a warning decision, we first matched each severe 

weather event and warning polygon to the nearest WSR-88D. This procedure assumes that the closest WSR-

88D was the one being relied upon most by the forecaster when the warning decision was made. This is not 

necessarily true, as the closest radar may have been not operating or perhaps a radar farther away had less 

terrain blockage; also, data from multiple radars may have been consulted. It is impossible to be certain of 

the “primary” radar that was used without forecasters’ logs recording this information. However, because 

of the large data quantity that we processed, we expect deviations from the assumption (nearest radar being 

most important) would be fairly small “noise” components in the statistical results. 

We then found the ASP volume scan timestamp that was closest to and before the warning issuance 

time. However, if the difference between the warning issuance time and the ASP timestamp was greater 

than 11 minutes, the match was discarded. This was necessary to filter out instances where the nearest radar 

was not in operation or its ASP record was not available (11 minutes marks the longest possible normal 
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volume scan duration, corresponding to VCPs 31 and 32). For a missed detection, there was no associated 

warning; it is impossible to know when the decision not to issue a warning was made. In fact, it may be 

more accurate to say that there was a range of time during which the decision was made not to issue a 

warning. To account for this spread of time during the assessment period, we subtracted the median warning 

lead time for that event type (SVR, FF, or TOR) from the initial event-occurrence time, with the idea that 

this would approximate when the decision not to issue a warning was made. The medians were computed 

over detected events parsed by warning category (lead, trailing, solo) and enhanced Fujita (EF) scale 

number groupings (EF0–1, EF2, EF3–5). The median was chosen for this purpose rather than the mean 

because the median is less sensitive to outliers. Although median lead times also vary with WFO, we did 

not subdivide the data further in this way, since this would have led to significantly higher variance in the 

lead-time estimates. This approximate decision time was then used for matching with the ASP scan 

timestamp. 

For FF events, instead of using the event locations directly to find the nearest radar, we first mapped 

the locations to the corresponding catchment basin polygons—see Cho and Kurdzo (2020a) for details on 

how this was done. This process more accurately places the radar observations most relevant for FF warning 

decisions, i.e., where the rain was falling, not where the flooding occurred. 

Since a warning decision is not made instantly, one may wonder whether the single scan mode that 

was being used shortly before the warning issuance time was truly representative of the scan modes 

operating throughout the decision process. To probe this question, we computed how often the scan modes 

were changed during the last hour leading up to the warning issuance time. The results are shown in 

Figure 2. We see that, for the vast majority of cases, the VCP number, SAILS on/off status, and SAILSxN 

were held constant during that hour. This gives us confidence in the validity of the single, matched scan 

mode in computing warning performance dependence on scan usage statistics. 

Figure 2. Percentage of cases during one hour prior to when a warning decision was made that a scanning mode 

(VCP number, SAILS on/off, and SAILSxN) was not changed, changed once, or changed two or more times. M is the 

number of samples for each warning type. 
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SAILS usage is restricted to five VCPs: 12, 35, 112, 212, and 215. VCP 35 is a “clear air” mode with 

a volume update period of ~7 minutes that is rarely employed for non-winter severe weather observation. 

VCP 215 is a general precipitation surveillance mode with dense upper-elevation sampling and a volume 

update period of about 6 minutes. VCP 112, which replaced VCP 121 in 2020, is used for large-scale 

systems with widespread high velocities, and has a volume update period of about 5.5 minutes. VCPs 12 

and 212 trade off upper-elevation sampling density in favor of faster volume update periods (about 4 and 

4.5 minutes, respectively); the only difference between these two VCPs is that VCP 212 uses pulse-phase 

coding and processing for second-trip recovery (Sachidananda and Zrnic 1999), whereas VCP 12 does not. 

The second-trip recovery scheme requires slightly longer scan times, but increases Doppler data coverage 

to longer ranges. (The approximate volume update periods given above are for when AVSET does not skip 

any high-elevation scans and SAILS is off.) Furthermore, VCPs 112 and 215 allow only SAILSx1. In order 

to maintain uniform conditions as much as possible while not discarding too much data, we decided to keep 

only VCPs 12 and 212 for the SAILS analysis. These two VCPs were used in the overwhelming fraction of 

warning decisions for all event types (Figure 3): 93% for SVR, 84% for FF, and 96% for TOR. 

Figure 3. VCP usage frequency by severe weather warning type. 

Finally, we know from our past studies that radar coverage quality around the storm location is 

statistically related to warning performance for TOR (Cho and Kurdzo 2019a,b), FF (Cho and Kurdzo 

2020a), and SVR (Cho and Kurdzo 2020b). If there is a strong positive correlation between SAILS usage 

and radar coverage, e.g., fraction of vertical volume observed (FVO), around the storm of interest, then the 

statistics of warning performance dependence on SAILS usage could be biased by that correlation. 

Therefore, we computed the FVO distributions for SAILS off vs. SAILS on for each warning type to check 

for significant statistical differences. As we did not find such notable differences, we felt confident in 

proceeding with the SAILS impact analysis. 

Regarding the warning performance metrics, we defined a detection when a point event was inside 

the warning polygon or a polygon-delineated event was inside or intersected the warning polygon, and if 

any portion of the event duration overlapped the warning-valid interval in time; otherwise, the warning was 

classified as a false alarm. This definition is consistent with NWS severe convective weather verification 
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procedures (NWS 2009). For a detection, the lead time was computed as the event’s start time minus the 

initial warning issuance time. By this definition, negative lead times were included in the POD and MLT 

calculations. Negative lead times consist of a small fraction of all lead times; see, e.g., Figure 7 in Cho and 

Kurdzo (2020b) for a SVR warning lead time distribution. Including negative lead times increases the 

number of qualifying events for average lead time calculations, which helps decrease the statistically 

meaningful confidence interval. POD was calculated as the number of detections divided by the number of 

events. FAR was computed as the number of false alarms divided by the number of warnings. Multiple 

events can occur within the same space and time boundaries of a single warning, which implies that even 

if there were no missed detections, the number of events can be more than the number of warnings. 

2.2 SAILS IMPACT RESULTS 

NWS forecasters often initially select VCPs (including SAILS modes) based on the expected threat. 

There may be multiple threat types over disparate geographic areas or over the same area (e.g., coincident 

severe thunderstorm and flash flood threats), and their relative priorities may evolve with time. The choice 

between the different levels of SAILS (x1, x2, x3) is a complex decision because one must trade off base 

scan update rate with volume update rate. Thus, even though the perceived optimal VCP mode may vary 

over time, in this complex operational forecast and warning environment, the meteorologists’ heavy 

workload may prevent them from changing VCP modes frequently. Therefore, forecasters may tend to 

default to SAILS-off or SAILSx1 mode until an initial threat detection is made. 

With these potential human factors in mind, we computed results in four categories, wherever 

possible: (1) all data, (2) data associated with warnings that did not overlap with other warnings in space 

and time (dubbed “solo” warnings), (3) data associated with lead warnings, and (4) data associated with 

trailing warnings. We tagged a warning as “trailing” if there was any overlap in its valid period with the 

valid period of a warning issued earlier, and if there was also any overlap in their geographic polygons. 

This left “lead” warnings as warnings that had at least one space-time overlap with a trailing warning but 

were the first ones to be issued. SVR, FF, and TOR warnings were each handled separately. In practice, 

there is sometimes a delay (~1–4 minutes) in the issuance of a follow-up warning, especially during periods 

of high workload, resulting in a short time gap between the expiration of the earlier warning and the 

beginning valid time of the trailing warning. To account for this, we allowed up to a four-minute gap in the 

definition of time overlap. Likewise, there may also be a small spatial gap between an earlier warning 

polygon and a follow-up polygon. To account for this contingency, we filled out the polygons to their 

convex hulls and expanded them by 0.05° in latitude-longitude space using the MATLAB function 

“polybuffer.” This procedure allowed angular spatial gaps between polygons of up to 0.1° in the definition 

of spatial overlap, which is on the order of 10 km at mid-latitudes. The top plot in Figure 4 shows the 

percentages of warnings in each category. Note that a proposed concept, Threats-in-Motion, seeks to 

mitigate such gaps by continuously updating polygons that move forward with the storm (Stumpf and 

Gerard 2021). 
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Figure 4. Warning statistics by category: (left) issued percentage, (middle) mean warning area, (right) mean 

warning valid time. Total data counts were 138,609 for SVR, 29,443 for FF, and 17,794 for TOR. Vertical error 

bars correspond to 95% confidence intervals (see Section 2.2.1 for details on confidence intervals). 

In our earlier paper (Cho et al. 2022), we had parsed the warning categories based on the WFO of 

warning issuance. For this report, we performed the categorizations regardless of issuance source. This 

change allows the grouping of warnings that crossed WFO areas of responsibility, and, thus, more 

accurately reflects the storm phenomenology. The main effect that this change had on the warning statistics 

was that larger fractions of warnings were categorized as trailing compared to before. The overall results 

(and conclusions drawn) in the following sections were not impacted in any substantive way.  

The FAR for these four categories was calculated directly from the parsed warning data. For MLT, 

we classified all detected events according to the matching warning. (An event that was successfully 

predicted by multiple warnings was assigned to the warning with the earliest issuance time.) It was not 

possible to compute POD separately for solo, lead, and trailing warnings, because its calculation requires 

knowledge of the number of unwarned events for each category, which cannot be determined. 

In operational practice, the event type for which an initial (lead) warning is issued may change for 

what may be called the trailing warning. Just to give one example, after a TOR warning was issued, a 

subsequent warning for the same area may be revised to a SVR warning based on a rapidly weakening radar 

tornado signature. Such “crossover” phenomena are not captured by the event-based warning categories 

that we used. 

Figure 5 displays SAILS usage by warning type. SAILSx1 is the most prevalent scan mode for all 

warning types, except for TOR trailing warnings where SAILSx3 is most commonly used. This is partly 

explained by the fact that MESO-SAILS (SAILSx2 and SAILSx3) did not start being deployed until 

January 2016. However, year-by-year usage plots (Figure 6) indicate that the preference for SAILSx1 has 

continued in more recent years. Overall usage of SAILS for severe weather warning decisions has also 

declined somewhat after reaching a peak in 2016. It is also clear that forecasters use SAILS more 

aggressively in making TOR warning decisions. 
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Figure 5. SAILS usage frequency by severe weather warning type and category. 

Figure 6. SAILS usage frequency by year for SVR, FF, and TOR warning decisions. 
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There is a trend of increasing SAILS usage in the order of solo, lead, then trailing warnings, which 

can be deduced from the fact that SAILS off usage decreases in this order in Figure 5. The same order 

applies to SAILSx3 usage. It must be noted that this report does not evaluate observed storm mode relative 

to SAILS usage, only warning type and associated SAILS selections. This precludes the ability to directly 

assess the nature of the convection in terms of mode, area coverage, and storm motion relative to SAILS 

trends. Nonetheless, we cautiously surmise that solo warnings tend to be associated with narrower footprint, 

more transient or faster passing events, e.g., air-mass storms, seen as posing lower threat levels. Lead and 

trailing warnings, by definition part of multiple linked warnings, may tend to be associated with larger, 

more persistent storms, e.g., mesoscale convective systems (MCSs) and supercells. This proposition is 

consistent with the mean warning area being smallest, and the mean warning-valid period shortest (to a 

lesser extent), for solo warnings (middle and bottom plots in Figure 4). 

Because there are many potential factors that influence SAILS usage, we urge caution with drawing 

too many conclusions here. Nonetheless, one of the possibilities is that the continued preferred usage of 

SAILSx1 (versus the MESO-SAILS options) is due to forecasters not wanting to overly increase the length 

of the volume scan. Though this is relevant for all severe weather warning types, it is of particular 

importance for some wind and most hail events. Given that damaging wind events such as microbursts and 

large hail events are often warned by observing descending reflectivity cores and observations of mid-level 

reflectivity convergence (Roberts and Wilson 1989; Schmocker et al. 1996), it makes intuitive sense that 

increasing the volume update time too much can be seen as a detriment. (We attempt to separate the effects 

of base vs. volume scan update rates in Section 3.) 

Additionally, automated hail algorithms such as MESH (maximum estimated size of hail; Witt et al. 

1998) also utilize full-volume data and are frequently used by WFO forecasters as real-time warning 

guidance for both hail and summer wind warnings (due to the fact that melting hail with high freezing-level 

environments can enhance downdraft magnitudes; Straka and Anderson 1993). MESH is generated as a 

function of the frequency of volume scan updates, meaning that heavier MESO-SAILS usage effectively 

slows down the update rate of volumetric products such as MESH. Given that MESH is heavily used for 

many summer hail and wind warnings, especially in the southern and eastern U.S., less-frequent selection 

of MESO-SAILS in these situations would make sense. 

2.2.1 SVR Warnings 

Figure 7 shows POD, FAR, and MLT for SVR warnings vs. SAILS usage status at the estimated time 

of warning decision—SAILS off and SAILS on, with the latter further subdivided into SAILSx1, x2, and 

x3. The short horizontal bars indicate the mean values, and the solid vertical bars are the 95% confidence 

intervals. For POD and FAR, which are binomial proportion calculations with scores ranging from zero to 

one, the confidence intervals were estimated by the Wilson score method (Wilson 1927). We chose this 

formulation due to its conservativeness (on average), coverage probability being consistent and close to the 

nominal level, and relatively good accuracy even for small sample sizes (Pobocikova 2010). For MLT, the 

confidence intervals were calculated from ±t95σM-1/2, where M is the number of samples, σ is the standard 

deviation, and t95 corresponds to the number of standard deviations from the mean needed to encompass 
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95% of the Student’s t distribution with M – 1 degrees of freedom (e.g., Rees 2001). As M grows large, this 

formula converges to the familiar 95% confidence interval for the mean of a normal distribution with known 

standard deviation, ±1.96σM-1/2. 

Figure 7. SVR warning performance metrics vs. SAILS usage status. The number of samples per category is 
displayed at the bottom of each plot. (Colors are used to provide additional visual differentiation between the status 
categories.) The short horizontal lines denote the mean, and the solid vertical bars are the 95% confidence 
intervals. (See text for details.) 

