
Improving Security at the System-Call Boundary in a Type-Safe

Operating System

by Jakob H. Weisblat

S.B., C.S., M.I.T., 2018

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Computer Science and Engineering

at the

Massachusetts Institute of Technology

February 2019

©2018 Jakob H. Weisblat. All rights reserved.

This author hereby grants to M.I.T. permission to reproduce and to distribute
publicly paper and electronic copies of this thesis document in whole and in

part in any medium now known or hereafter created.

Author:
Department of Electrical Engineering and Computer Science
September 28, 2018

Certified by:
Howard Shrobe, Principal Research Scientist and Director
CyberSecurity@CSAIL, Thesis Co-Supervisor
September 28, 2018

Certified by:
Hamed Okhravi, Senior Staff, Cyber Analytics and Decision
Systems, MIT Lincoln Laboratory, Thesis Co-Supervisor
September 28, 2018

Certified by:
Bryan Ward, Technical Staff, Cyber Analytics and Decision
Systems, MIT Lincoln Laboratory, Thesis Co-Supervisor
September 28, 2018

Accepted by:
Katrina LaCurts, Chair, Master of Engineering Thesis Com-
mittee

DISTRIBUTION STATEMENT A. Approved for public release. Distribution is

unlimited.

This material is based upon work supported by the Under Secretary of Defense for

Research and Engineering under Air Force Contract No. FA8702-15-D-0001. Any

opinions, findings, conclusions or recommendations expressed in this material are

those of the author(s) and do not necessarily reflect the views of the Under Secretary

of Defense for Research and Engineering.

© 2019 Massachusetts Institute of Technology.

Delivered to the U.S. Government with Unlimited Rights, as defined in DFARS

Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S.

Government rights in this work are defined by DFARS 252.227-7013 or DFARS

252.227-7014 as detailed above. Use of this work other than as specifically authorized

by the U.S. Government may violate any copyrights that exist in this work.

Improving Security at the System-Call Boundary in a Type-Safe

Operating System

by Jakob H. Weisblat

Submitted to the Department of Electrical Engineering and Computer Science

in Partial Fulfillment of the Requirements for the Degree of Master of

Engineering in Computer Science and Engineering

Abstract

Historically, most approaches to operating sytems security aim to either protect

the kernel (e.g., the MMU) or protect user applications (e.g., W ⊕X). However,

little study has been done into protecting the boundary between these layers.

We describe a vulnerability in Tock, a type-safe operating system, at the system-

call boundary. We then introduce a technique for providing memory safety at

the boundary between userland and the kernel in Tock. We demonstrate that

this technique works to prevent against the aforementioned vulnerability and a

class of similar vulnerabilities, and we propose how it might be used to protect

against simliar vulnerabilities in other operating systems.

Acknowledgements

Thanks to Bryan Ward for reviewing this document a number of times, helping

me phrase the work done here in the best way possible, helping me think about

how to evaluate this work, and generally offering large amounts of advice.

Thanks to Howie Shrobe for letting me wander into his office and bounce

ideas off of him repeatedly, and for offering wisdom when I have done so.

Thanks to Hamed Okhravi, Howie Shrobe, Bryan Ward, and Richard

Skowyra, for helping formulate the ideas that led to this work and for their

frequent advice and help on all aspects of this project, as well as for teaching

me so much over the course of my time working on it.

Thanks to Hamed Okhravi and Howie Shrobe for the opportunity to work

in this group.

Thanks to Jennifer Switzer, for her help and collaboration on various aspects

of this project.

Thanks to Ivan Tadeu Ferreira Antunes Filho, Jennifer Switzer, Maddie

Dawson, and Teddy Katz, for their help understanding parts of Tock and for

their debugging help.

Thanks to Brendan Yap, Dory Shen, and Lucy Wang for their help writing

and running tests to evaluate this work, as well as for helping me formulate my

ideas by asking me questions when what I told them didn’t make any sense.

Thanks to Amit Levy of the Tock project for providing insight into Tock

and help with debugging.

Finally, I’d like to thank Ben Rosen-Filardo for their emotional support,

especially during the particularly stressful periods, my parents for their en-

couragement, and all of my friends for helping me with advice, support, and

companionship.

Contents

1 Introduction 1

2 Background 5

2.1 Memory Safety . 6

2.2 Rust . 8

2.3 Operating Systems . 11

2.4 Tock . 12

3 Related Work 15

3.1 SAFE . 15

3.2 CHERI . 16

3.3 Singularity . 18

3.4 System-call Approaches . 19

4 Threat Model 19

5 Example Vulnerability 21

6 Methods 24

6.1 Shadow Memory and Type Tracking 25

6.2 System-Call Handler Modifications 27

6.3 User-Mode Component . 29

7 Evaluation 30

7.1 Performance . 30

7.1.1 Microbenchmarks . 31

7.1.2 Macrobenchmarks . 33

7.1.3 Synthetic Benchmark . 35

7.1.4 Memory use . 36

7.2 Security Evaluation . 36

7.3 Broader Effects . 37

8 Discussion 38

8.1 Performance Overhead . 39

8.2 Compatibility . 39

8.3 Temporal Safety . 40

8.4 Mutability . 42

8.5 Extra System-Call . 43

9 Conclusion 43

List of Figures

1 The gap between the kernel and user programs 1

2 Pointer base and bound . 3

3 System calls . 5

4 (a) Memory layout on a stack. (b) Stack smashing in C. 7

5 Tock Architecture, taken from [23] 13

6 System Calls in Tock . 14

7 Our Threat Model . 20

8 Syscall architecture in Modified Tock 24

9 Memory layout modification . 26

10 Example of Shadow Memory Contents 28

11 Parts of a ALLOW system call under our system 32

12 CDF of times for an ALLOW syscall on 100 bytes of data. Yellow

is vanilla Tock, blue is our sytem. 34

13 CDF of times for setting up an RNG transaction on 24 bytes of

data. Yellow is vanilla Tock, blue is our sytem. 35

14 Time for an ALLOW operation vs size of buffer. Blue is modified

tock, Yellow is vanilla. 36

List of Tables

1 Parts of an ALLOW Syscall under our system. Bolded steps take

more substantial time. 32

2 Timing for parts of an ALLOW syscall, all numbers in ticks . . . 33

3 Timing on Microbenchmarks of modified Tock syscall interface . 33

4 Timing on Macrobenchmarks of modified Tock syscall interface . 35

1 Introduction

Historically, there are two broad research areas in systems security; protecting

the kernel [19, 42, 39] - the priveleged part of the operating system that facili-

tates all the rest of the system’s functionality, including scheduling and memory

management - and protecting userspace programs [1, 5], which generally are

doing the important work of the computer and where important data resides.

However, comparatively less study has been done into protecting the interface

between these layers. Even when a system is made up of components that are

independently secure, vulnerabilities can still be induced by the way that these

components interact with one another - in an operating systems context, these

vulnerabilities appear in the locations indicated by the red circles in Figure 1.

Figure 1: The gap between the kernel and user programs

1

A large class of attacks in systems security fall into the category of memory

corruption. Memory corruption occurs when attackers gain access to memory

they are not supposed to be able to access, giving them the ability to cause the

system to behave in unexpected ways. In systems security, we try to protect

against these attacks, sometimes by building systems that obey memory safety.

Memory safety, as we define it, is the property that a system is not vulnerable

to a certain class of spatial and temporal memory violations. A spatial violation

occurs when a pointer is used to access a region of memory that it is not defined

to point to; for example, if a pointer exists to a buffer in memory, it would be

a violation for that pointer to access or overwrite data in an adjacent buffer

(buffer overflow). See, for example, Figure 2; the base and bound for the

english_alphabet pointer are shown; if spatial memory safety is not enforced,

one could attempt to access english_alphabet[28] and instead get a Greek letter.

A temporal violation occurs when a pointer is used outside of the lifetime during

which it is defined; for example, if a pointer is accessed after it has been freed

(use-after-free), the data it pointed to may not be there anymore. Worse yet,

the data structure might have been allocated again, thus allowing the old pointer

to corrupt data now serving a different purpose. If a system can violate neither

spatial nor temporal safety, we label it memory-safe.

Memory safety is impractical to achieve in C [30], the language in which the

most systems code has been written over the last 40 years. Pointers to single ob-

jects are very easily conflated with arrays, and they have no manifest bounds, so

they could point anywhere and it is often not clear whether a given reference is a

violation. Memory management is mostly manual, making temporal safety dif-

ficult. There are nearly eighty different ways to invoke undefined behavior [16].

In part because memory safety in C is hard, programming languages with bet-

ter guarantees, through more complex type systems and/or garbage collection,

2

Figure 2: Pointer base and bound

have been developed. Recently, Go and Rust have been popular among systems

programmers because they provide safety guarantees while still having compa-

rably small runtime overhead, compared to older safe languages like Java. In

particular, Rust is seeing increasing use due to its low runtime overhead: it is

comparably performant with C, while making it much harder to violate memory

safety [29].

