
 

 

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY 

LEXINGTON, MASSACHUSETTS 

 
 
 Project Report

VLG-1 

Very Large Graphs for Information 
Extraction (VLG)

Summary of First-Year Proof-of-Concept Study

B.A. Miller
N.T. Bliss

N. Arcolano
M.S. Beard

J. Kepner
M.C. Schmidt

E.M. Rutledge

20 August 2013

Prepared for the Intelligence Advanced Research Projects Activity (IARPA) under  
Air Force Contract FA8721-05-C-0002. 

 
 

Approved for public release; distribution is unlimited. 





 

 

 

Very Large Graphs for Information Extraction (VLG) 
Summary of First-Year Proof-of-Concept Study 

B.A. Miller
N. Arcolano 
M.S. Beard 
J. Kepner 

M.C. Schmidt 
Group 53 

E.M. Rutledge 
Group 102 

N.T. Bliss 
formerly Group 110 

20 August 2013 

Massachusetts Institute of Technology 
Lincoln Laboratory 

Project Report VLG-1 

Lexington  Massachusetts

Approved for public release; distribution is unlimited. 



This page intentionally left blank.



EXECUTIVE SUMMARY

In numerous application domains relevant to the Department of Defense (DoD) and
the Intelligence Community (IC), data of interest take the form of entities and the relation-
ships between them, and these data are commonly represented as graphs. In its role as a
DoD-sponsored federally funded research and development center (FFRDC), MIT Lincoln
Laboratory (MIT LL) assisted the Intelligence Advanced Research Projects Activity (IARPA)
with independent scienti�c research and analysis of uncued detection techniques for anomalous
characteristics within massive graphs whose structure and content change over time.

Under the Very Large Graphs for Information Extraction (VLG) e�ort�a one-year proof-
of-concept study�MIT LL developed novel techniques for anomalous subgraph detection,
building on tools in the signal processing research literature. These techniques have the po-
tential to bring powerful new capabilities to the analytic workforce. This report documents the
technical results of this e�ort, many of which have been published in peer reviewed venues [1�6].
Under this e�ort, two datasets�a snapshot of Thompson Reuters' Web of Science database
and a stream of web proxy logs�were parsed, and graphs were constructed from the raw
data. From the phenomena in these datasets, several algorithms were developed to model the
dynamic graph behavior, including a preferential attachment mechanism with memory (where
the probability of new attachment is given by a linear combination of recent attachment rates),
a streaming �lter to model a graph as a weighted average of its past connections, and a gen-
eralized linear model for graphs where connection probabilities are determined by additional
side information or metadata. A set of metrics was also constructed to facilitate comparison
of techniques.

The study culminated in a demonstration of the algorithms on the datasets of interest, in
addition to simulated data. Performance in terms of detection, estimation, and computational
burden was measured according to the metrics. Among the highlights of this demonstration
were the detection of emerging coauthor clusters in the Web of Science data, detection of
botnet activity in the web proxy data after 15 minutes (which took 10 days to detect using
state-of-the-practice techniques), and demonstration of the core algorithm on a simulated 1-
billion-vertex graph using a commodity computing cluster.
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1. INTRODUCTION

In numerous applications, a set of relationships, connections, or transactions between
entities is considered, with the objective of �nding a small number of entities that are engaging
in some activity of interest. It may be desirable, for example, to �nd people in a social network
that exhibit unnoticed in�uence over many other people, or computers in a network that have
been infected by malicious software. Regardless of the speci�c application, the problem is
to detect and identify a set of entities that behave in a coordinated fashion that does not
typically appear in normal activity. The set of entities and relationships in these problems can
be represented as a graph.

Graphs are combinatorial mathematical objects, and have been used for hundreds of
years as abstract representations of relationships between entities. Recently, with the advent
of new data sources such as the world wide web and online social networks, graphs have
become increasingly popular in the representation of massive datasets, sometimes with billions
of entities. For datasets of these sizes, many of the traditional combinatorial graph algorithms
are intractable in practice.

Building on previous work on anomalous subgraph detection, Lincoln Laboratory con-
ducted a one-year proof-of-concept study to determine the capabilities and challenges in uncued
anomaly detection in massive graphs. Under this e�ort, large graphs were generated from two
data sources, and their phenomena were studied to incorporate models for their behavior into
the existing framework for subgraph detection. Challenges in data handling, algorithm devel-
opment, and the development of performance are documented in this report, in addition to
the demonstration of the new algorithms developed under this e�ort on the massive datasets
used.

The remainder of this report is organized as follows. The baseline algorithmic framework
for anomalous subgraph detection is presented in Section 2. Section 3 provides an overview
of the present study. The datasets used, algorithms developed, and metrics chosen are docu-
mented in Sections 4, 5, and 6, respectively. Section 7 demonstrates algorithms performance,
evaluated by the chosen metrics, on both simulated data and the real, large datasets prepared.
Section 8 provides a summary and outlines future work.

1
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2. SIGNAL PROCESSING FOR GRAPHS

To detect anomalous coordination in relational data, the entities and relationships are
represented as a graph. A graph G = (V,E) is a pair of sets, a set of vertices V denoting
entities, and a set of edges E, which represent relationships. We will refer to the problem
of detecting a subset of V that is engaged in anomalous behavior as the subgraph detection

problem.