For the all-warning category in Figure 7, the improvement in SVR warning performance was 

statistically significant with SAILS on vs. SAILS off—POD was higher, FAR was lower, and MLT was 

longer. (Differences in performance metrics are statistically significant if the confidence intervals of the 
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metrics do not overlap.) Furthermore, the SAILSx2 and x3 results exhibited higher skill than the SAILSx1 

results, with no statistically significant difference between x2 and x3. One possible explanation for this 

result is that, for SVR warning decisions, the benefit of adding extra base scans in the VCP reached 

saturation with SAILSx2. This is because the volume scan update time also increases with the added base 

scans (a factor that is analyzed further in Section 3). This suggests that the slower volume updates negated 

any performance boost provided by the third added base scan. 

If we only had the all-warning results, one might argue that the apparent gain obtained by using 

SAILS could have been caused by a correlation between low SAILS usage and worse warning performance 

for a given warning category. In fact, such a correlation exists—solo warnings have worse FAR and MLT 

performance relative to lead and trailing warnings, and they are also associated with lower SAILS usage 

rates (Figure 5). Thus, some of the SAILS benefit apparent in the all-warning results may have contributions 

from this correlation. However, that correlation cannot explain the fact that the use of SAILS is associated 

with significantly better FAR and MLT performance within the trailing warning category. We conclude 

that SAILS helps SVR warning decisions, at least for trailing warnings (which form the largest share of 

SVR warnings). Perhaps for solo and lead warnings, a 3D volumetric awareness of the evolving storm 

and/or increased assessment of cutting-edge storm features (e.g., ZDR arc) are more critical than just more 

frequent base scan updates in deciding whether or not to pull the trigger on an initial warning. 

Because storm morphology and occurrence rate vary by geographic region and season, and warning 

methodology and culture can differ between WFOs (Andra et al. 2002; Smith 2011), the relationship 

between SAILS usage and warning performance can vary from office to office. We checked for such an 

effect by computing the warning performance metrics separately for each of the 115 CONUS WFOs. Only 

29 had statistically significant (at the 95% confidence level) differences in POD between the SAILS-off 

and -on cases. For 25 out of those 29 WFOs, POD was higher with SAILS on. For FAR, the number of 

WFOs with statistically significant differences was 15, with 13 having lower FAR with SAILS on. For 

MLT, the number of WFOs with statistically significant differences was 27, with 23 having longer MLT 

with SAILS on. Thus, even though we are focusing on the overall CONUS results in this section, it is clear 

that there is substantial heterogeneity at the WFO level, which we will show in more detail in section 4. 

SVR warnings are verified by the presence of a thunderstorm wind or hail event (NWS 2009), which 

means that POD and MLT (but not FAR) can be computed separately for each event type. Figure 8 shows 

the consequent POD and MLT results for hail and thunderstorm wind. The overall statistical trends were 

similar to the aggregate results of Figure 7; however, the improvements in SVR POD and MLT performance 

that were associated with SAILS usage were noticeably greater for thunderstorm wind compared to hail. In 

fact, while the SAILS benefit for thunderstorm wind is apparent within the solo and trailing warning 

categories for MLT, there is no statistically significant SAILS advantage within any of the warning 

categories for hail MLT. A possible factor is that volumetric update rates are more critical for descending 

hail cores and automated hail detection algorithms than rapid base scan updates. Large hail is often 

observable at mid-levels, manifesting as a descending reflectivity core before reaching the ground (e.g., 

Donavon and Jungbluth 2007). When combined with a forecaster’s knowledge of the environmental 
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freezing levels, this can become more important during the warning process than rapidly updating base 

scans. These results agree well with earlier findings from PAR-based severe thunderstorm case studies 

(Bowden and Heinselman 2016). In short, this is a strong argument for rapid volumetric updates (e.g., via 

MRLE or a future PAR system) rather than simply rapid base scan updates. However, it should also be 

noted that warning for hail can be somewhat automated by diagnostic, algorithmic-based guidance such as 

MESH, probability of severe hail (POSH), etc. Although these incorporate volumetric data, SAILS data 

could decrease the effective algorithmic update rate due to slower higher-elevation update rates. It is 

important to remember, though, that wind hazards do not have the same diagnostic parameters available to 

forecasters as hail, making the SAILS updates possibly more useful for SVR wind warnings. Note that, for 

hail, the results for MRLE (which is a compromise between low-level scan update rate and vertical 

coverage) in Section 2.3 show a greater potential benefit over SAILS. 

Figure 8. SVR POD and MLT performance vs. SAILS usage status, separated by event type. 
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Severe winds, on the other hand, can manifest in several different ways. For example, in a pulse storm 

microburst situation, a descending reflectivity core can be equally useful for a wind threat as it is in other 

scenarios for hail threats, depending on the thermodynamic environment. However, there are other 

situations where severe winds can be assessed at the base scan level without as much of a need for rapid 

volumetric scanning. These scenarios are often prevalent in rapidly moving bow echoes and forward-

propagating quasi-linear convective systems (QLCSs) where a rear inflow jet is forcing mesoscale severe 

winds at the surface, either with the onset of precipitation or as part of a gust front (Markowski and 

Richardson 2010). In these cases, rapid base scan updates can be particularly useful for a forecaster. 

2.2.2 FF Warnings 

Figure 9 displays POD, FAR, and MLT for FF warnings vs. SAILS usage status at the estimated time 

of warning decision. As with SVR warnings, SAILS utilization corresponded with improved warning 

performance in the all-warning category. SAILSx2 and SAILSx3 did significantly better than SAILSx1 for 

FAR in the all-warning category. SAILSx3 did significantly better than SAILSx1 and SAILSx2 for MLT, 

although this difference comes entirely from the trailing warning category. Thus, although there are hints 

in these results that the fastest base scan updates provided by SAILSx3 may be beneficial for FF warning 

decisions, it may not be the optimal choice in all cases. The best balance between faster base scan updates 

and slower volume scan updates may be situation dependent. Note that a recent flash flood model study 

showed that the peak stream discharge estimate was 10% lower using 5- vs. 1-minute radar volume updates 

(Wen et al. 2021); it would be valuable to deconvolve the effects of faster base scan updates from those of 

faster volume scan updates in future studies. 

As with the SVR results, the solo warning category showed noticeably worse warning statistics 

compared to the lead and trailing warning categories. And since SAILS is used more often with the latter 

warning categories, these correlations could have accounted for the apparent SAILS performance boost in 

the overall results. However, because even within these warning categories (all three for FAR and trailing 

for MLT), SAILS-on was associated with better warning performance relative to SAILS-off, we can be 

confident that the SAILS usage benefit for FF warnings is real and not just the product of the above-

mentioned correlations, just like in the SVR warning case. 

Interestingly, in the trailing warning MLT sub-category for both SVR thunderstorm wind and FF, 

SAILSx3 significantly outperformed the other options. Perhaps once a storm is already established as being 

a threat for these hazards, more frequent updates of the phenomenon itself (near-surface wind and rainfall) 

become more useful for prediction. 



 

 

15 

Figure 9. FF warning performance vs. SAILS usage status. 

In a parallel study on the effects of SAILS on quantitative precipitation estimation (QPE; Kurdzo et 

al. 2021), we found that SAILSx3 was a statistically significant indicator for more accurate QPE compared 

with SAILS-off and other SAILS/MESO-SAILS modes. This was true across several QPE methods, which 

points to the possibility that faster base scan updates than provided by SAILSx3 might lead to even more 

accurate QPE. The importance of the base scan cannot be overstated for QPE and FF warnings, since QPE 

on the WSR-88D is calculated using the hybrid base scan only (Fulton et al. 1998). In a dynamic, rapidly 

evolving heavy rainfall situation, the faster base scan updates allow for shorter integrations of a given 

rainfall rate, effectively increasing the spatial resolution of rainfall rate estimation along with the obvious 

improvement in temporal resolution. Additionally, convective heavy rainfall is often caused by “training” 

storms over a given area. These cases would also conceivably benefit from faster base scan updates for 

QPE totals because of the expected faster forecaster recognition of FF potential. 
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With increased QPE accuracy, we would expect to see better FF warning performance. This argues 

that faster base scan updates could conceivably further improve FF warning statistics. Additionally, 

assuming FF warning performance is related to QPE accuracy, use of the vertical profile of reflectivity 

(VPR; e.g., Kirstetter et al. 2010) technique in future operational scenarios would conceivably also increase 

the performance of both. However, VPR benefits would only be realized in the event of rapid volumetric 

scan updates; again, an argument for the benefits of PAR weather radar architectures in the future. 

2.2.3 TOR Warnings 

Figure 10 shows POD, FAR, and MLT for TOR warnings vs. SAILS usage status at the estimated 

time of warning decision. In the all-warnings category, SAILS utilization was associated with significantly 

improved POD and FAR. Furthermore, POD significantly increased monotonically with SAILSx1, x2, and 

x3, while for FAR and MLT, SAILSx3 was associated with statistically better performance compared to 

SAILSx1 and x2. Nonetheless, the SAILSx1 and x2 cases were statistically indistinguishable for FAR and 

MLT, which raises the question of whether there is utility in selecting SAILSx2 over x1 in TOR warnings 

given that skipping over x2 to x3 showed the best statistical performance. 

 



 

 

17 

Figure 10. TOR warning performance vs. SAILS usage status. 

As with SVR and FF, the FAR and MLT performances were significantly worse for solo TOR 

warnings relative to lead and trailing warnings. As we discussed earlier, this may be due to solo warnings 

tending to be associated with faster passing, more transient events. This is consistent with TOR warning 

performance being worse for disorganized storms and QLCSs compared to supercells (Brotzge et al. 2013; 

Anderson-Frey and Brooks 2021). (Note that the solo warning category could also include situations where 

a TOR warning transitioned directly to a SVR warning following a spotter report of no low-level rotation 

and/or a noticeable weakening in the radar velocity signature.) Thus, since SAILS is used less often for solo 

warnings, these correlations could have accounted for some of the apparent SAILS performance boost for 

FAR. Nevertheless, the significantly better FAR performance with SAILS on within the lead and trailing 
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warning categories gives us confidence that these apparent SAILS benefits for FAR are not just due to such 

correlations. 

For MLT, the situation was more ambiguous. There was no clear statistical separation between the 

SAILS-off and -on cases. However, under the all-warnings category, the SAILSx3 case yielded a 

statistically significant increase in MLT compared with all of the other modes. 

Taken overall, the Figure 10 results indicate that providing forecasters with more frequent base scan 

updates than given by SAILSx3 might help improve TOR warning performance further. This agrees, at 

least conceptually, with the multitude of studies utilizing experimental mobile rapid-scan radar systems for 

observations of tornadoes and tornadogenesis (e.g., Bluestein et al. 2007; Wurman et al. 2007; Kosiba et 

al. 2013; Kurdzo et al. 2017). The incredibly rapid changes that can occur in the low-level mesocyclone, 

the rear-flank downdraft, and the surrounding wind field seen in several rapid-scan radar studies suggests 

that ~90-s updates of the base scan do not provide enough detail to forecasters issuing warnings (Wilson et 

al. 2017). These update rates are particularly critical in the most rapidly forming and shorter-lived 

tornadoes, such as those in QLCS or tropical environments. Rapid tornadogenesis can also occur in 

supercells, especially recently developed supercells in environments primed for tornadoes, as well as in 

cases of frequent, cyclic tornadogenesis. The precursors to tornadogenesis in these scenarios can be short-

lived and subtle (e.g., Sessa and Trapp 2020)—in these situations, the QLCS mesovortex three ingredients 

method (Schaumann and Przbylinski 2012) can be useful; however, faster scan updates would likely be 

even more helpful. To investigate the impact of SAILS on TOR warning performance for different 

background weather situations, we parsed the results according to storm type in Section 2.2.3.1. 

We know from past studies that TOR warning performance is strongly related to the tornado’s EF 

damage rating number, with greater warning skill associated with higher EF-scale ratings (e.g., Simmons 

and Sutter 2005). Therefore, we tried parsing our POD and MLT results in this way. (Such parsing is not 

possible for FAR, since false alarms do not have associated tornado events.) From past experience (Cho 

and Kurdzo 2019a,b), we knew that EF0 and EF1 tornadoes tend to have similar POD and MLT statistics, 

whereas the occurrence rates for EF3-and-above tornadoes dwindle rapidly. Thus, we divided the results 

according to three groups—EF0–1, EF2, and EF3–5. The results are shown in Figure 11. 
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Figure 11. TOR POD and MLT performance vs. SAILS usage status, separated by EF number groups. Results with 
sample size less than two were not plotted. 



 

 

20 

The EF0–1 results were quite similar to the overall results in Figure 10, which is to be expected since 

this group encompassed most (88%) of the tornado events. As for EF2, the only clear difference amongst 

the various SAILS usage statuses was that the SAILS-on case yielded significantly higher POD than the 

SAILS-off case, and SAILSx3 was associated with a higher POD than SAILSx1. With EF3–5, the only 

statistically significant result was that the SAILS-on case was associated with longer MLT than the SAILS-

off case. Although the sample size was relatively small, this last result is noteworthy, since increasing the 

lead time for these deadliest tornadoes is one of the most important goals for the NWS. 

2.2.3.1 TOR Warning Results Parsed by Storm Type 

Tornadoes are generated by different types of convective storms, and the optimal radar scanning 

strategy may vary for these different situations. Although we have now seen that SAILS is an effective 

scanning option when making tornado warning decisions, it would be even more helpful to know whether 

this result varies with convective mode. In order to probe this question, we utilized a tornado events 

database from the NWS Storm Prediction Center (SPC) that assigned the parent storms to various 

categories. For this analysis, we took a subset of those categories that contained enough data points for 

deriving statistically meaningful impact results for TOR warnings. These categories are listed in the left-

hand column of Table 1, together with the shorthand label that are used in subsequent figures. Table 1 also 

shows the mapping of these categories to the three major convective modes and their subtypes as defined 

by Smith et al. (2012). Note that there were so few left-moving supercell instances that we omitted those 

cases from the supercell subcategories as indicated in Table 1. 