Many of the innovations that improve memory safety, either in C or in more

modern langauges, work by performing extensive analysis at compile time and

using the results of this analysis to guarantee that memory safety is maintained.

When such guarantees are impossible, the compiler generates runtime checks in

the compiled code that dynamically check for memory safety violations [34].

The compiler only has the ability to add these checks and ensure safety because

it has information provided by the programmer at compile time about what the

program is supposed to be doing; without that compile-time data the guarantees

these systems provide would not be feasible.

One recent application of memory-safe languages such as Rust is in operating

3

system kernels. Modern operating systems are generally structured as in fig-

ure 1. The kernel is responsible for managing resources and scheduling the other

processes. It has direct access to the hardware, running in a priveleged mode

defined by the hardware. The kernel also keeps track of user-mode applications

running on the computer, their memory allocations, and their communication

with hardware. Because the kernel often has access to all of memory and runs

in a priveleged mode, it is often a target for attackers, so it is critical that the

kernel be secure. One approach, that taken by Tock, is to implement the kernel

in a memory-safe language - in this case, Rust. However, in an operating system

context, all of the software is rarely compiled at once - the kernel is compiled

and then the user programs are compiled separately and later. If these pieces

of software are used in conjunction, any data going between them may not be

subject to the guarantees provided by compile-time analysis.

User applications running under the kernel need a means to communicate

with the kernel. For example, an application may need to interact with the

hardware or the network, or it may need additional memory. The user appli-

cation and the kernel run in different processor modes, and they have different

memory spaces, as a means to protect the kernel memory from mailicious user

code. As a result of these separations, the application cannot simply call a

function in the kernel. Instead, the kernel defines an API for the user process

to contact it; this API is called the system call interface.

Traditionally, system calls are implemented through the process shown in

Figure 3: the user process puts data in a predesignated place - usually in registers

or sometimes on the stack - and then triggers a specific mechanism to cause

the kernel to take control of the processor execution (sometimes an interrupt,

sometimes a special instruction). The kernel will then load the data from where

the user process left it, perhaps including a pointer to a larger chunk of user

4

memory, upon which the kernel will operate.

Figure 3: System calls

Recall that the memory safety of the kernel is enforced as a result of compile-

time analysis of the entire kernel as a single unit. At the time the kernel takes

data from the user application, information that was available when the user

code was compiled is no longer available, and so the kernel is no longer able to

provide its normal safety guarantees.

When designing a memory-safe operating system, the designer must consider

both the security of the individual components and the way that they connect to

one another. Even if their individual compilation can provide local safety guar-

antees, the fact that they are not compiled as a unit means these guarantees can

be broken at this interface. In order to achieve memory safety across all layers

of a system, we need interfaces like the system call boundary to be implemented

in such a way as to ensure memory safety. In this thesis, we have demonstrated

that these vulnerabilities exist in a memory-safe operating system (Section 5),

proposed and implemented a solution (Section 6), and evaluated that solution

(Sections 7 and 8).

2 Background

In order to better understand the work described here, we first discuss Rust at

a high level and understand how it enforces memory safety. We will describe

5

Tock, the operating system upon which this work is based; we describe how the

system call works in Tock, and how its system-call interface can be a source of

vulnerabilities despite compiler-based memory safety properties.

2.1 Memory Safety

As defined in Section 1, a system is memory-safe if it is vulnerable to nei-

ther spatial nor temporal memory access violations; equivalently, that system

has memory safety. In this section we will explore in more depth what some

violations of memory safety look like, and we will examine some enforcement

mechanisms.

In order to better understand memory safety, we need to understand how

data is laid out in memory. In most programs, some data is allocated on a

stack, as depicted in Figure 4(a): each variable is allocated in the order they

are declared, with little or no wasted space between. The code shown in List-

ing 1 exploits that fact. The user is able to enter a password longer than the

buffer allocated for the purpose on line 3. If the user enters the password

‘‘12345671234567’’, the program will write all 14 characters of data to the vari-

able attempt, breaking the abstraction that all chunks of memory are separate,

and overwriting the value of correct, leading to the stack values shown in Fig-

ure 4(b). When the program compares the first 6 characters of attempt with

secret on line 7, it will find that they are equal and grant access. The program

had a spatial memory violation, wherein data overflowed from one buffer into

another. This kind of attack is called a buffer-overflow attack, and it is very

common in languages that are not memory-safe [21]. A similar type of vulnera-

bility, with a malicious read from a buffer instead of a malicious write, is called a

buffer-over-read. One well-known such vulnerability was HeartBleed [13], a vul-

nerability that affected over 5% of the top million sites on the internet, including

6

as many as 50% of the top sites in Korea and Japan [15].

Figure 4: (a) Memory layout on a stack. (b) Stack smashing in C.

Listing 1: Stack smashing in C

1 bool check_access(){
2 char correct[7] = "SECRET";
3 char attempt[7]; // allocate a buffer for the user to write to
4

5 printf(‘‘Enter your password: ’’);
6 scanf(‘‘\%s’’,str); // let the user write to that buffer
7 return strncmp(attempt, correct, 6));
8 }

Buffer-overflow attacks are not the only common vulnerability in C and

C++ programs; vulnerabilities range from user-after-free bugs in which the

programmer uses a pointer that could now point to a different piece of data,

7

to undefined behaviors that could be accidentally activated, even by optimizing

code that appears not to contain undefined behavior [36]. In C code, buffer

overflows and other memory-layout and memory-management vulnerabilities

are sufficiently common to persistently cause problems in popular software.

Compounding this problem, much of the systems code written today, and

an overwhelming majority of the systems code written in the last 30 years, is

written in C. The C/C++ programming language is used in the most popular

web servers (e.g., Apache), OS kernels (e.g., Linux), and web browsers (e.g.,

Chrome), but it lacks safety in many ways. For one, there is no bounds-checking

on pointers, which are used for purposes ranging from arrays/buffers to imitating

object-oriented programming, and are a basic building-block of C programming.

For another, there are a number of undefined behaviors (e.g., signed integer

overflow) that are difficult to avoid while adhering to the C standard - and they

are implemented differently by different compilers. Several existing “solutions”

that try to make C code memory-safe [2, 31] have been proposed, but they have

been repeatedly shown to be incomplete [14, 34].

More recently, much work on programming language design has been done,

and thankfully we now have a plethora of better and safer choices in which

to write software; e.g., Java, C#, Go, Rust. Of particular interest to systems

progreamming in recent years have been Golang and Rust, which have been

developed by Google and Mozilla respectively specifically for large highly parallel

workflows, with security in mind. In this thesis, we focus on Rust.

2.2 Rust

Rust is a language developed by Mozilla to make it easier to parallelize the ren-

dering engine in Firefox. By providing memory safety it allows parallel threads

to be implemented safely [29]. Rust has several features designed to provide

8

memory safety at compile-time. In order to achieve spatial safety, Rust disal-

lows raw pointers and requires that pointers be encapsulated in a slice, which

has a base and bound, or in other simliar constructions allowed by its capable

type sytem.

In order to ensure temporal safety, the more complicated of the two compo-

nents of memory safety [31], Rust has a novel memory management system, as

demonstrated in Listing 2: every variable has an owner, and exactly one owner.

When a variable’s owner goes out of scope, that variable is no longer accessible,

its memory is dropped. What makes this complicated is that it is difficult to

ensure that a variable has only one owner at a time. Rust enforces the property

that any value can only have one mutable reference at a time; when that refer-

ence is no longer accessible, the value is freed. This ownership system makes it

easy for the compiler to enforce temporal safety: the compiler is always aware

at compile-time1 of where any given piece of memory is in scope, so temporal

violations and data races are prevented without runtime overhead.

Listing 2: Ownership in Rust example taken from [18]

1 fn main() {
2 let s = String::from(‘‘hello’’); // s comes into scope
3

4 takes_ownership(s); // s’s value moves into the function...
5 // ... and so is no longer valid here
6

7 let x = 5; // x comes into scope
8

9 makes_copy(x); // x would move into the function,
10 // but i32 is Copy, so it’s okay to still
11 // use x afterward
12

13 } // Here, x goes out of scope, then s. But because s’s value was
14 // moved, nothing special happens.
15

1Rust does have reference-counted variables as an option, but they are not used frequently
by most rust code, and there is runtime code to enforce themporal safety on them

9

16 fn takes_ownership(some_string: String) { // some_string into scope
17 println!(‘‘{}’’, some_string);
18 } // Here, some_string goes out of scope and ‘drop‘ is called.
19 // The backing memory is freed.
20

21 fn makes_copy(some_integer: i32) { // some_integer into scope
22 println!(‘‘{}’’, some_integer);
23 } // Here, some_integer goes out of scope. Nothing special happens.