Figure 12 shows the SAILS mode usage rates by tornadic storm type. For this graph, the tropical 

cyclone (“TropCyc”) category was included, even though it did not have enough data points for the SAILS 

impact analysis, because the SAILS usage rates were markedly different. According to this plot, forecasters 

appear to utilize SAILS more aggressively for rapidly developing storm types, such as supercell/cell in line, 

QLCS, and tropical cyclones. It makes sense that they would seek to obtain faster updates of at least the 

base scan in these situations. 
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TABLE 1 

Tornadic Storm Classification and Labeling Scheme 

Study Category 
[Label] 

Supercell (RM and LM)* QLCS Disorganized 

Cell 
in 

Line 

Cell in 
Cluster 

Discrete 
Cell 

Line 
Bow 
Echo 

Cluster 
Cell in 
Cluster 

Discrete 
Cell 

RM supercell 
[RMSup] 

RM RM RM 

RM supercell/cell in 
line [RMSupLine] 

RM 

RM supercell/cell in 
cluster 

[RMSupClust] 
RM 

RM 
supercell/discrete 
cell [RMSupDisc] 

RM 

QLCS [QLCS] All All 

Disorganized 
[Disorg] 

All All All 

Supercell/cell in 
Line + QLCS 

[AnyLine] 
All All All 

Supercell/discrete + 
disorganized/ 

discrete [Discrete] 
All All 

*RM = right-moving, LM = left-moving
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Figure 12. SAILS mode usage rate by tornadic storm type. Number of data points per type is listed at the top. 

Brotzge et al. (2013) computed TOR POD and lead time parsed by storm type. Their results showed 

that these TOR warning performance metrics were best for the supercell/discrete cell category followed by, 

in descending order, supercell/cell in cluster, supercell/cell in line, QLCS, and disorganized. Interestingly, 

this is exactly the opposite order of SAILS usage rate in Figure 12. The implication is that forecasters are 

choosing to use SAILS more during situations that have historically been harder for TOR warnings 

decisions. 

Figure 13 shows the dependence of TOR POD on SAILS mode and storm type. For all except the 

supercell/cell in line category (for which the sample size is smallest), SAILS-on was associated with 

significantly higher POD than SAILS-off. Furthermore, SAILSx3 performed significantly better than 

SAILSx1 and SAILSx2 for most of the storm types. Therefore, SAILS (especially SAILSx3) seems to be 

a good choice for TOR warning decisions in virtually any type of convective mode. 
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Figure 13. TOR POD vs. SAILS usage status, parsed by storm type. 

For the hardest-to-warn TOR storm categories, the historical detection probabilities from the pre-

SAILS era were: POD of 48.6 ± 6.2% for QLCS and 44.2 ± 4.7% for disorganized (Brotzge et al. 2013). 

Comparison with Figure 13 shows that these values are essentially equal to the current values with SAILS 

off. Thus, the significantly higher detection probabilities we see today with SAILS on for QLCS and 

disorganized storms form a strong case for claiming a tangible, likely life-saving, benefit of SAILS. 

The historical TOR detection probabilities for the supercell sub-categories from the pre-SAILS era 

were: POD of 80.5 ± 5.1% for cell in line, 84.6 ± 2.4% for cell in cluster, and 87.9 ± 2.4% for discrete cell 

(Brotzge et al. 2013). The latter two figures are actually higher than the current POD values for those 

supercell sub-types, although they are matched by the SAILSx3 results. This is likely due to the fact that 

there was a sharp decline in TOR POD between 2011 and 2014 that has been attributed to a concerted effort 

to reduce FAR (Brooks and Correia 2018). It is, thus, even more remarkable that the TOR detection 

probabilities for the QLCS and disorganized storm types have made such great strides with SAILS. 

Figure 14 shows the dependence of TOR MLT on SAILS mode and storm type. We do not observe 

any statistically significant benefit for SAILS except for QLCS, where SAILSx3 performed better than 

SAILS-off. The pre-SAILS TOR warning MLT for QLCS was 12.3 minutes (Brotzge et al. 2013), which 

falls within the current SAILS-off range. Therefore, the longer MLT with SAILSx3 for QLCS could be 

claimed as a SAILS benefit. As with POD, the supercell/cell in line category is an anomaly, likely due to 

the small sample size. These ambiguous results may be a reflection of just how difficult it is to increase 

TOR warning lead time beyond about 15 minutes, simply due to the limits in our understanding of why one 

storm spawns a tornado and a similar-looking one does not. 
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Figure 14. TOR MLT vs. SAILS usage status, parsed by storm type. 

Note that FAR statistics could not be parsed by storm type because false alarm cases (non-tornadic 

storms) were not catalogued in the storm classification database. 

2.3 MRLE IMPACT RESULTS 

MRLE was introduced after the deployment of SAILS in order to provide WSR-88D operators with 

the choice of more frequent updates of not just the base scan, but successively higher angle scans as well. 

SAILSx1 adds a base (0.5° elevation angle) scan in the middle of a VCP; on top of that starting point, 

MRLE adds progressively higher angle scans in the middle of a VCP. Let us label these options as 

MRLE+L, where L is the number of scans added in the middle of the VCP. Then MRLE+2 revisits the 0.5° 

and 0.9° cuts in the middle of the VCP, MRLE+3 revisits the 0.5°, 0.9°, and 1.3° in the middle of the VCP, 

and MRLE+4 revisits the 0.5°, 0.9°, 1.3°, and 1.8° in the middle of the VCP. Currently, these are the three 

options available for MRLE. (Note that by this definition, MRLE+1 equals SAILSx1, so we will not use 

the former term to avoid confusion and redundancy.) 

As with SAILS, there is a price to pay for adding these extra scans in the middle of the VCP—the 

volume scan update time will increase. Furthermore, the base scan update period will also increase with 

higher L, but not to the same extent. These effects are shown in Figure 15. The radar operator must take 

these trade-offs into consideration when choosing SAILS and MRLE options. 
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Figure 15. Base scan update period (red) and volume scan update period (blue) vs. MRLE status for VCP 212. The 
thick lines correspond to the medians and the thin lines denote the 25th and 75th percentile values. 

Figure 16 shows MRLE usage rates during SVR, FF, and TOR warning decisions. The rates are much 

lower than SAILS usage rates (Figure 5). For SVR warnings, there is a clear trend of more frequent usage 

with solo, lead, and trailing warnings, in that order. There is no such clear trend for FF and TOR warnings. 

For SVR and FF warnings, there is decreasing usage in the order of MRLE+2, +3, and +4, whereas for TOR 

warnings, MRLE+2 and +3 have comparable usage rates that are greater than for MRLE+4. The overall 

low usage rate for MRLE may partly be explained by its newness, i.e., the unfamiliarity of this option to 

the radar operator. The year-to-year record (Figure 17) indeed shows that during the initial two years in 

which MRLE was being rolled out nationally, its usage was extremely limited. However, after a sharp rise 

to a peak in 2021, the MRLE usage rate seems to have settled back down in 2022 at a level that is still an 

order of magnitude lower than the SAILS usage rate. Thus, it is clear that SAILS is the favored option under 

most severe weather warning situations, whereas MRLE is chosen on more restricted occasions. 
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Figure 16. MRLE usage frequency by severe weather warning type and category. 

Figure 17. MRLE usage frequency by year for SVR, FF, and TOR warning decisions. 

2.3.1 SVR Warnings 

Figure 18 shows POD, FAR, and MLT for SVR warnings vs. MRLE usage status at the estimated 

time of warning decision. The uncertainty bars for the MRLE-on cases are much longer relative to SAILS 
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results due to the much smaller sample numbers. For the MRLE-off cases, we used the same data span as 

for the SAILS-off cases in order to provide the same “off” baseline for both SAILS and MRLE. 

Figure 18. SVR warning performance metrics vs. MRLE usage status. The number of samples per category is 
displayed at the bottom of each plot. The short horizontal lines denote the mean, and the solid vertical bars are the 
95% confidence intervals. 

For the all-warning category in Figure 18, the improvement in SVR warning performance was 

statistically significant with MRLE on vs. MRLE off—POD was higher, FAR was lower, and MLT was 

longer. For POD, the MRLE+3 and +4 results exhibited higher skill than the MRLE+2 results, with no 

statistically significant difference between +3 and +4. Also of note is that the FAR and MLT performances 

were significantly better with MRLE on within the lead and trailing warning categories. As with SAILS, if 

we only had the all-warning results, one might argue that the apparent gain obtained by using MRLE could 

have been caused by a correlation between low MRLE usage and worse warning performance for a given 
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warning category. In fact, such a correlation exists—solo warnings have worse FAR and MLT performance 

relative to lead and trailing warnings, and they are also associated with lower MRLE usage rates 

(Figure 16). Thus, some of the MRLE benefit apparent in the all-warning results may have contributions 

from this correlation. However, that correlation cannot explain the fact that the use of MRLE is associated 

with significantly better FAR and MLT performance within the lead and trailing warning categories. We 

conclude that the use of MRLE helps SVR warning decisions, at least for lead and trailing warnings. 

Figure 19 shows the POD and MLT statistics computed separately for hail and thunderstorm wind 

events (FAR cannot be parsed by event type, because false alarms are not associated with events). The 

overall statistical trends were similar to the all-events results of Figure 18, with POD and MLT showing 

better performance with MRLE on for both hail and wind events. POD for thunderstorm wind, however, 

shows progressively better performance with MRLE+2, +3, and +4. And for solo warnings, MRLE does 

not appear to provide a benefit—in fact, for hail MLT, it is associated with worse performance. 
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Figure 19. SVR POD and MLT performance vs. MRLE usage status, separated by event type. 

2.3.2 FF Warnings 

Figure 20 displays POD, FAR, and MLT for FF warnings vs. MRLE usage status at the estimated 

time of warning decision. As with SVR warnings, MRLE utilization corresponded with improved warning 

performance in the all-warning category. MRLE+4 did significantly better than MRLE+2 for FAR in the 

all-warning category. In the trailing warning category, MRLE-on performed better than MRLE-off in both 

FAR and MLT. 
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Figure 20. FF warning performance vs. MRLE usage status. 

2.3.3 TOR Warnings 

Figure 21 shows POD, FAR, and MLT for TOR warnings vs. MRLE usage status at the estimated 

time of warning decision. In the all-warnings category, MRLE utilization was associated with significantly 

improved POD and FAR. Within the warning categories, MRLE-on did significantly better than MRLE-

off for lead and trailing warnings for FAR, and for trailing warnings only for MLT. No significant 

differences between MRLE+2, +3, and +4 were observed, possibly due to the very small sample sizes. We 

do not include plots of results parsed by EF categories here because there were no notable differences that 

were statistically significant. 
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Figure 21. TOR warning performance vs. MRLE usage status. 

2.4 SAILS VS. MRLE IMPACTS 

We now compare SAILS and MRLE impact results. Figure 22 shows this comparison for SVR 

warnings. MRLE was associated with better POD, FAR, and MLT performance compared to SAILS. 

Within the types of SAILS and MRLE scans, MRLE+4 performed the best for POD and FAR, although the 

sample sizes for MRLE+4 were relatively small. Even parsed by hail vs. thunderstorm wind (Figure 23), 

MRLE performed better than SAILS. And for POD, MRLE+4 did best (with MRLE+3 doing just as well 

for hail). 

 



 

 

32 

Figure 22. SVR warning performance metrics vs. SAILS and MRLE usage status. Colors are used to help visual 
differentiation between categories. 
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Figure 23. SVR POD and MLT performance vs. SAILS and MRLE usage status, separated by event type. 

Figure 24 shows little statistically significant difference between SAILS and MRLE impacts on FF 

warning performance. The only exception was MRLE+4 outperforming other options in FAR, although one 

must be cognizant of the small sample size (55). 
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Figure 24. FF warning performance vs. SAILS and MRLE usage status. 

With tornadoes (Figure 25), SAILS and MRLE performed similarly, except for MLT where the 

SAILS options did better than MRLE. 
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Figure 25. TOR warning performance vs. SAILS and MRLE usage status. 

In an effort to provide objective input to the radar operator training program, Table 2 summarizes and 

compares the historically most used SAILS/MRLE options (including the “off” alternative) with the options 

that our study showed to be statistically associated with best warning performance. Because the optimal (or 

best compromise) radar scanning choice in any given situation will be dependent on many factors, such as 

storm developmental stage and distance from radar, this table is not meant to be used as a rigid basis for 

decision making. Rather, we would like forecasters to be aware that there is a statistical basis for certain 

scanning options being associated with best warning performance in the aggregate SVR, FF, and TOR 

warning categories, and, therefore, that these options should be perhaps considered favorably with that in 

mind. 
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TABLE 2 

SAILS and MRLE Historical Usage vs. Top Performers 

Category SVR (hail) SVR (wind) FF TOR 

Historically most used SAILSx1 SAILSx1 SAILSx1 SAILSx1 

Option associated with top 
warning performance  

MRLE+4 MRLE+4 MRLE+4 SAILSx3 

Option(s) associated with second-
best warning performance 

MRLE+3 SAILSx3 
MRLE+3 
SAILSx3 

SAILSx2 

 

We have already discussed some of the possible physical reasons behind the Table 2 results. For 

TOR, the latest wind field closest to the surface may be one of the most critical factors in deciding whether 

or not to issue a warning, which may be why SAILSx3 (followed by SAILSx2) is associated with the best 

performance. For SVR warnings, the evolution of the convection morphology, including mid-level 

structures, might be tracked in a timelier manner with MRLE. For FF, the rainfall rate is best estimated by 

the most frequent base scan updates (SAILSx3), but the short-range prediction for intense rainfall may be 

more dependent on the amount of water aloft, so MRLE+4 or MRLE+3 might be best for that purpose. 

Note, however, that results for MRLE are not as robust as those for SAILS, especially for FF and TOR, due 

to the much smaller sample sizes. 
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3. VOLUME AND BASE SCAN UPDATE RATE IMPACTS ON WARNING 

PERFORMANCE 

3.1 ANALYSIS METHODOLOGY 

In Section 2, we analyzed the effects of SAILS and MRLE usage on severe weather warning 

performance. Due to the inherent resource limitations of the WSR-88D, given a certain level of data quality 

and spatial resolution, arbitrarily fast scan update rates cannot be achieved. SAILS and MRLE options 

represent a range of trade-off points between volume scan update rates and the update rates of the lowest 

elevation angle scans. In formulating requirements for a potential future replacement of the WSR-88D, it 

is of interest to disentangle the impacts of volume scan update rate vs. individual elevation angle scan 

update rates. Taken in aggregate, with the diversity of VCPs, SAILS/MRLE options, and the variation in 

volume scan periods due to AVSET, we have access to a spread of data points across the 2D base vs. volume 

scan update period joint distribution (Figure 26). It is thus possible to conduct regression analyses of severe 

warning performance with these two variables as predictors. 

Figure 26. Scatter plot of base scan update period vs. volume scan update period in severe weather warning 
decision cases. 

SAILS off

SAILSx1, MRLE

SAILSx2

SAILSx3
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Previous experiments with a rapid-scan PAR generally showed performance improvements for non-

operational SVR and TOR warnings for volume update periods of ~1 minute vs. ~2 and ~5 minutes (Wilson 

et al. 2017). Our current analysis, which utilizes large sets of operational data for statistical robustness, 

provides an excellent complement to those earlier studies. 

For this analysis, we used data from 2012 to 2022, since AVSET has been on by default at all sites 

since 2012. For POD and FAR, we employed a binomial logistic (Berkson 1944) regression, as appropriate 

for events with a binary outcome; the MATLAB fitglm function with the binomial distribution option was 

used. For lead time, we applied a normal linear regression (MATLAB fitglm function with the normal 

distribution option). For predictors, in addition to volume and base scan periods (s), we also included event 

distance from the radar (km), since we knew from past studies that POD is related to event (or source basin 

for FF) distance from the radar, and that FAR is linked to warning polygon distance from the radar for SVR 

(Cho and Kurdzo 2020b), FF (Meléndez et al. 2018; Cho and Kurdzo 2020a), and TOR (Brotzge and 

Erickson 2010; Cho and Kurdzo 2019a,b). Lead time was only found to be linked to distance from radar 

for FF (Cho and Kurdzo 2020a), so distance from radar was not included as a predictor variable for the 

SVR and TOR lead time regression analyses. 

3.2 IMPACT RESULTS 

The regression analysis results for SVR warnings are listed in Table 3. According to the vanishingly 

small p values, all results were statistically significant. The negative signs of the coefficients mean that 

POD decreased with increasing radar distance, volume scan period, and base scan period, all of which make 

sense. The larger coefficient magnitude (i.e., steeper slope in the regression fit) implies that a change in 

base scan period has more leverage than a similar change in volume scan period to impact POD. For FAR, 

the positive signs of the coefficients mean that FAR increased with increasing radar distance, volume scan 

period, and base scan period, which also makes sense. In this case, the volume scan period appears to have 

a bit more impact on FAR than the base scan period. Lead time increased with decreasing volume and base 

scan periods, with the base scan period having a significantly stronger impact in this case. 

Note that Section 2 showed that improved SVR warning performance was associated with SAILS on 

(longer volume scan periods, shorter base scan periods) vs. SAILS off (shorter volume scan periods, longer 

base scan periods)—in other words, that shorter volume scan periods had an indirect association with worse 

SVR warning performance. This means that the multiple regression results of Table 3 where reduction in 

both volume and base scan periods were significantly correlated with improved warning performance had 

to work against that SAILS influence. That is why these results are a very important addition to the SAILS 

impact results—we were able to show that despite the SAILS-based anticorrelation between volume and 

base scan update rates, reducing either or both leads to improved SVR warning performance. 
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TABLE 3 

SVR Warning Performance Regression Fit Results 

Warning 
Metric 

M 
Regression 

Output 
y Intercept 

Distance 
from 

Radar 

Volume 
Scan 

Period 

Base Scan 
Period 

POD 269,480 

Coefficient 1.97 ± 0.04 
-1.28 ± 

0.10 × 10
-3

 

-1.28 ± 

0.10 × 10
-3

 

-1.97 ± 0.07 × 

10
-3

 

p value <10
-9

 <10
-9

 <10
-9

 <10
-9

 

FAR 184,052 

Coefficient 
-0.739 ± 

0.043 

2.82 ± 0.11 

× 10
-3

 

7.90 ± 1.05 

× 10
-4

 

5.59 ± 0.75 

× 10
-4

 

p value <10
-9

 <10
-9

 <10
-9

 <10
-9

 

Lead Time 202,284 

Coefficient 1480 ± 20 — 
-0.227 ± 

0.045 
-0.655 ± 

0.033 

p value <10
-9

 — 3.7 × 10
-7

 <10
-9

 

 

Table 4 gives the regression analysis results for only SVR hail events. Again, POD improvement was 

associated with decreased volume and base scan periods, with base scan period having more impact. Lead 

time improvement was associated with decreased volume and base scan period, but in this instance, there 

was no statistically significant difference in impact between the two predictors, as the coefficient estimate 

error bars overlapped. Oddly, POD increased with distance from radar in this case. This is difficult to 

explain physically. Perhaps because at farther ranges, more of the vertical extent of the storm is captured 

by the rapid-update SAILS/MRLE low-elevation-angle scans, the forecaster is able to make a better 

evaluation of hail potential. But those factors still have to outweigh the better spatial resolution one obtains 

at closer range. It is also possible that AVSET effects might have affected these results, i.e., that the 

tendency for storms farther away to be associated with shorter volume scan periods due to AVSET 

truncating the highest elevation cuts could have introduced an indirect association between improved POD 

and distance from radar. However, even with truncated AVSET volume scans omitted from the analysis, 

increased POD was still associated with increased distance from radar. 
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TABLE 4 

SVR Warning Performance Regression Fit Results (Hail) 

Warning 
Metric 

M 
Regression 

Output 
y 

Intercept 
Distance 

from Radar 
Volume Scan 

Period 
Base Scan 

Period 

POD 93,569 

Coefficient 
1.74 ± 
0.07 

8.08 ± 1.74 × 

10
-4

 

-5.59 ± 1.77 ×  

10
-4

 

-1.91 ± 0.12 × 

10
-3

 

p value <10
-9

 3.5 × 10
-6

 0.0016 <10
-9

 

Lead 
Time 

73,118 

Coefficient 
1430 ± 

30 
— -0.373 ± 0.076 

-0.497 ± 
0.053 

p value <10
-9

 — <10
-9

 <10
-9

 

 

Table 5 gives the regression analysis results for only SVR thunderstorm wind events. POD 

improvement was associated with decreased volume and base scan periods, with base scan period having 

more impact. Lead time improvement was associated with decreased volume and base scan periods, with 

base scan period having more impact also in this case. POD decreased with radar distance, which is what 

one would expect (and also observed in the past). 

TABLE 5 

SVR Warning Performance Regression Fit Results (Thunderstorm Wind) 

Warning 
Metric 

M 
Regression 

Output 
y 

Intercept 
Distance 

from Radar 
Volume Scan 

Period 
Base Scan 

Period 

POD 175,911 

Coefficient 
2.02 ± 
0.05 

-2.67 ± 0.13 × 

10
-3

 

-1.30 ± 0.11 ×  

10
-3

 

-2.10 ± 0.08 × 

10
-3

 

p value <10
-9

 <10
-9

 <10
-9

 <10
-9

 

Lead 
Time 

129,166 

Coefficient 
1540 ± 

20 
— -0.281 ± 0.055 

-0.710 ± 
0.042 

p value <10
-9

 — 4.1 × 10
-7

 <10
-9

 

 

The regression analysis results for FF warnings are listed in Table 6. We marked the results with p 

values greater than or equal to 0.01 in red, to indicate that they are less statistically reliable and could be 

ignored. With that in mind, POD improvement was associated with decreasing distance from radar and base 

scan periods. FAR improvement was associated with decreasing distance from radar and base scan period, 

but also with increasing volume scan period. Lead time increase was associated with decreasing base scan 
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period, but also with increasing volume scan period. The FF warning performance improvement with 

increasing volume scan period is a surprising result that is hard to explain. However, as noted earlier, there 

is an underlying SAILS-based anticorrelation between volume and base scan update rates that may be 

counteracting other factors that would lead to a correlation between decreased volume scan period and 

increased POD. Thus, in this context, we recommend that these results be interpreted to mean that 

decreasing base scan periods is certainly important for improving FF warning performance, but not form a 

definite conclusion regarding volume scan period effects. 

TABLE 6 

FF Warning Performance Regression Fit Results 

Warning 
Metric 

M 
Regression 

Output 
y 

Intercept 
Distance 

from Radar 
Volume Scan 

Period 
Base Scan 

Period 

POD 36,779 

Coefficient 
2.31 ± 
0.10 

-4.64 ± 0.34 × 

10
-4

 

4.74 ± 26.0 ×  

10
-5

 

-1.04 ± 0.19 × 

10
-3

 

p value <10
-9

 <10
-9

 0.86 4.7 × 10
-8

 

FAR 37,793 

Coefficient 
-0.614 ± 

0.071 

5.53 ± 0.26 × 

10
-3

 

-7.83 ± 1.82 ×  

10
-4

 

1.34 ± 0.14 

× 10
-3

 

p value <10
-9

 <10
-9

 1.7 × 10
-5

 <10
-9

 

Lead 
Time 

31,127 

Coefficient 
2470 ± 

190 
1.66 ± 0.66 5.68 ± 0.49 -1.11 ± 0.36 

p value <10
-9

 0.011 <10
-9

 1.9 × 10
-3

 

 

The regression analysis results for TOR warnings are listed in Table 7. POD improvement was 

associated with decreasing distance from radar and base scan periods, but also with increasing volume scan 

period. The latter association is, again, surprising. Again, as noted for FF, there is an underlying SAILS-

based anticorrelation between volume and base scan update rates that may be counteracting other factors 

that would lead to a correlation between decreased volume scan period and increased POD. FAR 

improvement was associated with decreasing distance from radar and base scan period. There were no 

statistically reliable results for lead time. As with FF warnings, we recommend interpreting the results to 

mean that decreasing base scan periods is certainly important for improving TOR warning performance, 

but not form a definite conclusion regarding volume scan period effects. 
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TABLE 7 

TOR Warning Performance Regression Fit Results 

Warning 
Metric 

M 
Regression 

Output 
y 

Intercept 
Distance 

from Radar 
Volume Scan 

Period 
Base Scan 

Period 

POD 12,600 

Coefficient 
0.480 ± 
0.169 

-3.17 ± 0.46 × 

10
-3

 
2.28 ± 0.39 × 10

-3

 
-1.96 ± 0.31 × 

10
-3

 

p value 4.5 × 10
-3

 <10
-9

 3.8 × 10
-9

 <10
-9

 

FAR 23,363 

Coefficient 
0.618 ± 
0.149 

5.00 ± 0.38 × 

10
-3

 

-8.60 ± 3.34 ×  

10
-4

 

9.55 ± 2.62 

× 10
-4

 

p value 3.2 × 10
-5

 <10
-9

 0.010 2.7 × 10
-4

 

Lead 
Time 

8235 

Coefficient 780 ± 80 — -1.47 ± 1.89 
0.0422 ± 

0.159 

p value <10
-9

 — 0.44 0.79 

 

Because correlation between multiple predictor variables could be problematic in interpreting the 

regression results, we checked for multicollinearity with the variance inflation factor (VIF). VIF never 

exceeded 1.73 for any predictor pair, which is below the commonly used threshold of 5 (or a more 

conservative threshold of 2.5) that indicates a degree of multicollinearity that is problematic for regression 

analysis (Simon 2009). Thus, interpretation of the regression results should not be impacted by such 

correlations. 

The biggest takeaway message from this section is that even though Section 2 clearly showed that 

the usage of SAILS and MRLE is associated with improved severe weather warning performance, where 

the usage of SAILS and MRLE increases the volume scan period, a decreased volume scan period was 

shown to be independently associated with improved warning performance, at least for SVR warnings. This 

analysis was made possible by the diversity in volume scan periods generated by AVSET and the range of 

VCPs used. The implication is that there is likely a benefit for future weather radars if both base and volume 

scan update rates could be increased without sacrificing one for the other. 
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4. SAILS AND MRLE USAGE AND WARNING PERFORMANCE BY WFO 

WSR-88Ds are operated by the local WFO, of which there are 116 in the CONUS. With multiple 

forecasters per WFO working in shifts around the clock, there is a very large roster of radar operators that 

are making VCP, SAILS, and MRLE usage decisions. Although there are regional and national training 

programs run within the NWS for WSR-88D operations, the range of weather climatology, staff experience, 

and WFO culture (Smith 2011) may result in a wide range of radar scan option statistics. This section 

presents the results of investigating such statistics. The results are presented without identifying individual 

WFOs to maintain their anonymity, and only plots are shown without accompanying tables in Appendix A. 

Figure 27 shows POD vs. SAILS usage rate by WFO for SVR warnings. The dataset analyzed is the 

same as used in Section 2. The error bars were computed as ±t95 times the standard error for proportional 

data, representing the 95% confidence intervals in both dimensions. We used this metric instead of the 

Wilson score employed in the earlier sections because we needed symmetrical error estimates for input to 

the regression fit function. There is a wide range of both SAILS usage rate and POD among the WFOs. 

Unusually low PODs are generally associated with WFOs that generated few SVR warnings (i.e., long 

vertical error bars), so that is somewhat of a small-sample-size issue. However, there are some unusually 

low SAILS usage rates that are associated with WFOs large numbers of SVR warnings (i.e., short horizontal 

error bars) that cannot be attributed to small-sample-size statistical unreliability. So, for whatever reasons, 

there are some WFOs that have historically tended not to choose SAILS when making SVR warning 

decisions. 
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Figure 27. Scatter plot of POD vs. SAILS usage rate by WFO for SVR warnings. Horizontal and vertical bars denote 
95% confidence intervals. The red line is a linear least-squares fit to the data. See main text for details. 