It is very difficult, however, to implement a complex system in Rust while

staying entirely within all the constraints imposed by this type system [25]; it is

impossible, for example, to implement a doubly linked list, because in a circular

reference there cannot be a single owner who owns everything else. Because

these constraints are hard to work under, Rust provides another option: the

programmer may declare a region of code as unsafe, thereby giving it permission

to break some rules. An unsafe block of code is allowed to manipulate raw

pointers, create multiple mutable references to the same region of memory, and

perform other unchecked operations. Rust programmers using a library expect

that an unsafe block will be externally safe. For example, the double-ended

queue in the standard library, std::collections::VecDeque, uses unsafe code to

implement a circular buffer, but it encapsulates that unsafety. A programmer

can use a VecDeque without fear of corrupting memory, even though internally

the VecDeque implementation manipulates raw pointers.

It is important to note that there is no enforcement that all unsafe code is

properly encapsulated. A bug in an unsafe region could create multiple refer-

ences to the same piece of data, and those references would continue to exist

outside of the unsafe block and wherever they were passed; it could create a

pointer of the wrong type, and the rest of the code would try to manipulate

that data as if it were the wrong type. For a simple example, see Listing 3;

the function called on line 16 is safe but can corrupt whatever memory is be-

ing passed to it from the unsafe get_data(). Thus, it is important that unsafe

10

code be written very carefully, or else the whole program may not obey Rust’s

guarantees.

Listing 3: Unsafe code in Rust can cause problems for safe code
1 fn get_data() -> &’static mut [usize] {
2 use std::slice;
3 let ptr = 0x1234 as *mut usize;
4 let amt = 10;
5 unsafe {
6 return slice::from_raw_parts_mut(ptr, amt);
7 }
8 }
9

10 fn main() {
11 // get_data() makes a slice that points to arbitary memory.
12 let data = get_data();
13

14 // clearly, this could cause problems,
15 // depending on what data is at 0x1234.
16 do_something_safe(data);
17 }

In the five years since its creation, Rust has seen increased adoption, in-

cluding components of Firefox [3], some virtualization projects [35], and several

research operating systems [26, 27].

2.3 Operating Systems

Modern computers have hundreds of different processes running on them at the

same time. A modern operating system must make sure that there is memory

available for all these processes; it must provide them with resources and the

ability to access hardware features; it must provide process isolation so they

cannot access or overwrite one another’s data. The kernel is responsible for

these guarantees so that each process can perform its tasks successfully but

without the ability to access other processes’ data or to cause problems for the

system or other processes.

11

Isolating processes’ memory from one another is important for controlling

this access and making sure that each process (or, more granularly, each bit

of code) only has access to the appropriate areas of memory. The traditional

solution to the process-isolation problem on a process-granularity level is Virtual

Memory. Virtual memory as a concept dates back to MULTICS in the 1970s [4]

- it was originally invented to solve other problems, but now one of its primary

purposes is to segment separate processes’ memory accesses by giving them

different address spaces - separate numberings of memory so that each process

does not have any concept of there being other memory on the machine. This

is a partial solution to the process-isolation problem - if different processes have

different address spaces, they cannot overwrite one another’s data; however, the

kernel has access to all data. If a malicious process can get the kernel to act on

its behalf, it can still gain access to other processes’ data.

2.4 Tock

Tock [26] is an operating system kernel written in Rust, taking advantage of

Rust’s memory safety features to ensure memory safety in the kernel [24]. The

Tock developers chose Rust because it is memory-safe without high runtime

overhead, in contrast to many other safe languages (Java, C#, arguably Go),

which is a desirable property for an operating system. Figure 5 shows Tock’s ar-

chitecture at a high level: tock uses a microkernel architecture, so the core kernel

(henceforth, just the kernel) implements just the minimum possible; memory

management, scheduling, and allowing the processes to communicate with the

system. In addition to the kernel, Tock has capsules, which are similar to drivers

but are less priveleged than the kernel. They still run in kernel mode, with ac-

cess to all of memory, but they are only allowed to run safe rust (no unsafe code

blocks). Thus, Tock uses the memory safety properties of the Rust compiler to

12

guarantee that the capsules can only access the memory regions that the kernel

lets them access.

Figure 5: Tock Architecture, taken from [23]

Tock focuses on the security of the kernel. However, the kernel does not exist

in isolation - it needs to be considered as part of the entire system, from userland

code down to the hardware. Because the security is considered in isolation,

there are vulnerabilities at the boundaries. Like every operating system, Tock

needs to provide a way for the applications to communicate with the kernel, in

order to interact with hardware and the outside world. This is the system-call

interface. The way the system-call interface works in Tock (shown in Figure 6

and explained below) is simliar to how it works in most other operating systems

(e.g., Linux, see Figure 3):

13

1. The process places instructions (what kind of system call it wants to per-

form) in registers.

2. The process places parameters - data or pointers to data - in registers.

3. The process makes a superviser call, triggering a context switch to the

kernel, which reads these registers.

4. The kernel interprets the registers, packages any data or raw pointers in

a Rust structure with base, bound, and Rust type.

5. The kernel sends the information on to whichever capsule the process

wanted to contact.

Figure 6: System Calls in Tock

Notice that in step 4, the kernel takes untyped data without compiler-

guaranteed bounds, and packages it up in an AppSlice structure that can be

used in safe rust. The bounds it uses are not provided by the compiler and are

not guaranteed to match those on the data that was in userland; herein lies the

problem.

14

3 Related Work

Many researchers have been developing secure operating systems for years. We

will first discuss some sytems that directly inspire this work, then we will make

some generalizations about what approaches have been taken to the system call

boundary.

3.1 SAFE

SAFE is a system based on a tagged architecture and metadata checks around

that architecture. In a tagged architecture, all data has tags stored in hardware;

tags contain metadata about the memory they are attached to, such as type

information, pointer metadata, “secrecy” data, or whether the data is executable.

SAFE was designed as a clean-slate solution to the secure OS problem. SAFE

also includes a formally verified kernel and new programming languages designed

for safety [11].

SAFE consists of three layers, which the authors call the hardware layer,

the “concreteware” layer, and the “userware” layer. We will discuss relevant

properties of each layer.

First, the userware layer - “userware” is what SAFE calls the part of the

system consisting of OS services that do not need to be priveleged and user

programs. The SAFE developers put the drivers, network stack, and some

other traditionally “kernel” code in an unpriveleged “userware” execution mode,

in order to minimize the priveleged threat surfaces. Breeze, the language in

which userware is written, is a type-safe language with information-flow control

built in; that is to say, data is tagged with a level of secrecy, and secret data

may only be accessed from a proper authority context. The goal is to isolate

the userware and not let it do anything that will impact other userware or

concreteware, primarily through tags and hardware that verifies tags before

15

allowing most operations [6].

SAFE’s concreteware is made up of its memory manager, scheduler, and a

few other small components. The concreteware is written in a subset of Breeze

called Tempest, and it is formally verified - SAFE takes formal verification as

an integral part of how they satisfy their security model.

Finally, the hardware includes several new or unusual components: for one,

each word of memory is tagged with a pointer to arbitrary data that provides

the “semantics” of the tag - this allows for a wide range of uses for tags, from

the information-flow control mentioned above to Write XOR Execute. It also

includes a Fat Pointer Unit, a piece of hardware specifically responsible for

preventing spatial violations on pointers by incorporating into each pointer a

base and bound (the region that pointer is allowed to access) while allowing them

to fit in 64-bit words to minimize the impact on the memory footprint [12].

The SAFE project offers substantial security features for “userware” and

“concreteware”. Additionally, guarantees at the boundary are provided by run-

time checks on the metadata encoded in the tags, using hardware mechanisms

for efficient enforcement. Unlike the SAFE project, we avoid having to use a

garbage-collector or other large runtime that manages user memory. We use a

pre-existing programming language and are compatible with legacy hardware.

3.2 CHERI

CHERI (Capability Hardware Enhanced RISC Instructions) is a system de-

signed to use capability-based addressing as an augmentation to traditional

memory-protection systems [41]. It is a RISC2-based system. CHERI uses

capabilities supported in hardware to improve the granularity of memory pro-

tection.
2Reduces Instruction Set Computer, an open instruction set standard

16

CHERI uses an augmented pointer the authors call a memory capability to

manage permissions at a granular level. A memory capability contains a pointer,

a length, and permissions on that pointer. CHERI also supports object capabili-

ties - an object capability consists of permissions data packaged in a similar way

to a memory capability. Any data tagged as a capability in hardware cannot

be easily fabricated or moved around, requiring specific hardware instructions,

some of which are priveleged.

CHERI places these protections on top of a traditional memory protection

system, the Memory Management Unit (MMU). The MMU maps each process

to a separate memory space, simplifying addressing within each process and

preventing processes from being able to access data internal to other processes.

The combination of the page-level protections of the MMU with more granular

protections provided by capabilities allows CHERI to have very comprehensive

control over which code can access what memory. Notably, however, the kernel

has no MMU protection and it also has full capability access to all memory.