In Figure 27, one can see that there is some positive correlation between POD and SAILS usage rate. 

To bolster this visual impression, the red line is the result of a least-squares straight line fit to the data with 

input uncertainty in two dimensions using the Numerical Recipes function fitexy (Press et al. 1992). The 

parameter estimates from the fit were: y intercept = 72.8 ± 1.0 and slope = 0.0712 ± 0.0129, but with a large 

chi-squared residual of 2390. Thus, the fit values should not be taken too seriously, but the positive sign of 

the slope is some added evidence that SVR POD benefits from SAILS usage. 

Figure 28 shows FAR vs. SAILS usage rate by WFO for SVR warnings. Similar comments apply as 

for Figure 27: There is a wide range of both SAILS usage rate and FAR among the WFOs. Unusually high 

FARs tend to be associated with WFOs that generated few SVR warnings (i.e., long vertical error bars), 

which could at least be partly attributable to a small-sample-size issue. However, there are some unusually 

low SAILS usage rates that are associated with WFOs large numbers of SVR warnings (i.e., short horizontal 

error bars). Again, the linear fit to the data supports the Section 2 conclusion that usage of SAILS generally 
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benefits SVR warning performance. For reference, the estimated values were: y intercept = 74.8 ± 1.7 and 

slope = -0.374 ± 0.023, with a chi-squared residual of 4460. 

Figure 28. Scatter plot of FAR vs. SAILS usage rate by WFO for SVR warnings. Horizontal and vertical bars denote 
95% confidence intervals. The red line is a linear least-squares fit to the data. 

Figure 29 shows MLT vs. SAILS usage rate by WFO for SVR warnings. Again, one can discern a 

positive correlation between the two variables, as with POD vs. SAILS usage rate, especially when focusing 

on the data points with small errors. The corresponding linear fit parameter estimates were: y intercept = 

17.7 ± 0.3 and slope = 0.0426 ± 0.0044, with a chi-squared residual of 1610. 
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Figure 29. Scatter plot of MLT vs. SAILS usage rate by WFO for SVR warnings. Horizontal and vertical bars denote 
95% confidence intervals. The red line is a linear least-squares fit to the data. 

Figure 30 shows POD vs. SAILS usage rate by WFO for FF warnings. The dataset analyzed is the 

same as used in Section 2. With fewer data points compared to the SVR warning results, the error bars are 

longer and a trend is harder to discern. The linear least-squares fit does yield a positive slope, implying a 

SAILS usage benefit: y intercept = 84.7 ± 1.8 and slope = 0.040 ± 0.026, with a chi-squared residual of 384. 
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Figure 30. Scatter plot of POD vs. SAILS usage rate by WFO for FF warnings. Horizontal and vertical bars denote 
95% confidence intervals. The red line is a linear least-squares fit to the data. 

Figure 31 shows FAR vs. SAILS usage rate by WFO for FF warnings. The linear fit parameter 

estimates were: y intercept = 87.9 ± 2.6 and slope = -0.599 ± 0.038, with a chi-squared residual of 637. 
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Figure 31. Scatter plot of FAR vs. SAILS usage rate by WFO for FF warnings. Horizontal and vertical bars denote 
95% confidence intervals. The red line is a linear least-squares fit to the data. 

Figure 32 shows MLT vs. SAILS usage rate by WFO for FF warnings. The linear fit parameter 

estimates were: y intercept = 44.8 ± 3.7 and slope = 0.258 ± 0.055, with a chi-squared residual of 556. 
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Figure 32. Scatter plot of MLT vs. SAILS usage rate by WFO for FF warnings. Horizontal and vertical bars denote 
95% confidence intervals. The red line is a linear least-squares fit to the data. 

Figure 33 shows POD vs. SAILS usage rate by WFO for TOR warnings. The dataset analyzed is the 

same as used in Section 2. With even fewer data points than for FF warnings, the error bars are very large 

for most WFOs, especially since tornadoes tend to occur in more concentrated areas of the CONUS. 

Nevertheless, there is still a hint of a positive correlation, which also shows up in the least-squares fit results: 

y intercept = -18.5 ± 7.9 and slope = 0.952 ± 0.088, with a chi-squared residual of 165. 
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Figure 33. Scatter plot of POD vs. SAILS usage rate by WFO for TOR warnings. Horizontal and vertical bars 
denote 95% confidence intervals. The red line is a linear least-squares fit to the data. 

Figure 34 shows FAR vs. SAILS usage rate by WFO for TOR warnings. The linear fit parameter 

estimates were: y intercept = 129 ± 8.0 and slope = -0.616 ± 0.091, with a chi-squared residual of 327. 
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Figure 34. Scatter plot of FAR vs. SAILS usage rate by WFO for TOR warnings. Horizontal and vertical bars denote 
95% confidence intervals. The red line is a linear least-squares fit to the data. 

Finally, Figure 35 shows MLT vs. SAILS usage rate by WFO for TOR warnings. The linear fit 

parameter estimates were: y intercept = 0.393 ± 3.9 and slope = 0.133 ± 0.044, with a chi-squared residual 

of 102. 
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Figure 35. Scatter plot of MLT vs. SAILS usage rate by WFO for TOR warnings. Horizontal and vertical bars 
denote 95% confidence intervals. The red line is a linear least-squares fit to the data. 

The results displayed in Figures 27–35 help support one of the main conclusions to be drawn from 

the Section 2 results—that SAILS usage is associated with improved SVR, FF, and TOR warning 

performance. Despite the wide variance in WFO-dependent SAILS usage and warning performance, the 

aggregate trends are all consistent in this regard. Note, however, that the estimated slope values from 

Figures 27–35 should not be used to quantitatively predict performance based on SAILS usage due to the 

poor quality of the fits. 

We can also examine the statistical distribution of SAILS and MRLE usage by the WFOs using 

histograms. Figure 36 shows these histograms for SAILS usage rate for SVR, FF, and TOR warning 

decisions. The top left histogram is for any SAILS mode, whereas the other histograms are for SAILSx1, 

x2, and x3. There is an extremely wide range of usage, from around 20% to nearly 100% for any SAILS 

mode. There is a significant number of WFOs that apparently almost never uses SAILSx3. It would be of 

great interest to conduct a survey of the WFOs to find out why there is such a large variance in SAILS 
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usage rate. There may be important factors that we have not touched upon in this report that influence a 

radar operator’s scan mode selections. 

Figure 37 shows histograms of MRLE usage by WFOs. The top-left histogram is for any MRLE 

mode, whereas the other histograms are for MRLE+2, +3, and +4. A significant number of WFOs hardly 

ever use MRLE, and a relatively small number of WFOs seem to account for most of the MRLE usage. 

Figure 36. Histograms of SAILS usage rate by WFOs for SVR, FF, and TOR warning decisions (2014–2022). 
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Figure 37. Histograms of MRLE usage rate by WFOs for SVR, FF, and TOR warning decisions (2018–2022). 

We also tried looking at the WFO SAILS and MRLE usage by year, but were not able to discern any 

notable patterns. In general, there was no steady increase or decrease over time; rather, the changes from 

year-to-year were mostly noisy and unpredictable. 
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5. SUMMARY DISCUSSION 

Aside from potential workload saturation issues, meteorologists want to have their weather radar data 

updated as frequently as possible. However, because radars have unavoidable trade-offs between update 

rate, data quality, and spatial coverage, it is impossible to provide arbitrarily rapid updates of operationally 

acceptable data products. The SAILS and MRLE VCP options were developed to give the radar operator 

flexibility to obtain more frequent updates of certain elevation angle scans, but at the expense of slowing 

down the volume update rate. The SAILS option was inspired by the TDWR hazard scan, which intersperses 

base scans at ~1-minute intervals within a ~2.5-minute volume scan, at the cost of having sparse elevation 

angle coverage. This scan strategy was optimized for the TDWR’s primary mission of low-altitude wind-

shear detection, and it has been shown that, on average, it detects microbursts earlier than the WSR-88D, 

most likely due to the more frequent base scan updates (Cho and Bennett 2023). The TDWR also switches 

automatically between the monitor and hazard scan modes, based on the presence of weather; thus, it could 

be argued that it is in optimal scanning mode at all times. 

In contrast to the TDWR, the WSR-88D has multiple tri-agency missions that must be considered in 

real-time by a human operator. The deployment of SAILS and MRLE has provided more radar scanning 

options, which allows the operator to choose the one that seems to best fulfill the observational needs of 

the moment. One expects that, based on their understanding of storm morphology and development, as well 

as experience gained from using the SAILS and MRLE options, meteorologists would, on the whole, tend 

toward the most effective scan modes for any given situation. However, it is very difficult for an operator 

to judge fairly whether the scanning choice that they made was better than the others, since they have no 

access to the parallel outcomes that would have resulted from alternative selections. We hope that our 

statistical analyses, conducted on a large historical dataset, will provide meaningful objective feedback on 

measurable outcomes of these radar operational decisions. 

Overall, it is clear that SAILS and MRLE have had a positive impact on warning performance. By 

slicing and dicing the data in different ways, we were able to gain confidence that the statistically 

meaningful differences in warning performance associated with the different scanning options were not 

artifacts generated by systematic correlations with other factors. The fact that scans with SAILS and MRLE 

both turned off were used for only a small fraction of the time while making severe weather warning 

decisions implies that forecasters have, on the whole, accepted the helpfulness of SAILS and MRLE. And 

yet, the discrepancies between the most popular scan options and the statistically most effective ones 

(Table 2) raise the question of whether SAILS and MRLE should be utilized more often under certain 

circumstances. The very wide range of SAILS and MRLE usage rates by WFOs accentuate this question. 

We recommend that the NWS conduct a nationwide survey of WFOs to understand how radar operators 

make decisions on which VCP options to use under what circumstances, and synthesize the results with 

those of this study to provide enhanced guidance on WSR-88D usage in the future. 
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The relative importance of base vs. volume scan update rate for severe weather warning performance 

is tough to evaluate, given the underlying anti-correlation between the two with SAILS and MRLE. 

However, there was evidence that increasing base scan update rate is more valuable for TOR warnings, 

especially for the hard-to-warn convective modes of QLCS and disorganized, even at the cost of slowing 

down the volume updates. This raises the question of whether a new SAILSx4 option might be of additional 

benefit for these situations. 

On the other hand, with SVR warnings, the slowdown in volume update rate with increasing N for 

SAILSxN seemed to saturate the benefits derived from the correspondingly more frequent base scan 

updates at SAILSx2, especially for hail events. (An exception was trailing warning MLT for thunderstorm 

wind events where SAILSx3 outperformed the other options.) Also, with SVR, statistically meaningful 

correlations were observed between volume scan update rate and warning performance, as well as between 

base scan update rate and warning performance. Furthermore, MRLE+4 was associated with better SVR 

warning performance than SAILS, which reinforces the notion that higher-elevation-angle observations 

were useful and needed; this makes sense, given that hail develops aloft, and there may be precursor 

signatures aloft for downbursts. 

Results for FF warnings were also somewhat mixed regarding the relative importance of base vs. 

volume scan update rates. For POD and FAR, the slowdown in volume update rate with increasing N for 

SAILSxN seemed to limit the benefits at SAILSx2. For trailing warning MLT, however, SAILSx3 

significantly outperformed the other options. MRLE+4 was the overall winner, perhaps suggesting that 

short-range predictions of intense rainfall based on frequent observations of surface to mid-level storm 

evolution can be more important for FF warnings than current QPE based on the fastest updates on the scan 

closest to the surface. 

Admittedly, there may not be one optimal scanning mode for any given instance because forecasters 

may need to monitor the situation for multiple threat types. Furthermore, the different threats may be in 

different sectors, whereas the WSR-88D can only carry out one scanning pattern at a time. In principle, 

PARs could be designed to execute different scan strategies adaptively tailored to different meteorological 

targets in different sectors, which comes closer to the ideal of optimizing surveillance parameters for each 

phenomenon. However, even a PAR would be limited by trade-offs between scan update rates, spatial 

coverage, and data quality, and the trade-off space would, in large part, be dictated by system cost. 

Therefore, it is of interest to understand better what the range of scan update parameters needs to be in 

future radar requirements. Experiments with the new generation of polarimetric PARs, such as the National 

Severe Storm Laboratory’s Advanced Technology Demonstrator (ATD; Torres and Wasielewski 2022), 

where forecasters are tasked to make warning decisions based on a range of sub-sampled data from recorded 

high-update-rate-everywhere data (a la the Phased Array Radar Innovative Sensing Experiment (PARISE; 

Wilson et al. 2017)) could help refine such requirements. 
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APPENDIX A. NUMERICAL VALUES UNDERLYING PLOTS 

TABLE A-1 

Base and Volume Scan Update Periods (s) vs. SAILS Status for VCP 212 for 2012 to 2023 

(Figure 1 in Main Text) 

Scan Type Percentile 
SAILS off 

(M = 
10,291,753) 

SAILSx1 
(M = 

8,361,191) 

SAILSx2 
(M = 

1,475,107) 

SAILSx3 
(M = 809,097) 

Base 

25 205 120 95 81 

50 229 127 101 86 

75 269 147 113 95 

Volume 

25 205 240 284 322 

50 229 254 304 343 

75 269 294 339 379 

 

TABLE A-2 

Percentage of Cases During One Hour Prior to When a Warning Decision is Made That a 

Scanning Mode (VCP Number, SAILS On/Off, and SAILSxN) is Not Changed, Changed 

Once, or Changed Two or More Times; the Value M is the Total Number of Samples for 

Each Warning Type (Figure 2 in Main Text) 

Warning Type Number of Changes VCP Number SAILS On/Off SAILSxN 

SVR 
(M = 138,609) 

0 97.45 95.31 92.09 

1 2.54 4.66 7.61 

2+ 0.06 0.03 0.30 

FF 
(M = 29,443) 

0 98.65 98.12 96.77 

1 1.32 1.87 3.15 

2+ 0.03 0.01 0.08 

TOR 
(M = 17,794) 

0 97.60 94.84 87.07 

1 2.37 5.13 12.20 

2+ 0.03 0.03 0.73 
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TABLE A-3 

VCP Usage Percentage by Severe Weather Warning Type (Figure 3 in Main Text) 

Warning Type M VCP 12 VCP 212 VCP 215 Others 

SVR 138,609 11.32 82.06 4.84 1.78 

FF 29,443 11.99 72.37 11.05 4.59 

TOR 17,794 8.31 87.73 2.60 1.36 

 

TABLE A-4 

Warning Statistics by Category; Percentage of Warnings are (Top) Upper 95% 

Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence Limit (Figure 4 in 

Main Text) 

Warning Type 
Percentage 
of Warnings 

Mean Warning 
Area (km2) 

Mean Warning 
Valid Time (min) 

SVR 
(M = 138,609) 

Solo 
23.74 
23.52 
23.30 

1117 ± 11 36.98 ± 0.13 

Lead 
17.51 
17.31 
17.12 

1397 ± 16 42.58 ± 0.15 

Trailing 
59.42 
59.17 
58.91 

2104 ± 14 43.94 ± 0.09 

FF 
(M = 29,443) 

Solo 
40.83 
40.27 
39.71 

971 ± 22 181.1 ± 2.0 

Lead 
18.45 
18.01 
17.57 

1653 ± 51 206.5 ± 2.3 

Trailing 
42.29 
41.72 
41.16 

2447 ± 48 217.6 ± 1.7 

TOR 
(M = 17,794) 

Solo 
32.18 
31.65 
31.12 

656 ± 11 28.60 ± 0.27 

Lead 
19.75 
19.30 
18.85 

731 ± 15 32.38 ± 0.33 

Trailing 
49.63 
49.10 
48.49 

830 ± 12 33.93 ± 0.23 
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TABLE A-5 

SAILS Usage Percentage by Severe Weather Warning Type; (Top) Upper 95% Confidence 

Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence Limit (Figure 5 in Main Text) 

Warning Type M SAILS off SAILSx1 SAILSx2 SAILSx3 

SVR 

All 138,609 
27.09 
26.85 
26.62 

45.70 
45.44 
45.18 

16.70 
16.50 
16.31 

11.37 
11.21 
11.04 

Solo 32,602 
35.71 
35.19 
34.68 

47.01 
46.46 
45.92 

11.91 
11.55 
11.21 

7.07 
6.79 
6.52 

Lead 23,998 
30.92 
30.33 
29.75 

46.72 
46.09 
45.46 

14.87 
14.42 
13.98 

9.53 
9.16 
8.80 

Trailing 82,009 
22.81 
22.52 
22.23 

45.18 
44.84 
44.50 

19.35 
19.08 
18.81 

13.80 
13.56 
13.33 

FF 

All 29,443 
34.25 
33.71 
33.17 

47.43 
46.86 
46.29 

10.78 
10.42 
10.08 

9.35 
9.01 
8.69 

Solo 11,856 
40.48 
39.59 
38.72 

47.75 
46.85 
45.96 

8.71 
8.21 
7.73 

5.77 
5.35 
4.96 

Lead 5302 
34.80 
33.52 
32.26 

48.59 
47.25 
45.91 

11.59 
10.73 
9.93 

13.03 
12.43 
11.86 

Trailing 12,285 
28.91 
28.11 
27.32 

47.57 
46.69 
45.81 

13.03 
12.43 
11.86 

13.37 
12.77 
12.19 

TOR 

All 17,794 
9.25 
8.83 
8.42 

35.95 
35.25 
34.55 

24.08 
23.45 
22.83 

33.16 
32.47 
31.79 

Solo 5631 
12.50 
11.63 
10.82 

40.30 
39.02 
37.75 

25.00 
23.87 
22.77 

26.64 
25.48 
24.36 

Lead 3434 
10.91 
9.87 
8.92 

37.03 
35.41 
33.83 

25.69 
24.23 
22.82 

32.05 
30.49 
28.97 

Trailing 8729 
7.15 
6.61 
6.11 

33.74 
32.75 
31.78 

23.77 
22.88 
22.01 

38.78 
37.76 
36.75 
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TABLE A-6 

SAILS Usage Percentage by Year for SVR, FF, and TOR Warning Decisions  

(Figure 6 in Main Text) 

Year M SAILSx1 SAILSx2 SAILSx3 

2014 10,420 65.71 0 0 

2015 24,135 75.33 0 0 

2016 23,478 47.74 13.87 18.09 

2017 24,014 33.63 24.74 20.19 

2018 21,595 38.17 19.92 14.92 

2019 25,765 36.36 21.39 17.19 

2020 19,976 33.99 18.24 13.78 

2021 20,109 33.90 18.61 10.61 

2022 21,425 35.11 17.35 10.88 

  



 

 

61 

TABLE A-7 

SVR Warning Performance vs. SAILS Usage Status for All Warnings; POD and FAR 

Values are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figures 7, 8, 22, and 23 in Main Text) 

Event 
Type 

SAILS 
Status 

M for 
POD 

POD 
(%) 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 39,408 
75.26 
74.69 
74.26 

29,433 20.28 ± 0.17 31,672 
49.82 
49.27 
48.72 

On 137,854 
78.36 
78.14 
77.92 

107,719 21.67 ± 0.09 97,759 
46.65 
46.34 
46.02 

x1 80,197 
77.07 
76.77 
76.48 

61,571 21.00 ± 0.11 59,353 
47.52 
47.12 
46.72 

x2 34,891 
80.63 
80.22 
79.79 

27,988 22.41 ± 0.17 22,874 
45.48 
44.84 
44.19 

x3 22,766 
80.28 
79.77 
79.24 

18,160 22.80 ± 0.22 15,532 
46.34 
45.56 
44.78 

Hail 

Off 14,665 
79.19 
78.53 
77.86 

11,517 20.14 ± 0.27 ⎯ ⎯ 

On 46,517 
80.00 
79.64 
79.27 

37,046 20.56 ± 0.15 ⎯ ⎯ 

x1 28,860 
79.47 
79.01 
78.53 

22,801 20.18 ± 0.19 ⎯ ⎯ 

x2 10,622 
81.41 
80.67 
79.91 

8569 21.17 ± 0.31 ⎯ ⎯ 

x3 7035 
82.59 
80.68 
79.74 

5676 21.17 ± 0.38 ⎯ ⎯ 

Wind 

Off 24,743 
72.96 
72.41 
71.85 

17,916 20.37 ± 0.21 ⎯ ⎯ 

On 91,337 
77.65 
77.38 
77.10 

70,673 22.25 ± 0.11 ⎯ ⎯ 
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x1 51,337 
75.89 
75.52 
75.15 

38,770 21.48 ± 0.14 ⎯ ⎯ 

x2 24,269 
80.51 
80.02 
79.51 

19,419 22.96 ± 0.21 ⎯ ⎯ 

x3 15,731 
79.98 
79.36 
78.72 

12,484 23.54 ± 0.26 ⎯ ⎯ 

 
  



 

 

63 

TABLE A-8 

SVR Warning Performance vs. SAILS Usage Status for Solo Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figures 7 and 8 in Main Text) 

Event 
Type 

SAILS 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 5098 13.03 ± 0.32 9251 
63.10 
62.11 
61.12 

On 11,136 13.50 ± 0.22 19,862 
63.73 
63.06 
62.39 

x1 7877 13.36 ± 0.26 13,882 
63.39 
62.59 
61.78 

x2 2174 14.10 ± 0.50 3767 
64.84 
63.31 
61.76 

x3 1085 13.35 ± 0.71 2213 
67.52 
65.58 
63.56 

Hail 

Off 1996 12.57 ± 0.51 ⎯ ⎯ 

On 4545 12.60 ± 0.33 ⎯ ⎯ 

x1 3196 12.62 ± 0.39 ⎯ ⎯ 

x2 916 12.98 ± 0.75 ⎯ ⎯ 

x3 433 11.67 ± 0.99 ⎯ ⎯ 

Wind 

Off 3102 13.32 ± 0.42 ⎯ ⎯ 

On 6591 14.12 ± 0.29 ⎯ ⎯ 

x1 4681 13.86 ± 0.34 ⎯ ⎯ 

x2 1258 14.92 ± 0.66 ⎯ ⎯ 

x3 652 14.47 ± 0.98 ⎯ ⎯ 
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TABLE A-9 

SVR Warning Performance vs. SAILS Usage Status for Lead Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figures 7 and 8 in Main Text) 

Event 
Type 

SAILS 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 6811 19.32 ± 0.34 6153 
44.15 
42.91 
41.67 

On 19,123 19.42 ± 0.20 16,045 
42.85 
42.08 
41.32 

x1 12,357 19.35 ± 0.25 10,386 
42.89 
41.94 
41.00 

x2 4274 19.57 ± 0.42 3460 
43.30 
41.65 
40.01 

x3 2492 19.51 ± 0.58 2199 
45.51 
43.43 
41.37 

Hail 

Off 3136 20.08 ± 0.52 ⎯ ⎯ 

On 8629 19.83 ± 0.30 ⎯ ⎯ 

x1 5635 19.77 ± 0.37 ⎯ ⎯ 

x2 1863 20.10 ± 0.64 ⎯ ⎯ 

x3 1131 19.65 ± 0.83 ⎯ ⎯ 

Wind 

Off 3675 18.68 ± 0.45 ⎯ ⎯ 

On 10,494 19.09 ± 0.27 ⎯ ⎯ 

x1 6722 19.00 ± 0.33 ⎯ ⎯ 

x2 2411 19.16 ± 0.56 ⎯ ⎯ 

x3 1361 19.40 ± 0.80 ⎯ ⎯ 
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TABLE A-10 

SVR Warning Performance vs. SAILS Usage Status for Trailing Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figures 7 and 8 in Main Text) 

Event 
Type 

SAILS 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 17,521 22.77 ± 0.22 16,268 
45.15 
44.38 
43.62 

On 77,450 23.40 ± 0.10 61,852 
42.46 
42.07 
41.68 

x1 41,332 22.95 ± 0.14 35,085 
43.05 
42.53 
41.02 

x2 21,540 23.81 ± 0.20 15,647 
41.87 
41.09 
40.33 

x3 14,578 24.07 ± 0.24 11,120 
42.92 
42.00 
41.08 

Hail 

Off 6385 22.54 ± 0.37 ⎯ ⎯ 

On 23,866 22.35 ± 0.18 ⎯ ⎯ 

x1 13,965 22.08 ± 0.24 ⎯ ⎯ 

x2 5790 22.81 ± 0.37 ⎯ ⎯ 

x3 4111 22.69 ± 0.44 ⎯ ⎯ 

Wind 

Off 11,136 22.90 ± 0.28 ⎯ ⎯ 

On 53,584 23.87 ± 0.12 ⎯ ⎯ 

x1 27,367 23.40 ± 0.17 ⎯ ⎯ 

x2 15,750 24.18 ± 0.23 ⎯ ⎯ 

x3 10,467 24.65 ± 0.29 ⎯ ⎯ 
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TABLE A-11 

FF Warning Performance vs. SAILS Usage Status for All Warnings; POD and FAR Values 

are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figures 9 and 24 in Main Text) 

SAILS 
Status 

M for 
POD 

POD 
(%) 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 6155 
84.53 
83.62 
82.68 

5147 63.18 ± 1.90 6939 
54.12 
52.95 
51.77 

On 19,048 
86.47 
85.99 
85.49 

16,379 71.59 ± 1.23 17,898 
46.00 
45.27 
44.55 

x1 12,142 
86.80 
86.20 
85.57 

10,466 68.70 ± 1.50 12,175 
47.56 
46.68 
45.79 

x2 3717 
86.15 
85.04 
83.86 

3161 68.69 ± 2.61 3069 
45.33 
43.56 
41.82 

x3 3189 
87.45 
86.30 
85.06 

2752 85.89 ± 3.46 2654 
42.69 
40.81 
38.95 
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TABLE A-12 

FF Warning Performance vs. SAILS Usage Status for Solo Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figure 9 in Main Text) 

SAILS 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 1792 40.51 ± 2.34 3281 
63.73 
62.08 
60.41 

On 4097 43.03 ± 1.69 6333 
58.03 
56.81 
55.95 

x1 2914 41.50 ± 1.97 4726 
59.23 
57.83 
56.42 

x2 745 49.55 ± 4.09 973 
55.95 
52.83 
49.68 

x3 438 42.06 ± 5.56 634 
59.19 
55.36 
51.47 
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TABLE A-13 

FF Warning Performance vs. SAILS Usage Status for Lead Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figure 9 in Main Text) 

SAILS 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 1356 70.14 ± 3.54 1245 
47.11 
44.34 
41.60 

On 4015 70.89 ± 2.23 3258 
41.19 
39.50 
37.84 

x1 2711 69.81 ± 2.71 2238 
41.32 
39.28 
37.27 

x2 719 73.43 ± 5.22 569 
45.39 
41.30 
37.33 

x3 585 72.77 ± 6.03 451 
42.93 
38.36 
33.99 
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TABLE A-14 

FF Warning Performance vs. SAILS Usage Status for Trailing Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figure 9 in Main Text) 

SAILS 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 1999 78.80 ± 3.52 2413 
46.96 
44.96 
42.99 

On 8267 86.08 ± 1.95 8307 
39.79 
38.74 
37.70 

x1 4841 84.45 ± 2.51 5211 
41.08 
39.74 
38.42 

x2 1697 75.09 ± 3.88 1527 
40.97 
38.51 
36.10 

x3 1729 101.44 ± 4.74 1569 
38.03 
35.63 
33.30 
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TABLE A-15 

TOR Warning Performance vs. SAILS Usage Status for All Warnings; POD and FAR 

Values are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figures 10, 11, and 25 in Main Text) 

EF# 
SAILS 
Status 

M for 
POD 

POD 
(%) 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 650 
48.46 
44.62 
40.84 