CHERI uses object capabilities to protect its system-call interface on the

userspace side - applications must have a specific object capability to make a

system call [37], which limits the ability of malicious code to make an unsanc-

tioned system call. Data passed into a system call takes the form of a memory

capability, so memory accesses across the system-call boundary are equally pro-

tected as memory accesses within an application.

CHERI is a general system that mixes novel hardware support and existing

protections, and their system-call interface is well-protected. However, CHERI

uses custom hardware to a larger extent than this project. Their processor has

substantially new components in order to be able to manage capabilities and

require their use in place of most pointers. Though we hope to eventually have

hardware support for some of our protections, we aim to support an existing

17

instruction set (e.g., ARM or RISC-V).

3.3 Singularity

Singularity is a memory-safe operating system with software-based process iso-

lation [17]. Singularity forbids shared memory between processes. Singularity

is a microkernel where the drivers and most other kernel components are imple-

mented as userspace processes.

Like Tock, Singularity does not use an MMU to isolate processes, but does

so through software mechanisms and by limiting pointer arithmetic. Singularity

keeps what the authors call amemory independence invariant : compile-time and

runtime checks make sure no process can access regions of memory belonging

to any other process. These checks use a mechanism simliar to those used by

Rust.

The most relevant aspect of Singularity is the mechanism by which processes

(including drivers, which are just special processes) communicate. They are set

up with channels through which data (of a specific type) can be sent. Channels

have types on both ends. In order to enforce that processes do not gain pointers

into areas they should not access, Singularity implements channels by placing

data into a special region called the exchange heap. Channels are a safe way to

transfer data between processes, though they can cause deadlocks [33].

A few other aspects of Singularity are relevant to this work. The garbage

collector, which is one of the features allowing memory safety in their language

Sing#, includes approximately half the unsafe code in the Singularity kernel. All

processes using hardware (i.e., drivers) must declare which hardware they are

using in a manifest to prevent conflicts. The compiler compiles code to “Typed

Assembly Language”, which can be verified to be safe, in case the complicated

Sing# compiler has bugs.

18

Singularity is relevant to this work because it has a working mechanism

for process-kernel communication that checks types at the boundary. However,

Singularity relies on a proprietary language and a large (garbage-collecting)

runtime to solve these problems, both of which we avoid by using Rust.

3.4 System-call Approaches

Several different approaches to the system-call interface have been taken by

recent secure OS work. Some systems [6, 28, 40] do not address the possibility

of a vulnerability in the system call interface at all and just trust (applications

and) the kernel not to misuse the pointers they get.

Some systems [17, 38] use a large runtime or the fact that code is running in

a VM in order to check types on data being passed between processing units at

runtime. Singularity [17] additionally places any data that needs to be read by

multiple processes in a designated memory region, so that the kernel does not

need to hold pointers to application regions.

In Reenix [27], the userspace applications and the kernel must be compiled

together, and there is no less-priveleged mode for the userspace applications

to run in, so safety is guaranteed at the system-call boundary through Rust’s

compiler. This is an excellent use of compiler guarantees but it is too restrictive

for our work.

Many systems [22, 26, 32] allow the programmer to specify a size of a buffer

to pass across an interprocess or system-call boundary, but do not check that

the length specified corresponds to the data in the buffer.

4 Threat Model

Our threat model (See Figure 7) trusts hardware entirely, the intent of the kernel

author, and the fact that user applicaiton code has been compiled by a bona

19

fide compiler.

Figure 7: Our Threat Model

First, we trust the hardware on which the software is running. This is a de-

cision we made because we need to trust something in order to maintain a basic

amount of usability, and hardware has longer development cycles. Although

this is imperfect [20], we must concentrate on part of the threat space.

Running on the trusted hardware is a "benign but buggy" kernel, which

can be trusted to attempt to implement its specification, but it may have bugs.

We do not consider supply-chain attacks on the kernel, where an adversary con-

tributes malicious code to the kernel code; we trust that the kernel implementers

act in good faith.

Finally, we have the application running under the operating system - we

consider it to be "compromised but compiled" - that is to say, it must be com-

piled with our toolchain, but otherwise is free to do its best to interfere with

other applications. However, a user application is only allowed to use unsafe

code as far as calling libraries that use unsafe code; it is not allowed to imple-

ment its own unsafe sections. We aim to prevent this application from crashing

20

or compromising the system or other applications. The user application may

collaborate with a remote attacker to attempt to break the security of the sys-

tem.

5 Example Vulnerability

Tock supports userland code in either C or Rust; we will assume a Rust-based

userland; with C userland code, it is less meaningful to discuss the types of the

data going to the kernel, because C has a less strict type system than Rust.

Because both userland and kernel code are written in Rust, type safety and

memory safety should be guaranteed at all times; however, this is not actually

the case if data is passed between them unchecked, as happens with system calls.

As discussed in Section 1, data is passed between the kernel and userland by

putting it in certain registers or by putting (untyped) pointers to it in registers;

this means that it loses its type, owner, and any other rust abstractions when

passed across the boundary. In Listing 4, we present an attack taking advantage

of that vulnerability, motivating this work.

Listing 4: Buffer overflow in Rust under Tock

1 fn main() {
2 let mut console = Console::new();
3

4 // if _buffer overflows, _mod will be overwritten
5 let mut _buffer: [u8; 6] = [2; 6];
6 let mut _mod: [u8; 6] = [1; 6];
7

8 // initially _mod contains all ones
9 console.write(String::from("Contents␣of␣_mod␣before:\n\n"));

10 for x in _mod.iter() {
11 console.write(fmt::u32_as_hex((*x).into()));
12 console.write(String::from("␣"));
13 }
14

21

15 // share buffer to kernel
16 console.write(String::from("\n\nSharing␣_buffer␣to␣kernel\n\n"));
17 const CAPSULE_RNG: usize = 0x40001;
18 let buf_len = 16;
19 let _allow_res = syscalls::allow(CAPSULE_RNG,0,buf,buf_len);
20

21 // allocate an indicator for the kernel to tell us when it’s done
22 let is_written = Cell::new(false);
23 let mut is_written_alarm = |_, _, _| is_written.set(true);
24 let _sub_res = rng_set_callback(&mut is_written_alarm);
25

26

27 console.write(String::from("\n\nFilling␣_buffer␣randomly\n\n"));
28 let num_bytes = 16;
29 let _cmd_res = syscalls::command(CAPSULE_RNG, 1, num_bytes, 0);
30

31 // wait for the kernel to finish
32 syscalls::yieldk_for(|| is_written.get());
33

34 // after RNG is truggered on _buffer,
35 // _mod is populated with random numbers
36 console.write(String::from("Contents␣of␣_mod␣after:\n\n"));
37 for x in _mod.iter() {
38 console.write(fmt::u32_as_hex((*x).into()));
39 console.write(String::from("␣"));
40 }
41

42 loop {
43 syscalls::yieldk();
44 }
45 }

We will describe what the code in Listing 4 is doing, step-by-step. First, we

allocate the buffers in sequence (line 5), so that they are adjacent on the stack.

The next 10 lines print out the initial values of the buffers and set up for the

system call. Next, we call the ALLOW system call (line 19), sharing the buffer

_buffer with the RNG capsule. Note that the real length of _buffer (line 5 and

6) is less than the provided length (line 18), but there are no mechanisms in

22

place to prevent the user program from supplying the incorrect length. 3

Thus, instead of sharing just the 6 bytes of _buffer, we have also shared the

memory containing _mod. The next 10 lines set up notification so that the user

process can know when the kernel is done providing random data. On line 29,

the user process requests that the kernel fill the memory region it has shared

with random bytes. When we print out _mod on line 38, we find that it has been

replaced with random data.

Note the similarity between this example and Listing 1, a stack smash in

C. We are essentially using the system-call interface provided by Tock as a

way to circumvent the Rust features that would prevent us from accidentally

indexing too far into _buffer. This thesis presents a system that prevents this

vulnerability from being exploited.

Many approaches have been taken to building a system with built-in memory

safety, and they have their benefits and drawbacks; but an all-too-common

drawback is not considering the boundary between safe components in secure

system design.

For example, the way that the processor communicates with input and out-

put devices on most modern systems is through memory, or through mapping

I/O devices to locations in memory. Even kernels written in memory-safe lan-

guages need to cast arbitrary memory addresses to typed values in order to

deal with memory-mapped I/O, and it is not always clear that they can know

in advance, for example, the length of these regions (e.g., the VGA buffer for

video output). By augmenting the safe kernel with hardware support for type

constructs, one can hope to make even cases like this safe.

This is not just a problem for Tock - it is a pervasive pattern in large systems,
3Here it should be noted that we are using a custom userland syscall implementation;

the version that the Tock developers provide includes a check on this, but it’s just in the
userland library that Tock programs make system calls through, not inherent to how the
kernel processes the system call.

23

and kernels are no exception. For example, there are a number of linux kernel

bugs that resulted from poor bounds checking [7, 9], as well as Windows vulner-

abilities that have been exploited by real-world malware on improper checking

of system call arguments [10, 8].