290 11.00 ± 1.40 1250 
80.98 
78.80 
76.45 

On 8709 
68.77 
67.79 
66.80 

5904 12.24 ± 0.32 15,840 
71.17 
70.47 
69.75 

x1 3198 
61.88 
60.19 
58.49 

1925 11.66 ± 0.55 5889 
73.67 
72.54 
71.39 

x2 2159 
70.52 
68.60 
66.61 

1481 11.33 ± 0.63 4173 
73.42 
72.08 
70.70 

x3 3352 
75.97 
74.52 
73.02 

2498 13.23 ± 0.49 5778 
68.38 
67.19 
65.96 

0–1 

Off 590 
45.71 
41.69 
37.78 

246 10.90 ± 1.48 ⎯ ⎯ 

On 7681 
66.46 
65.41 
64.34 

5024 11.94 ± 0.34 ⎯ ⎯ 

x1 2888 
59.79 
58.00 
56.19 

1675 11.47 ± 0.59 ⎯ ⎯ 

x2 1908 
68.39 
67.30 
64.15 

1265 10.87 ± 0.68 ⎯ ⎯ 

x3 2885 
73.84 
72.24 
70.57 

2084 12.97 ± 0.54 ⎯ ⎯ 

2 

Off 49 
80.48 
69.39 
55.47 

34 13.50 ± 5.01 ⎯ ⎯ 

On 825 
85.77 
83.15 
80.45 

686 13.70 ± 0.97 ⎯ ⎯ 
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x1 240 
81.19 
76.25 
70.48 

183 13.01± 1.97 ⎯ ⎯ 

x2 215 
89.65 
85.58 
80.26 

184 13.89 ± 1.93 ⎯ ⎯ 

x3 370 
89.36 
86.22 
82.33 

319 13.98 ± 1.37 ⎯ ⎯ 

3–5 

Off 11 
98.38 
90.91 
62.26 

10 4.90 ± 6.49 ⎯ ⎯ 

On 203 
97.65 
95.57 
91.79 

194 14.91 ± 1.70 ⎯ ⎯ 

x1 70 
98.53 
95.71 
88.14 

67 12.76 ± 2.83 ⎯ ⎯ 

x2 36 
95.59 
88.89 
74.69 

32 14.91 ± 4.24 ⎯ ⎯ 

x3 97 
99.43 
97.94 
92.79 

95 16.42 ± 2.50 ⎯ ⎯ 
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TABLE A-16 

TOR Warning Performance vs. SAILS Usage Status for Solo Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figures 10 and 11 in Main Text) 

EF# 
SAILS 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 82 4.49 ± 1.97 516 
86.66 
83.72 
80.29 

On 1096 4.71 ± 0.53 4800 
82.37 
81.29 
80.16 

x1 422 4.72 ± 0.87 2021 
83.98 
82.39 
80.66 

x2 306 4.37 ± 1.01 1344 
82.68 
80.65 
78.46 

x3 368 4.96 ± 0.88 1435 
82.32 
80.35 
78.21 

0–1 

Off 74 4.08 ± 1.87 ⎯ ⎯ 

On 1034 4.79 ± 0.55 ⎯ ⎯ 

x1 400 4.75 ± 0.90 ⎯ ⎯ 

x2 294 4.49 ± 1.05 ⎯ ⎯ 

x3 340 5.10 ± 0.92 ⎯ ⎯ 

2 

Off 7 9.57 ± 14.73 ⎯ ⎯ 

On 59 3.59 ± 2.07 ⎯ ⎯ 

x1 21 4.67 ± 3.97 ⎯ ⎯ 

x2 12 1.33 ± 3.10 ⎯ ⎯ 

x3 26 3.77 ± 3.43 ⎯ ⎯ 

3–5 

Off 1 -1.00 ⎯ ⎯ 

On 3 -3.33 ± 10.34 ⎯ ⎯ 

x1 1 -4.00 ⎯ ⎯ 

x2 0 ⎯ ⎯ ⎯ 

x3 2 -3.00 ± 50.82 ⎯ ⎯ 
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TABLE A-17 

TOR Warning Performance vs. SAILS Usage Status for Lead Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figures 10 and 11 in Main Text) 

EF# 
SAILS 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 109 10.39 ± 2.29 270 
78.60 
73.70 
68.15 

On 1715 10.10 ± 0.56 3023 
65.24 
63.55 
61.81 

x1 592 10.28 ± 0.97 1144 
66.97 
64.25 
61.43 

x2 453 8.88 ± 1.06 832 
68.42 
65.26 
61.97 

x3 670 10.76 ± 0.89 1047 
64.32 
61.42 
58.43 

0–1 

Off 93 10.83 ± 2.46 ⎯ ⎯ 

On 1465 10.10 ± 0.60 ⎯ ⎯ 

x1 512 10.22 ± 1.01 ⎯ ⎯ 

x2 393 9.01 ± 1.13 ⎯ ⎯ 

x3 559 10.74 ± 0.98 ⎯ ⎯ 

2 

Off 11 9.55 ± 9.08 ⎯ ⎯ 

On 204 9.92 ± 1.77 ⎯ ⎯ 

x1 62 11.21 ± 3.73 ⎯ ⎯ 

x2 52 8.44 ± 3.48 ⎯ ⎯ 

x3 90 9.88 ± 2.45 ⎯ ⎯ 

3–5 

Off 5 4.00 ± 14.24 ⎯ ⎯ 

On 47 10.89 ± 3.73 ⎯ ⎯ 

x1 18 8.83 ± 7.48 ⎯ ⎯ 

x2 8 5.13 ± 8.00 ⎯ ⎯ 

x3 21 14.86 ± 4.84 ⎯ ⎯ 
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TABLE A-18 

TOR Warning Performance vs. SAILS Usage Status for Trailing Warnings; FAR Values 

are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figures 10 and 11 in Main Text) 

EF# 
SAILS 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 99 17.07 ± 2.30 464 
79.94 
76.29 
72.22 

On 3090 16.11 ± 0.44 8017 
67.62 
66.60 
65.56 

x1 911 15.78 ± 0.79 2724 
70.44 
68.72 
66.96 

x2 722 15.82 ± 0.91 1997 
71.14 
69.15 
67.09 

x3 1457 16.47 ± 0.65 3296 
64.92 
63.29 
61.63 

0–1 

Off 79 17.38 ± 2.49 ⎯ ⎯ 

On 2523 15.95 ± 0.49 ⎯ ⎯ 

x1 763 15.84 ± 0.87 ⎯ ⎯ 

x2 578 15.37 ± 1.02 ⎯ ⎯ 

x3 1182 16.30 ± 0.73 ⎯ ⎯ 

2 

Off 16 17.94 ± 7.35 ⎯ ⎯ 

On 423 16.93 ± 1.17 ⎯ ⎯ 

x1 100 15.88 ± 2.52 ⎯ ⎯ 

x2 120 17.50 ± 2.28 ⎯ ⎯ 

x3 203 17.11 ± 1.65 ⎯ ⎯ 

3–5 

Off 4 7.50 ± 11.21 ⎯ ⎯ 

On 144 16.60 ± 1.86 ⎯ ⎯ 

x1 48 14.58 ± 2.79 ⎯ ⎯ 

x2 24 18.17 ± 4.51 ⎯ ⎯ 

x3 72 17.42 ± 2.92 ⎯ ⎯ 
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TABLE A-19 

SAILS Usage Rate (%) vs. Storm Type for TOR Warning Decisions (2014–2020; Figure 12 

in Main Text) 

Storm Type M SAILS Off SAILSx1 SAILSx2 SAILSx3 

Right-Moving 
Supercell 

3440 14.27 42.12 17.94 25.67 

Right-Moving 
Supercell Line 

661 9.83 37.22 20.88 32.07 

Right-Moving 
Supercell Cluster 

1691 13.60 42.87 17.50 26.02 

Right-Moving 
Supercell 
Discrete 

1083 18.10 44.04 16.81 21.05 

Quasi-Linear 
Convective 

System 
1537 8.13 34.16 23.36 34.35 

Disorganized 4465 7.23 40.18 21.41 31.13 

Line (any type) 4529 8.52 39.99 21.13 30.36 

Discrete 1248 19.55 44.07 16.51 19.87 

Tropical Cyclone 172 2.91 23.26 12.21 61.63 
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TABLE A-20 

TOR Warning POD (%) and Corresponding M vs. Storm Type and SAILS Mode; POD 

Values are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figure 13 in Main Text) 

Storm Type  SAILS Off SAILS On SAILSx1 SAILSx2 SAILSx3 

Right-Moving 
Supercell 

M 491 2949 1449 617 883 

POD 
74.03 
69.63 
64.85 

80.54 
78.93 
77.23 

77.12 
74.67 
72.05 

81.14 
77.66 
73.76 

88.80 
86.49 
83.79 

Right-Moving 
Supercell Line 

M 65 596 246 138 212 

POD 
86.00 
76.47 
63.24 

82.23 
78.76 
74.81 

82.28 
76.92 
70.52 

84.94 
78.10 
69.27 

86.52 
81.33 
74.71 

Right-Moving 
Supercell 
Cluster 

M 230 1461 725 296 440 

POD 
77.22 
71.02 
63.93 

81.41 
79.17 
76.73 

78.17 
74.73 
70.95 

80.75 
75.65 
69.71 

90.97 
88.04 
84.33 

Right-Moving 
Supercell 
Discrete 

M 196 887 477 182 228 

POD 
72.81 
65.81 
58.04 

81.64 
78.79 
75.64 

77.80 
73.61 
68.96 

85.81 
80.26 
73.22 

92.29 
88.40 
82.91 

Quasi-Linear 
Convective 

System 

M 125 1412 525 359 528 

POD 
49.08 
38.64 
29.14 

62.00 
58.89 
55.72 

50.51 
45.25 
40.09 

64.79 
58.75 
52.43 

76.85 
72.44 
67.55 

Disorganized 

M 325 4140 1794 956 1390 

POD 
49.48 
43.36 
37.43 

73.39 
71.84 
70.23 

67.48 
64.98 
62.39 

74.52 
71.33 
67.91 

83.12 
80.87 
78.39 

Line (any type) 

M 386 4143 1811 957 1375 

POD 
61.35 
55.78 
50.07 

74.66 
73.13 
71.54 

69.88 
67.43 
64.89 

74.58 
71.39 
67.96 

83.92 
81.69 
79.23 

Discrete 

M 244 1004 550 206 248 

POD 
61.86 
54.97 
47.89 

74.81 
71.79 
68.56 

70.68 
66.35 
61.73 

78.13 
71.93 
64.77 

87.88 
83.33 
77.52 
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TABLE A-21 

TOR Warning MLT (min) and Corresponding M vs. Storm Type and SAILS Mode (Figure 

14 in Main Text) 

Storm Type  SAILS Off SAILS On SAILSx1 SAILSx2 SAILSx3 

Right-Moving 
Supercell 

M 266 1843 843 379 621 

MLT 
16.18 ± 

1.51 
14.69 ±  

0.50 
14.50 ± 

0.73 
13.38 ± 

1.09 
15.74 ± 

0.88 

Right-Moving 
Supercell: Line 

M 39 367 150 82 135 

MLT 
23.00 ± 

4.90 
13.31 ±  

1.11 
12.22 ± 

1.64 
14.33 ± 

2.68 
13.89 ± 

1.82 

Right-Moving 
Supercell: 

Cluster 

M 125 912 414 174 324 

MLT 
15.26 ± 

2.07 
14.81 ±  

0.72 
14.92 ± 

1.11 
12.85 ± 

1.54 
15.71 ± 

1.20 

Right-Moving 
Supercell: 
Discrete 

M 102 561 279 122 160 

MLT 
14.71 ± 

2.29 
15.46 ±  

0.90 
15.10 ± 

1.20 
13.56 ± 

1.92 
17.53 ± 

1.83 

Quasi-Linear 
Convective 

System 

M 34 553 157 141 255 

MLT 9.47 ± 2.82 
12.91 ±  

0.86 
12.31 ± 

1.49 
11.84 ± 

1.70 
13.88 ± 

1.32 

Disorganized 

M 111 2242 874 510 858 

MLT 
13.57 ± 

2.02 
14.27 ±  

0.45 
14.11 ± 

0.71 
13.00 ± 

0.93 
15.18 ± 

0.74 

Line (any type) 

M 164 2270 909 509 852 

MLT 
14.90 ± 

1.93 
14.26 ±  

0.45 
14.10 ± 

0.69 
13.04 ± 

0.93 
15.18 ± 

0.74 

Discrete 

M 105 570 282 123 165 

MLT 
14.41 ± 

2.25 
15.43 ±  

0.89 
15.04 ± 

1.19 
13.48 ± 

1.91 
17.55 ± 

1.78 
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TABLE A-22 

Base and Volume Scan Update Periods (s) vs. MRLE Status for VCP 212 for 2012–2022 

(Figure 15 in Main Text) 

Scan 
Type 

Percentile 
MRLE off 

(M = 10,291,753) 
MRLE+2 

(M = 108,045) 
MRLE+3 

(M = 39,675) 
MRLE+4 

(M = 17,212) 

Base 

25 205 120 95 81 

50 229 127 101 86 

75 269 147 113 95 

Volume 

25 205 240 284 322 

50 229 254 304 343 

75 269 294 339 379 
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TABLE A-23 

MRLE Usage Percentage by Severe Weather Warning Type; (Top) Upper 95% Confidence 

Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence Limit (Figure 16 in Main Text) 

Warning Type M MRLE+2 MRLE+3 MRLE+4 

SVR 

All 142,511 
1.28 
1.22 
1.17 

1.11 
1.05 
1.00 

0.50 
0.46 
0.43 

Solo 33,213 
1.04 
0.93 
0.83 

0.71 
0.62 
0.54 

0.36 
0.29 
0.24 

Lead 24,588 
1.36 
1.21 
1.08 

0.98 
0.85 
0.75 

0.41 
0.33 
0.27 

Trailing 84,710 
1.42 
1.34 
1.27 

1.36 
1.28 
1.20 

0.62 
0.57 
0.52 

FF 

All 29,993 
1.09 
0.97 
0.87 

0.75 
0.65 
0.57 

0.27 
0.21 
0.16 

Solo 12,062 
1.16 
0.97 
0.81 

0.68 
0.53 
0.42 

0.31 
0.21 
0.14 

Lead 5405 
1.32 
1.02 
0.78 

0.86 
0.61 
0.44 

0.46 
0.28 
0.17 

Trailing 12,526 
1.14 
0.96 
0.80 

0.95 
0.78 
0.64 

0.28 
0.18 
0.12 

TOR 

All 2190 
1.29 
1.12 
0.98 

1.51 
1.33 
1.17 

1.05 
0.91 
0.78 

Solo 855 
1.67 
1.34 
1.07 

1.49 
1.18 
0.94 

1.19 
0.91 
0.70 

Lead 454 
1.50 
1.10 
0.80 

1.88 
1.44 
1.09 

1.04 
0.70 
0.48 

Trailing 881 
1.22 
1.00 
0.81 

1.65 
1.38 
1.16 

1.21 
0.99 
0.80 
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TABLE A-24 

MRLE Usage Percentage by Year for SVR, FF, and TOR Warning Decisions; (Figure 17 in 

Main Text) 

Year M MRLE+2 MRLE+3 MRLE+4 

2018 21,595 0.81 0.21 0.33 

2019 25,765 0.44 0.64 0.34 

2020 19,976 2.49 2.49 1.03 

2021 20,109 3.99 3.08 1.08 

2022 21,425 3.05 2.86 1.44 
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TABLE A-25 

SVR Warning Performance vs. MRLE Usage Status for All Warnings; POD and FAR 

Values are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figures 18 and 19 in Main Text) 

Event 
Type 

MRLE 
Status 

M for 
POD 

POD 
(%) 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 39,408 
75.26 
74.69 
74.26 

29,433 20.28 ± 0.17 31,672 
49.82 
49.27 
48.72 

On 5875 
81.92 
80.94 
79.91 

4755 22.62 ± 0.42 3796 
44.63 
43.05 
41.48 

+2 2673 
78.18 
76.62 
74.98 

2048 22.72 ± 0.65 1709 
48.01 
45.64 
43.29 

+3 2093 
85.00 
83.47 
81.82 

1747 22.43 ± 0.70 1438 
44.50 
41.93 
39.41 

+4 1109 
88.45 
86.56 
84.43 

960 22.79 ± 0.90 649 
42.48 
38.67 
35.01 

Hail 

Off 14,665 
79.19 
78.53 
77.86 

11,517 20.14 ± 0.27 ⎯ ⎯ 

On 1752 
86.96 
85.39 
83.66 

1496 21.98 ± 0.75 ⎯ ⎯ 

+2 726 
83.55 
80.85 
77.83 

587 20.85 ± 1.17 ⎯ ⎯ 

+3 713 
90.76 
88.64 
86.10 

632 22.72 ± 1.19 ⎯ ⎯ 

+4 313 
91.58 
88.50 
84.49 

277 22.69 ± 1.71 ⎯ ⎯ 

Wind 

Off 24,743 
72.96 
72.41 
71.85 

17,916 20.37 ± 0.21 ⎯ ⎯ 

On 4123 
80.26 
79.04 
77.78 

3259 22.92 ± 0.51 ⎯ ⎯ 
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+2 1947 
76.91 
75.04 
73.07 

1461 23.47 ± 0.78 ⎯ ⎯ 

+3 1380 
82.79 
80.80 
78.63 

1115 22.26 ± 0.88 ⎯ ⎯ 

+4 796 
88.06 
85.80 
83.21 

683 22.83 ± 1.05 ⎯ ⎯ 
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TABLE A-26 

SVR Warning Performance vs. MRLE Usage Status for Solo Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figures 18 and 19 in Main Text) 

Event 
Type 

MRLE 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 5098 13.03 ± 0.32 9251 
63.10 
62.11 
61.12 

On 301 11.94 ± 134 565 
66.20 
62.30 
58.23 

+2 140 11.65 ± 1.97 296 
70.72 
65.54 
59.96 

+3 100 10.90 ± 2.24 179 
66.68 
59.78 
52.46 

+4 61 14.30 ± 3.24 90 
66.42 
56.67 
46.36 

Hail 

Off 1996 12.57 ± 0.51 ⎯ ⎯ 

On 139 9.47 ± 1.64 ⎯ ⎯ 

+2 60 8.43 ± 2.39 ⎯ ⎯ 

+3 53 10.13 ± 2.86 ⎯ ⎯ 

+4 26 10.50 ± 3.97 ⎯ ⎯ 

Wind 

Off 3102 13.32 ± 0.42 ⎯ ⎯ 

On 162 14.06 ± 2.02 ⎯ ⎯ 

+2 80 14.06 ± 2.88 ⎯ ⎯ 

+3 47 11.77 ± 3.61 ⎯ ⎯ 

+4 35 17.11 ± 4.75 ⎯ ⎯ 
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TABLE A-27 

SVR Warning Performance vs. MRLE Usage Status for Lead Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figures 18 and 19 in Main Text) 

Event 
Type 

MRLE 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 6811 19.32 ± 0.34 6153 
44.15 
42.91 
41.67 

On 793 21.08 ± 1.04 565 
41.05 
36.99 
33.11 

+2 416 19.63 ± 1.35 291 
39.99 
34.36 
29.14 

+3 261 22.58 ± 1.92 194 
48.79 
41.75 
35.04 

+4 116 22.92 ± 2.84 80 
45.92 
35.00 
25.45 

Hail 

Off 3136 20.08 ± 0.52 ⎯ ⎯ 

On 343 21.57 ± 1.57 ⎯ ⎯ 

+2 159 19.68 ± 2.17 ⎯ ⎯ 

+3 133 22.60 ± 2.69 ⎯ ⎯ 

+4 51 24.75 ± 4.20 ⎯ ⎯ 

Wind 

Off 3675 18.68 ± 0.45 ⎯ ⎯ 

On 450 20.71 ± 1.38 ⎯ ⎯ 

+2 257 19.59 ± 1.74 ⎯ ⎯ 

+3 128 22.55 ± 2.77 ⎯ ⎯ 

+4 65 21.49 ± 3.91 ⎯ ⎯ 
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TABLE A-28 

SVR Warning Performance vs. MRLE Usage Status for Trailing Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figures 18 and 19 in Paper) 

Event 
Type 

MRLE 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

All 

Off 17,521 22.77 ± 0.22 16,268 
45.15 
44.38 
43.62 

On 3661 23.84 ± 0.48 2666 
42.12 
40.25 
38.40 

+2 1492 24.62 ± 0.76 1122 
46.23 
43.32 
40.44 

+3 1386 23.23 ± 0.78 1065 
41.93 
38.97 
36.08 

+4 783 23.43 ± 0.97 479 
40.30 
35.91 
31.74 

Hail 

Off 6385 22.54 ± 0.37 ⎯ ⎯ 

On 1014 23.83 ± 0.89 ⎯ ⎯ 

+2 368 23.37 ± 1.46 ⎯ ⎯ 

+3 446 24.25 ± 1.39 ⎯ ⎯ 

+4 200 23.75 ± 1.98 ⎯ ⎯ 

Wind 

Off 11,136 22.90 ± 0.28 ⎯ ⎯ 

On 2647 23.84 ± 0.56 ⎯ ⎯ 

+2 1124 25.02 ± 0.89 ⎯ ⎯ 

+3 940 22.74 ± 0.94 ⎯ ⎯ 

+4 583 23.32 ± 1.12 ⎯ ⎯ 
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TABLE A-29 

FF Warning Performance vs. MRLE Usage Status for All Warnings; POD and FAR Values 

are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figure 20 in Main Text) 

MRLE 
Status 

M for 
POD 

POD 
(%) 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 6155 
84.53 
83.62 
82.68 

5147 63.18 ± 1.90 6939 
54.12 
52.95 
51.77 

On 474 
91.54 
89.03 
85.90 

422 75.45 ± 7.74 436 
45.73 
41.06 
36.54 

+2 275 
92.25 
89.09 
84.85 

245 72.22 ± 9.57 276 
51.55 
45.65 
39.88 

+3 110 
90.84 
85.45 
77.67 

94 89.80 ± 18.48 105 
49.56 
40.00 
31.14 

+4 89 
96.87 
93.26 
86.06 

83 68.76 ± 18.00 55 
32.36 
20.00 
11.55 
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TABLE A-30 

FF Warning Performance vs. MRLE Usage Status for Solo Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figure 20 in Main Text) 

MRLE 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 1792 40.51 ± 2.34 3281 
63.73 
62.08 
60.41 

On 113 43.06 ± 11.84 170 
64.83 
57.65 
50.13 

+2 61 51.51 ± 17.49 113 
69.55 
61.06 
51.85 

+3 23 33.04 ± 22.77 36 
75.22 
61.11 
44.86 

+4 29 33.24 ± 22.95 21 
54.63 
33.33 
17.19 
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TABLE A-31 

FF Warning Performance vs. MRLE Usage Status for Lead Warnings; FAR Values Are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figure 20 in Main Text) 

MRLE 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 1356 70.14 ± 3.54 1245 
47.11 
44.34 
41.60 

On 114 71.23 ± 12.20 83 
49.31 
38.55 
28.81 

+2 70 69.10 ± 13.96 51 
56.73 
43.14 
30.50 

+3 24 95.54 ± 29.94 19 
63.72 
42.11 
23.14 

+4 20 49.50 ± 35.98 13 
42.23 
15.38 
4.33 
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TABLE A-32 

FF Warning Performance vs. MRLE Usage Status for Trailing Warnings; FAR Values are 

(Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% Confidence 

Limit (Figure 20 in Main Text) 

MRLE 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 1999 78.80 ± 3.52 2413 
46.96 
44.96 
42.99 

On 195 96.69 ± 12.84 183 
33.62 
26.78 
20.89 

+2 114 85.21 ± 16.09 112 
40.34 
31.25 
23.41 

+3 47 114.64 ± 29.90 50 
37.41 
24.00 
14.30 

+4 34 110.38 ± 29.75 21 
28.91 
9.52 
2.65 
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TABLE A-33 

TOR Warning Performance vs. MRLE Usage Status for All Warnings; POD and FAR 

Values are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figure 21 in Main Text) 

MRLE 
Status 

M for 
POD 

POD 
(%) 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 650 
48.46 
44.62 
40.84 

290 11.00 ± 1.40 1250 
80.98 
78.80 
76.45 

On 368 
70.94 
66.30 
61.33 

244 8.91 ± 1.31 602 
70.42 
66.78 
62.92 

+2 121 
72.43 
64.46 
55.61 

78 7.99 ± 2.40 205 
73.82 
67.80 
61.13 

+3 154 
69.60 
62.34 
54.47 

96 9.70 ± 2.25 230 
71.90 
66.09 
59.75 

+4 93 
82.92 
75.27 
65.62 

70 8.87 ± 2.18 167 
73.19 
66.47 
59.01 
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TABLE A-34 

TOR Warning Performance vs. MRLE Usage Status for Solo Warnings; POD and FAR 

Values are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figure 21 in Main Text) 

MRLE 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 82 4.49 ± 1.97 516 
86.66 
83.72 
80.29 

On 37 1.27 ± 2.44 194 
86.73 
81.96 
75.94 

+2 11 -1.27 ± 4.15 76 
91.72 
85.53 
75.92 

+3 13 1.15 ± 5.28 65 
90.28 
83.08 
72.18 

+4 13 3.54 ± 3.88 53 
85.07 
75.47 
62.43 
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TABLE A-35 

TOR Warning Performance vs. MRLE Usage Status for Lead Warnings; POD and FAR 

Values are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figure 21 in Main Text) 

MRLE 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 109 10.39 ± 2.29 270 
78.60 
73.70 
68.15 

On 66 6.71 ± 2.60 111 
63.02 
54.05 
44.80 

+2 26 7.81 ± 4.21 39 
66.13 
51.28 
36.20 

+3 22 6.18 ± 5.28 47 
77.83 
65.96 
51.67 

+4 18 5.78 ± 4.74 25 
55.48 
36.00 
20.25 
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TABLE A-36 

TOR Warning Performance vs. MRLE Usage Status for Trailing Warnings; POD and FAR 

Values are (Top) Upper 95% Confidence Limit, (Middle) Mean, and (Bottom) Lower 95% 

Confidence Limit (Figure 21 in Main Text) 

MRLE 
Status 

M for 
MLT 

MLT 
(min) 

M for 
FAR 

FAR 
(%) 

Off 99 17.07 ± 2.30 464 
79.94 
76.29 
72.22 

On 141 11.95 ± 1.62 297 
66.97 
61.62 
55.97 

+2 41 10.59 ± 3.31 90 
69.51 
60.00 
49.67 

+3 61 12.79 ± 2.56 118 
65.36 
56.78 
47.77 

+4 39 12.08 ± 2.77 89 
78.24 
69.66 
59.46 

 
  



 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



 

 

95 

GLOSSARY 

ASP Archive III Status Product  

ATD Advanced Technology Demonstrator  

AVSET automated volume scan evaluation and termination  

CONUS contiguous United States  

EF enhanced Fujita  

FAR false alarm ratio  

FF flash flood  

FVO fraction of vertical volume observed  

LM left-moving  

MCS mesoscale convective system  

MESH maximum estimated size of hail  

MESO multiple elevation scan option  

MLT mean lead time  

MRLE mid-volume rescan of low-level elevations  

NCEI National Center for Environmental Information  

NOAA National Oceanic and Atmospheric Administration  

NWS National Weather Service  

PAR phased-array radar  

POD probability of detection 

POSH probability of severe hail  

QLCS quasi-linear convective system  

QPE quantitative precipitation estimation  

RM right-moving  

SAILS supplemental adaptive intra-volume low-level scan  

SPC Storm Prediction Center  

SVR severe thunderstorm  
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TOR tornado  

VCP volume coverage pattern  

VIF variance inflation factor  

VPR vertical profile of reflectivity  

WFO weather forecast office  

WSR-88D Weather Surveillance Radar 1988-Doppler  
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