In this thesis, we build a system that has built-in resistance to attacks on

the boundary between the userspace and kernel.

6 Methods

The system described in this thesis is an improvement around the system-call

interface of Tock. Our goal in designing this system was to preserve type meta-

data available at compile-time that is not normally available when the data

crosses the system-call boundary to the kernel, and to pass that data to the

kernel.

In summary, data passed through system calls to the kernel has its type

metadata passed as well through a separate mechanism, allowing protection

against the sort of attack described in Section 5 without requiring modification

to either the userland or the capsule code. A high-level overview of the system

is in Figure 8 (compare with Figure 6).

Figure 8: Syscall architecture in Modified Tock

24

The system is composed of three parts:

1. Whenever data from user-mode is passed to the kernel, its type and size

are first written to a shadow memory region; i.e., a region invisible to the

normal operation of the program.

2. When data is passed across the system-call boundary, the kernel com-

ponent handling the sytem call retrieves the type data from the shadow

memory and passes it to the capsule handling the system call, along with

the data itself.

3. When a capsule tries to access data it has been passed from userspace, our

system prevents access unless the data type matches the type expected by

the system call, by truncating the data passed on or by returning an error

to the userspace program requesting the operation.

6.1 Shadow Memory and Type Tracking

In order to expose the types of the user-mode data to the kernel, we track them

in shadow memory. Shadow memory is memory that is not included in the

memory the process is allowed to use for its heap, and it is used for tracking

metadata. The shadow memory is only accessible to the process by using unsafe

code. When allocating memory for processes, we split the memory for each

process in half, allocating half of the space to shadow memory and using the

other half for the regular process memory. As depicted in Figure 9, the top half

of the memory for each process is the shadow memory and the bottom half has

the memory layout that Tock normally uses. Metadata for each byte of memory

is stored in the corresponding byte of shadow memory.

We need not track the full Rust type of every object in the shadow memory;

there are three important pieces of data to store for each byte:

25

Figure 9: Memory layout modification

• Type - we really only need to store whether it is part of an array/slice of raw

bytes, since all capsules expect shared user data to be in the form of raw

bytes. Doing more complex checks would require significant modification

to the capsule code, for little benefit, since most of the data required

by Tock’s system calls is not structured further than the byte array in

which it is passed. As shown in Figure 10, the shadow memory regions

corresponding to where _buffer and _mod are include the BYTE marker,

but the region after them does not.

26

• Mutable - Whether the reference being shared is mutable - if it is not

mutable, then the kernel should not be able to modify it. This data is not

currently used by the kernel (see Section 8.4 for further discussion). As

shown in Figure 10, the shadow memory regions corresponding to where

both _buffer and _mod are, as well as the following region, are marked

MUTABLE.

• Start - Whether this particular byte is the beginning of its particular

array/slice being passed to the kernel. When our system-call handler is

checking a piece of memory shared by a user program, if it reaches a byte

that is the start of its slice when examining a piece of memory passed from

userspace, the kernel does not share any bytes beyond that point to the

capsule processing the system call. As shown in Figure 10, the shadow

memory locations corresponding to the first byte of each of _buffer and

_mod have the START marker.

We store this information in the lowest 3 bits of each byte of the shadow

memory; the upper 5 bits are unused.

6.2 System-Call Handler Modifications

The system call handler in the Tock kernel takes the data passed from userspace

and packages it in a slice-like structure called an AppSlice. This structure has

an API similar to a Rust slice (variable-length array), but is slighlty more com-

plicated internally.

We have modified the kernel system call handler in Tock to include a pointer

to the type data in shadow memory in the packaged AppSlice structure that

it passes to the capsules’ system-call handlers. This modification allows the

AppSlice to handle the type-checking, so that the capsule code does not need

to be modified at all.

27

If the user process tries to share too many bytes to the kernel to output

through the console, the AppSlice will simply ignore any bytes beyond the limit

and show only the smaller set of bytes to the console capsule. If the chunk of

memory the user tries to share is of the wrong type entirely, the kernel will

return an error to the user process that tried to share the data to the kernel.

More concretely, if the user program passes a buffer of length 6 (e.g., _buffer

in Figure 10), with claimed length 16 (as described in Section 5), the AppSlice

will only expose the 6 bytes before _mod starts. If the user program shares a

pointer to a not-byte-array with any length (e.g., something_else in Figure 10),

the ALLOW call will return an error to the user program that tried to share

the memory of the wrong type.

Figure 10: Example of Shadow Memory Contents

28

6.3 User-Mode Component

The user-mode component of the system is simpler than the kernel-mode com-

ponent. Whenever a buffer is passed to our (Rust) system-call library, that

buffer’s length is checked and then the type is written to each byte in the corre-

sponding shadow memory location. When the system call returns, the shadow

memory region for that object is cleared so that future objects allocated in the

same memory region are not pre-marked with the wrong metadata.

The shadow memory location is determined by calling a system call that

returns the offset to the shadow memory. In the system as implemented, this

extra system-call provides a substantial amount of overhead. That overhead is

discussed further in Section 8.5.

The user-mode application (which is written in Rust) is not allowed to use

unsafe code except by calling our libraries (recall our assumptions about Rust

userland code in Section 4). As a result of this restriction, we can be confident

that the metadata attached to the Rust object when it is passed to our library

is correct.

Several conditions need to be met for the types of the userland data to be

available to the kernel at runtime. For one, this data needs to exist past the

time of compilation; normally the data is used for compiler analysis and not

packaged into the binary in any way. For two, it needs to be placed into the

shadow memory. If we did not change the compilation process by having our

library inspect the types of the data it is passed, this data would not be available

at runtime and no system would be able to distinguish between different data

types in memory. Our solution is that our library forces the compiler to include

the types in the binary, because they will be written to memory by our library

which was present at compile-time. A different solution, discussed in Section 8,

is a compiler extension that places type information somewhere else in the binary

29

for reference.

7 Evaluation

We evaluate this work in several dimensions.

• We consider performance of both specific system-call operations and gen-

eral workloads, comparing to vanilla Tock. We additionally test its perfor-

mance under synthetic loads. We look at both how much extra memory

we use and how much slower this modification makes Tock.

• We show that this protection is able to defend against the vulnerabilities

we set out to fix.

• We reason about what other vulnerabilities this system can prevent.

7.1 Performance

In order to evaluate the performance of the system, we timed tasks on both

vanilla Tock and our modified system. We used the CPU clock to determine

the number of CPU ticks4 tasks took to complete. In order to make the CPU

clock accessible to our userland tests, we relaxed some of the MPU protections

in Tock while performing our tests.

We ran two types of benchmarks: microbenchmarks and macrobenchmarks.

The microbenchmarks (described in Section 7.1.1) did very little work in addi-

tion to the system-call task we were measuring or were subsets of that system

call. The goal of these tests was to compute the overhead on the system-

calls themselves, and thus place a theoretical upper-bound as to how much
4We had difficulty accessing the actual CPU clock; the way the board we used for testing

(NRF52dk) is set up in Tock seems to only allow access to a 32 MHz clock also on the CPU,
as opposed to the 64 MHz CPU clock. All the measurements in this paper refer to the 32
MHz clock.

30

our changes could effect the system performance. The macrobenchmarks (Sec-

tion 7.1.2) attempt to gauge the impact of these modifications on more realistic

systems, by including not just system-calls but waiting for the full execution of

the system call, sending data over I/O, and so on.

7.1.1 Microbenchmarks

We will describe the microbenchmarks that are the components of the system

call, then we will describe the microbenchmarks that consist of an ALLOW

system call and a little more computation.

Table 1 and Figure 11 show the different processes that take time in an

ALLOW system call, which is where our overhead is: the system call starts with

libtock interpreting the parameters given by the user program (A-B). Then it

gets the offset to the shadow memory using a MEMOP syscall (B-C). Next,

it writes the metadata to the shadow memory (C-D). The kernel checks the

shadow memory and packages the pointer into an AppSlice (D-E), and then the

capsule stores the AppSlice for later (E-F). Finally, libtock clears the shadow

memory region (F-G).

Context switching overhead (the time from the first B to the second B,

for example) was too small to reliably measure, however it is included in the

overall A-G measurements and in the measurements that include a system-call

boundary traversal (B-C and D-F).

We measured the timing of each of these regions under both vanilla Tock

and our modified Tock with a 100 byte buffer; the results of these measurements

are in Table 2. Results are averaged over 100 runs of the system call.

We ran two other microbenchmarks in addition to those described in Table 1:

SimpleRNG, which measures the time to start a random number generator

operation, and SimpleBLE, which measures the time to start a simple bluetooth

advertisement. These operations were chosen because they are representative

31

Figure 11: Parts of a ALLOW system call under our system

Chunk Where Description
A-B libtock Get length from buffer
B-C kernel Get offset to shadow memory
C-D libtock Write data to shadow memory
D-E kernel Validate data in shadow memory
E-F capsule Store AppSlice for later use
F-G libtock Unmark shadow memory
A-G overall Total

Table 1: Parts of an ALLOW Syscall under our system. Bolded steps take more
substantial time.

of the system calls available in Tock. Average timing of these benchmarks is

shown in Table 3. The reason that the AllowSyscall benchmark shown here and

in the CDF graph below takes longer than the ALLOW syscall in vanilla Tock

as timed in Table 2 is that we had to turn off some compiler optimizations to

prevent the compiler from optimizing away our measurement ability and thus

got slightly slower code.

In order to check that our system call modifications take a consistent amount

of time and not a long tail, we timed an ALLOW systemcall on 100 bytes

10000 times. Figure 12 shows the probability of completion over time based on

10000 iterations of the ALLOW syscall on both systems. Our system provides

a noticeable but consistent amount of overhead.

32

Chunk Vanilla Modified
A-B 0 0
B-C 0 2.51
C-D 0 0.18
D-E (not measured) (not measured)
E-F (not measured) (not measured)
D-F 2.91 6.20
F-G 0 0.17
A-G 2.91 9.06

Table 2: Timing for parts of an ALLOW syscall, all numbers in ticks

Test Vanilla Tock Modified Tock Description
AllowSyscall 3.16 ticks 8.92 ticks Pass a buffer to the kernel

with 24 bytes of data
SimpleRNG 20.7 ticks 21.7 ticks Pass a buffer to the kernel,

ask the kernel to generate
24 bytes of random data in
the buffer. Do not wait for
the data to be generated.

SimpleBLE 17.0 ticks 21.0 ticks Pass a 17-byte buffer to
the kernel, ask the kernel
to advertise that data over
Bluetooth. Do not wait
for the data to be adver-
tised.

Table 3: Timing on Microbenchmarks of modified Tock syscall interface

We applied the same technique to the SimpleRNG test, and found that al-

though our system does not have high variance in its timing, the system random

number generator does, and so the test occasionally takes a lot longer. Running

this test 400 times on both systems produces the CDF shown in Figure 13 for

the SimpleRNG test. The SimpleBLE test has overhead simliar to AllowSyscall

so we do not produce a CDF for it here.

7.1.2 Macrobenchmarks

We measured 3 larger operations as well, to get an idea of what impact our

changes have on the overall speed of the system.

33

Figure 12: CDF of times for an ALLOW syscall on 100 bytes of data. Yellow is
vanilla Tock, blue is our sytem.

First, as a baseline, we ran a pseudo-random number generator in userspace.

It does not make any system calls, so we did not expect any overhead. Timing

varied slightly based on system load, but the times fluctuated in similar ranges

under modified and vanilla Tock. The average time on vanilla Tock was one

tick faster, but we do not believe this was due to anything other than random

chance.

Next, as a task fairly representative of the things the Tock systems do, we

timed an program that scans for BLE devices using the BLE driver. It sends

the data back from the kernel over a buffer created with an ALLOW system

call and makes frequent use of the system-call interface. We found that it has

approximately 3% overhead when run under modified Tock.

Finally, as an attempt to find a task that was heavy in ALLOW system calls,

we timed a program that prints 100 lines of text to the console. This program

had approximately 6% overhead when run under modified Tock. Because very

little computation was performed on the data in this test, its performance is

34

Figure 13: CDF of times for setting up an RNG transaction on 24 bytes of data.
Yellow is vanilla Tock, blue is our sytem.

close to the worst-case performance in a realistic scenario for our system.

These results are compiled in Table 4.

Test Vanilla Tock Modified Tock Description
Cryptography 609 ticks 610 ticks Compute a PRNG in

userspace. No system calls
involved so should not ex-
pect overhead.

BLE_scan 6871 ticks 7061 ticks Scan for BLE advertise-
ments, return the informa-
tion received to the user
process.

PrintData 19757 ticks 20613 ticks Write 100 lines of text to
the console.

Table 4: Timing on Macrobenchmarks of modified Tock syscall interface

7.1.3 Synthetic Benchmark

In order to determine how our system’s performance depends on the size of the

ALLOWed buffer, we tested how long an ALLOW call takes on each size of

buffer from 1 byte to 500 bytes. Figure 14 shows the timing of an ALLOW

35

system call vs. the length of the buffer being shared. As expected, the call

takes linearly longer depending on the size of the buffer for our system, but

is constant for vanilla Tock. This difference is because our system checks the

whole length of the memory passed to verify that it is of the correct type.

Figure 14: Time for an ALLOW operation vs size of buffer. Blue is modified
tock, Yellow is vanilla.

7.1.4 Memory use

The modified system uses substantially more memory for each process; in partic-

ular, it doubles each process’s memory usage. We chose to use a direct mapping

of shadow memory to process memory to facilitate development while still eval-

uating the security provided by such a system. This choice is further discussed

in Section 8.

7.2 Security Evaluation

In order to evaluate the security of our system, we ran the attack described in

Section 5 on our modified system. As described in Subsection 6.2, the kernel

receives a system call with a pointer and a length that do not match; in vanilla

36

Tock, the kernel generates random numbers over the entire length of the passed

buffer, as shown in the output in Listing 5.

Listing 5: Cleaned up output from the example exploit under original Tock
1 Contents of _mod before: 0x01 0x01 0x01 0x01 0x01 0x01
2 Contents of _buffer before: 0x02 0x02 0x02 0x02 0x02 0x02
3 Generating a random number in _buffer...
4 Contents of _mod after: 0x3a 0x54 0x6c 0x96 0x92 0xeb
5 Contents of _buffer after: 0x7d 0xb0 0xfe 0xa8 0xb1 0x0a

Our system call-handler truncates the slice passed to the kernel so that only the

variable passed to the kernel can be modified, and other variables that happen

to share the same memory space (i.e., _mod, here) cannot be modified (i.e., there

cannot be a spatial violation). Listing 6 shows the output from running the

attack under modified Tock. As you can see, the data in _mod is not overwritten,

even though the system call requests that data be written beyond the length of

_buffer.

Listing 6: Cleaned up output from the example exploit under modified Tock
1 Contents of _mod before: 0x01 0x01 0x01 0x01 0x01 0x01
2 Contents of _buffer before: 0x02 0x02 0x02 0x02 0x02 0x02
3 Generating a random number in _buffer...
4 Contents of _mod after: 0x01 0x01 0x01 0x01 0x01 0x01
5 Contents of _buffer after: 0x93 0xe4 0xa0 0xbb 0x17 0x8c

7.3 Broader Effects

The technique demonstrated in this thesis is not applicable solely to Tock, and

its impact if applied more widely could be substantial. Although the perfor-

mance hit caused by the particulars of this technique and the need to write

all the code in Rust make this impractical for large-scale application to exist-

ing systems, the benefits could be real. Any sort of memory corruption caused

by metadata lost between the application and the operating system could be

prevented, including [7, 10, 8, 9].

37

In order to apply this technique to another operating system, we would

need several criteria to be satisfied. First, we need to annotate the type of the

data going into each of the system calls for the OS; next, we need the user

processes to be written in a typed language. If these criteria are satisfied, we

would need the compiler that compiles the user processes to instrument the

code with instructions to write the types to shadow memory. If implemented in

Windows, for example, this technique would prevent any vulnerabilities based

on the system misinterpreting data sent to it by a malicious user program, such

as [8], where the user process can convince the kernel to write to any address

by telling it that that address is a certain data structure, because the address

would not be in the user process’s memory area.

In separately compiled cooperating modules, the benefits of compilation can

be cancelled out because compiler aassumptions, such as knowing everything

that accesses a given memory location, or knowing that an address is no longer

in use, fail. A fundamental issue in compiler-guaranteed correctness is that it

requires a global view, and a global view is not always available. Ignoring this

fact creates opportunities for bugs and vulnerabilities.

The bugs and vulnerabilities demonstrated in this thesis come about despite

Rust’s guarantees because of this lack of a global view in the compiler. However,

without excessive overhead we have closed such holes by specifically passing

metadata at runtime; this principle should have broad applicability.

8 Discussion

There are a few other limtations of this work that do not fit into any of the axes

on which we evaluated in Section 7. We will raise several issues, discussing for

each the reasons for it and some possible ways to address it.

38

8.1 Performance Overhead

As discussed in Subsection 7.1, our technique has 100%memory overhead, which

is significant, especially on the embedded systems Tock is designed to run on.

This memory overhead can likely be reduced because of the sparsity and repeti-

tiveness of the data being stored in the shadow memory. For example, we could

compress the representation of the data in shadow memory by using one byte

for each word of memory instead of per byte. We also need not have shadow

memory allocated for each process’s grant region, which is only used by capsules

and not by the process itself.

As far as speed goes, we would like to implement some of this work in

hardware becaue it will alleviate much of the time overhead. In order to do

that, we would like to use custom hardware. In order to modify the hardware,

we would need to have open source hardware to modify, which likely means

running Tock under RISC V . The work to port Tock to RISC V is underway,

but it is not yet ready, so we implemented this work under ARM and in software.

8.2 Compatibility

Our kernel is not compatible with the vanilla libtock provided by the Tock

developers, because it expects data to be written to shadow memory by libtock

in userland.

We chose to implement the userland functionality in libtock because it was

simpler and did not require compiler modifications. But for this sytem to be

viable to use, we would like to move the responsibility for writing type infor-

mation to shadow memory from libtock to the compiler. This would involve

the compiler emitting code to mark the types of variables when they are allo-

cated and erasing the types when they are deallocated. This modification will

make our kernel compatible with vanilla libtock. Another benefit of this work

39

would be the ability to provide temporal safety in addition to spatial safety, as

described in the next subsection.

8.3 Temporal Safety

This technique does not provide temporal safety in Tock due to the unusual way

Tock does system calls. Tock only has 5 system calls, which are used in a very

specific protocol, involving four calls: an ALLOW to share the buffer on which

to operate, a SUBSCRIBE to receive notification when the process has finished,

and a COMMAND to request that the kernel perform the operation, and a

YIELD to wait until the kernel has finished. All system services are provided

using this protocol in libtock, but one could imagine a user attempting to

be asynchronous to save time and accidentally deallocating memory before the

kernel is done with it.

A Rust program can still expose a buffer to the kernel, triggering our memory

checks, and then deallocate that buffer and allocate something else in its place

after our checks but before making the system call to use the shared memory.

This is not currently protected because memory is unmarked immediately upon

making the ALLOW system call to share the memory with the kernel, and thus

we only check the shadow memory upon ALLOW calls. Listing 7 demonstrates

this attack.

Listing 7: Violation of Temporal Safety under our system

1 const DRIVER_NO = BLUETOOTH_DRIVER_NO;
2 const ALLOW_NO = BLUETOOTH_SEND_BUFFER;
3 const SUBSCRIBE_NO = BLUETOOTH_ON_SEND_FINSH;
4 const COMMAND_NO = BLUETOOTH_SEND_ASYNC;
5 fn do_one_thing() {
6 // allocate a buffer to send, fill it with zeroes
7 let mut data_to_send: [u8;100] = [0;100];
8 // share the buffer with the kernel
9 syscalls::allow(DRIVER_NO, ALLOW_NO, &mut data_to_send, 100);

40

10 } // data_to_send is deallocated here, but when it was shared,
11 // it pointed to a valid location in memory.
12

13 fn do_another_thing() {
14 // allocate a new buffer, fill it with ones
15 let mut data_in_the_same_place: [u8;100] = [1;100];
16

17 // tell the kernel to tell us when it’s done
18 let done = Cell::new(false);
19 let mut done_alarm = |_, _, _| done.set(true);
20 syscalls::subscribe(DRIVER_NO, SUBSCRIBE_NO, &mut done_alarm);
21

22 // tell the kernel to do its thing
23 let bytes_to_use: usize = 100;
24 syscalls::command(DRIVER_NO, COMMAND_NO, bytes_to_use);
25

26 // wait for the kernel to finish
27 syscalls::yieldk_on(|| done.get());
28 }
29

30 fn send_some_data() {
31 do_one_thing();
32 do_another_thing();
33 }

In Listing 7, we demonstrate a bug that a programmer could easily fall victim

to, leading to unexpected behavior. A sequence of system calls in Tock is split

between multiple functions, and the data sent to the kernel (data_to_send) goes

out of scope on line 10 before it is used. Because they are both allocated on

the stack, data_in_the_same_place is allocated in the same place as data_to_send

was, and it is now pointed to by the pointer we passed to the kernel. Thus, when

the kernel actually uses the data on line 24, it uses the data from the wrong

buffer. This problem exists in regular Tock, but it becomes more notable in our

modified Tock because we have prevented the spatial version of this problem.

If the compiler instrumented userland code to write the type information to

shadow memory at allocation and deallocation time, AppSlices could be more

41

thorough when they check the type information, and could do so at every use,

throwing an error whenever the types mismatched, instead of only doing so

at creation time. This modification would also require some modifications to

capsule code, because a pointer may be valid when a capsule receives it, but no

longer valid when the capsule tries to use it, confusing the capsule and possibly

causing a crash and a kernel panic if not implemented properly.

This change would incur additional overhead of approximately an additional

2.3 tick per 100 bytes on each access to an AppSlice, based on the data from the

synthetic benchmark and the microbenchmarks. We think this would be a fair

price to pay for the protection from this category of bugs; it would consititute

an 86% increase in overhead when compared to just the context switching to the

kernel, but would be fairly minor (< 10%) when compared to the work actually

done by the capsule accessing the data, based on our macrobenchmarks.

8.4 Mutability

In section 6, we discussed three pieces of information stored in shadow memory:

type, mutable and start. We do not currently use the mutability data because

doing so would require modifications to capsule code. We cannot provide a

different amount of data when the capsule tries to mutate the data from when

the capsule simply tries to read it, due to implementation limtations on the

AppSlice structure gating capsule access to user memory. We cannot return

an error upon trying to access immutable user memory mutably because the

capsules do not check for errors upon accessing an AppSlice. Thus, using the

mutability data would require internal modifications to all the capsules. Because

of that requirement, we are not certain that enforcing mutability across the

system call boundary is worthwhile.

42

8.5 Extra System-Call

The way in which we have implemented the transfer of metadata to shadow

memory currently involves an extra MEMOP system call to retrieve the offset

to shadow memory for each ALLOW system call (B-C in Figure 11). This

decision was made so as to allow the libtock modifications not to retain extra

state, but it comes at the cost of additional overhead on every ALLOW system

call. We can tell from Table 2 that this overhead is a significant portion of our

system’s overhead - 86% of the overhead on an empty buffer, or 50% on a buffer

of 100 bytes, getting less significant for larger buffers.

This overhead could be reduced from once per ALLOW call to once per user

program by storing the offset in a static variable in user memory inside of the

libtock module responsible for writing data to shadow memory. This is one of

the first improvements we would make to decrease overhead.

9 Conclusion

Many operating systems designers have not focused their attention on memory

safety at the system-call boundary; vulnerabilities exist in Windows[8], Linux[7],

and even memory-safe operating systems like Tock (Section 5) because of this

oversight. This thesis showed that such vulnerabilities exist. We designed and

implemented a system to protect against this issue in Tock. We successfully

built a system that defends Tock against these vulnerabilities, and we evaluated

its performance and security. We also discussed what it would take to apply

that system to other operating systems and how and why it might be applied.

43

References

[1] Martın Abadi et al. “Control-flow integrity”. In: Proceedings of the 12th

ACM conference on Computer and communications security. ACM. 2005,

pp. 340–353.

[2] Periklis Akritidis et al. “Baggy Bounds Checking: An Efficient and

Backwards-Compatible Defense against Out-of-Bounds Errors.” In: USENIX

Security Symposium. 2009, pp. 51–66.

[3] Brian Anderson et al. “Engineering the servo web browser engine using

Rust”. In: Proceedings of the 38th International Conference on Software

Engineering Companion. ACM. 2016, pp. 81–89.

[4] A. Bensoussan, C. T. Clingen, and R. C. Daley. “The Multics Virtual

Memory: Concepts and Design”. In: Commun. ACM 15.5 (May 1972),

pp. 308–318. issn: 0001-0782. doi: 10.1145/355602.361306. url: http:

//doi.acm.org/10.1145/355602.361306.

[5] Miguel Castro, Manuel Costa, and Tim Harris. “Securing software by en-

forcing data-flow integrity”. In: Proceedings of the 7th symposium on Op-

erating systems design and implementation. USENIX Association. 2006,

pp. 147–160.

[6] S. Chiricescu et al. “SAFE: A clean-slate architecture for secure systems”.

In: 2013 IEEE International Conference on Technologies for Homeland

Security (HST). Nov. 2013, pp. 570–576. doi: 10 . 1109 / THS . 2013 .

6699066.

[7] CVE-2003-0985. Available from MITRE, CVE-ID CVE-2003-0985. Sept.

2004. url: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2003-0985 (visited on 08/20/2018).

44

[8] CVE-2016-7255. Available from MITRE, CVE-ID CVE-2016-7255. Nov.

2016. url: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2016-7255 (visited on 09/11/2018).

[9] CVE-2018-10940. Available fromMITRE, CVE-ID CVE-2018-10940. Apr.

2018. url: http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2018-10940 (visited on 08/20/2018).

[10] CVE-2018-8440. Available from MITRE, CVE-ID CVE-2018-8440. Mar.

2018. url: https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-

2018-8440 (visited on 09/25/2018).

[11] André DeHon et al. “Preliminary design of the SAFE platform”. In: Pro-

ceedings of the 6th Workshop on Programming Languages and Operating

Systems. ACM. 2011, p. 4.

[12] U. Dhawan et al. “Hardware Support for Safety Interlocks and Introspec-

tion”. In: 2012 IEEE Sixth International Conference on Self-Adaptive and

Self-Organizing Systems Workshops. Sept. 2012, pp. 1–8. doi: 10.1109/

SASOW.2012.11.

[13] Zakir Durumeric et al. “The Matter of Heartbleed”. In: Proceedings of the

2014 Conference on Internet Measurement Conference. IMC ’14. Vancou-

ver, BC, Canada: ACM, 2014, pp. 475–488. isbn: 978-1-4503-3213-2. doi:

10.1145/2663716.2663755. url: http://doi.acm.org/10.1145/

2663716.2663755.

[14] Isaac Evans et al. “Missing the Point(er): On the Effectiveness of Code

Pointer Integrity”. In: Proceedings of the IEEE Symposium on Security

and Privacy (Oakland’15). San Jose, CA, May 2015.

[15] Maxim Goncharov. Heartbleed Vulnerability Affects 5% of Select Top Level

Domains from Top 1M. url: http://blog.trendmicro.com/trendlabs-

45

security-intelligence/heartbleed-vulnerability-affects-5-of-

top-1-million-websites/.

[16] Chris Hathhorn, Chucky Ellison, and Grigore Roşu. “Defining the Unde-

finedness of C”. In: SIGPLAN Not. 50.6 (June 2015), pp. 336–345. issn:

0362-1340. doi: 10.1145/2813885.2737979. url: http://doi.acm.org/

10.1145/2813885.2737979.

[17] Galen C Hunt and James R Larus. “Singularity: rethinking the software

stack”. In: ACM SIGOPS Operating Systems Review 41.2 (2007), pp. 37–

49.

[18] Steve Klabnik and Carol Nichols. The Rust Programming Language.

2nd ed. 2018, Section 4. url: https://doc.rust-lang.org/stable/

book/second-edition/.

[19] Gerwin Klein et al. “seL4: Formal verification of an OS kernel”. In: Pro-

ceedings of the ACM SIGOPS 22nd symposium on Operating systems prin-

ciples. ACM. 2009, pp. 207–220.

[20] Paul Kocher et al. “Spectre attacks: Exploiting speculative execution”. In:

arXiv preprint arXiv:1801.01203 (2018).

[21] D. R. Kuhn, M. S. Raunak, and R. Kacker. “An Analysis of Vulnerability

Trends, 2008-2016”. In: 2017 IEEE International Conference on Software

Quality, Reliability and Security Companion (QRS-C). July 2017, pp. 587–

588. doi: 10.1109/QRS-C.2017.106.

[22] Eugen Leontie et al. “Hardware-enforced Fine-grained Isolation of Un-

trusted Code”. In: Proceedings of the First ACM Workshop on Secure

Execution of Untrusted Code. SecuCode ’09. Chicago, Illinois, USA:

ACM, 2009, pp. 11–18. isbn: 978-1-60558-782-0. doi: 10.1145/1655077.

46

1655082. url: http://doi.acm.org.libproxy.mit.edu/10.1145/

1655077.1655082.

[23] Amit Levy.Design of Tock. url: https://www.tockos.org/documentation/

design.

[24] Amit Levy et al. “Multiprogramming a 64kB Computer Safely and Ef-

ficiently”. In: Proceedings of the 26th Symposium on Operating Systems

Principles. ACM. 2017, pp. 234–251.

[25] Amit Levy et al. “Ownership is Theft: Experiences Building an Em-

bedded OS in Rust”. In: Proceedings of the 8th Workshop on Program-

ming Languages and Operating Systems. PLOS ’15. Monterey, California:

ACM, 2015, pp. 21–26. isbn: 978-1-4503-3942-1. doi: 10.1145/2818302.

2818306. url: http://doi.acm.org/10.1145/2818302.2818306.

[26] Amit Levy et al. “The Case for Writing a Kernel in Rust”. In: Proceedings

of the 8th Asia-Pacific Workshop on Systems. APSys ’17. Mumbai, India:

ACM, 2017, 1:1–1:7. isbn: 978-1-4503-5197-3. doi: 10.1145/3124680.

3124717. url: http://doi.acm.org/10.1145/3124680.3124717.

[27] Alex Light. “Reenix: Implementing a unix-like operating system in rust”.

PhD thesis. Master’s thesis, Brown University, Department of Computer

Science, 2015.

[28] Toshiyuki Maeda and Akinori Yonezawa. “Formal to Practical Security”.

In: ed. by Véronique Cortier et al. Berlin, Heidelberg: Springer-Verlag,

2009. Chap. Writing an OS Kernel in a Strictly and Statically Typed

Language, pp. 181–197. isbn: 978-3-642-02001-8. doi: 10.1007/978-3-

642-02002-5_10. url: http://dx.doi.org.libproxy.mit.edu/10.

1007/978-3-642-02002-5_10.

47

[29] Nicholas D Matsakis and Felix S Klock II. “The rust language”. In: ACM

SIGAda Ada Letters. Vol. 34. 3. ACM. 2014, pp. 103–104.

[30] Santosh Nagarakatte et al. “CETS: Compiler Enforced Temporal Safety

for C”. In: SIGPLAN Not. 45.8 (June 2010), pp. 31–40. issn: 0362-1340.

doi: 10.1145/1837855.1806657. url: http://doi.acm.org/10.1145/

1837855.1806657.

[31] Santosh Nagarakatte et al. “SoftBound: Highly compatible and complete

spatial memory safety for C”. In: ACM Sigplan Notices 44.6 (2009),

pp. 245–258.

[32] Weidong Shi, Chenghuai Lu, and Hsien-Hsin S. Lee. “Transactions on

High-Performance Embedded Architectures and Compilers I”. In: ed. by

Per Stenström. Berlin, Heidelberg: Springer-Verlag, 2007. Chap. Memory-

Centric Security Architecture, pp. 95–115. isbn: 978-3-540-71527-6. doi:

10.1007/978-3-540-71528-3_7. url: http://dx.doi.org.libproxy.

mit.edu/10.1007/978-3-540-71528-3_7.

[33] Zachary Stengel and Tevfik Bultan. “Analyzing Singularity Channel Con-

tracts”. In: Proceedings of the Eighteenth International Symposium on

Software Testing and Analysis. ISSTA ’09. Chicago, IL, USA: ACM, 2009,

pp. 13–24. isbn: 978-1-60558-338-9. doi: 10.1145/1572272.1572275.

url: http://doi.acm.org.libproxy.mit.edu/10.1145/1572272.

1572275.

[34] L. Szekeres et al. “SoK: Eternal War in Memory”. In: 2013 IEEE Sympo-

sium on Security and Privacy. May 2013, pp. 48–62. doi: 10.1109/SP.

2013.13.

[35] Jörg Thalheim et al. “Cntr: Lightweight OS Containers”. In: 2018 USENIX

Annual Technical Conference (USENIX ATC 18). USENIX Association.

2018.

48

[36] Xi Wang et al. “Towards optimization-safe systems: Analyzing the im-

pact of undefined behavior”. In: Proceedings of the Twenty-Fourth ACM

Symposium on Operating Systems Principles. ACM. 2013, pp. 260–275.

[37] R. N. M. Watson et al. “CHERI: A Hybrid Capability-System Architecture

for Scalable Software Compartmentalization”. In: 2015 IEEE Symposium

on Security and Privacy. May 2015, pp. 20–37. doi: 10.1109/SP.2015.9.

[38] Michal Wegiel and Chandra Krintz. “XMem: Type-safe, Transparent,

Shared Memory for Cross-runtime Communication and Coordination”.

In: Proceedings of the 29th ACM SIGPLAN Conference on Programming

Language Design and Implementation. PLDI ’08. Tucson, AZ, USA: ACM,

2008, pp. 327–338. isbn: 978-1-59593-860-2. doi: 10 . 1145 / 1375581 .

1375621. url: http://doi.acm.org.libproxy.mit.edu/10.1145/

1375581.1375621.

[39] Andrew Whitaker, Marianne Shaw, and Steven D Gribble. “Scale and

performance in the Denali isolation kernel”. In: ACM SIGOPS Operating

Systems Review 36.SI (2002), pp. 195–209.

[40] Dan Williams et al. “Device Driver Safety Through a Reference Validation

Mechanism”. In: Proceedings of the 8th USENIX Conference on Operat-

ing Systems Design and Implementation. OSDI’08. San Diego, California:

USENIX Association, 2008, pp. 241–254. url: http://dl.acm.org.

libproxy.mit.edu/citation.cfm?id=1855741.1855758.

[41] J. Woodruff et al. “The CHERI capability model: Revisiting RISC in an

age of risk”. In: 2014 ACM/IEEE 41st International Symposium on Com-

puter Architecture (ISCA). June 2014, pp. 457–468. doi: 10.1109/ISCA.

2014.6853201.

49

[42] Min Xu et al. “Towards a VMM-based usage control framework for OS

kernel integrity protection”. In: Proceedings of the 12th ACM symposium

on Access control models and technologies. ACM. 2007, pp. 71–80.

50