The focus of a recent Lincoln Laboratory technical e�ort known as Signal Processing for
Graphs (SPG) is to develop a computationally tractable framework to address the subgraph
detection problem in large relational datasets. While the use of graphs to represent relation-
ships has become increasingly popular, the techniques for the detection of behavior of interest
within the larger set of relationships tend to be either designed for a speci�c application [7]
or use overly simple background models [8]. The purpose of this e�ort is to design a broadly
applicable framework that is agnostic to both the data model and the application space. This
will facilitate specialization of subgraph detection algorithms for diverse, speci�c application
requirements, as well as various data sources.

The framework developed under the initial, internally funded SPG e�ort uses spectral
analysis of graph residuals to determine the presence of an anomalous subgraph and locate
it within the network. Several algorithms were developed to detect subsets of vertices that
stand out from the �normal� background behavior, based on the expected value of the graph's
topology. The expected value is generated by �tting the observed data to a given model, and
several linear-algebraic algorithms were proposed for detection of anomalous subgraphs. In
this early work, the residuals model chosen was the modularity matrix [9], which considers
the �t of the graph to a model in which the probability of an edge occurring between two
vertices is proportional to the product of their degrees. Three increasingly complex algorithms
were developed for subgraph detection. The �rst considered the graph residuals matrix in its
principal two components, and performed a chi-squared test for independence in this space [10].
The complexity of this algorithm is dominated by computation of the eigenvectors, which costs
O(|V |+|E|) time. To detect smaller subgraphs, an algorithm was developed that considers the
L1 norm of the top k eigenvectors, and declares the presence of an anomaly if an eigenvector
of a certain rank, that has been unit-normalized in an L2 sense, has an exceptionally small L1

norm [11]. This allows detection of subgraphs that stand out in a single eigenvector, and costs
O(|E|k + |V |k2) time. A still more complicated algorithm uses sparse principal component
analysis (PCA) [12, 13], a statistical technique to �nd large variance in the space of a few
covariates, to �nd large residuals in the space of a few vertices [14]. This technique is much
more complex, costing O(|V |4

√
log |V |) for a constant error tolerance, but is able to �nd

outliers that do not stand out in a single eigenvector. Detection performance examples are
shown in Figure 1, demonstrating the ability of more complex algorithms to detect smaller,
subtler anomalies than the less expensive ones.

The techniques for anomaly detection in static graphs were extended to work with graphs
that have time-varying topologies. The concept of matched �ltering is applied in the context of
subgraph detection, using the weighted sum of residuals over time to boost signal power [15].
This approach allows the detection of anomalies that are not detectable in a given instance.
This is demonstrated in the results shown in Figure 2. Recall from Figure 1 that, using

3
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Figure 1. Performance of increasingly complex subgraph detection algorithms. In similar background
graphs, a chi-squared statistic computed in the principal 2 components of the residuals can detect a
12-vertex subgraph (top), while the L1 norms of the top 100 eigenvectors reveal the presence of an
8-vertex subgraph (middle), and sparse PCA enables detection of a 6-vertex subgraph (bottom).
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Figure 2. Detection performance in a dynamic graph using a matched �lter. Using the chi-squared
detection statistic, a densifying subgraph that reaches a density of 40% over 32 time samples is nearly
as detectable as a fully-connected subgraph in a static background.

the chi-squared detection statistic, a 12-vertex subgraph that is 75% dense is impossible to
detect. When knowledge of the dynamics of the subgraph is exploited, however, near-perfect
detection is achieved for a subgraph that reaches a maximum density of 40%. Thus, the
concept of temporal integration gain is applicable to the subgraph detection problem, just as
in other signal processing areas.
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3. STUDY OVERVIEW

The objective of this one-year study is to build upon the SPG framework, developing new
models and algorithms for large, dynamic graphs. Under the internal e�ort, the techniques
were extensively demonstrated in simulation, and on a few relatively small graphs derived
from real data. The purpose of the work described in this report is to study the properties of
real datasets, preferably with many millions of vertices, and have these properties inform new
algorithms that �t into the general SPG setting.

Two datasets were prepared, each of which contain information on entities and their
relationships. One dataset is a snapshot of Thompson Reuters' Web of Science, a document
database that contains a variety of possible graphs (e.g., citations between documents, coau-
thorship between people). The other dataset is a web proxy log, which contains the connections
made between an organization's internal computers and external web servers. In Section 4,
we detail the datasets and the D4M architecture used to store the data.

Based on graphs derived from these datasets, several algorithms were developed to model
the data using features other than degree (the feature used for the modularity analysis de-
scribed in Section 2). Properties of the large graph datasets, such as periodicity in the web
proxy logs and time-dependent preferential attachment in the citation graph from the Web
of Science, informed new algorithms to better model the data, and, thus, improve residuals
analysis. In addition, a generalized linear model was incorporated into the framework, to
account for vertex and edge attributes when modeling the probability of edge occurrences.
These models are outlined in Section 5.

When applying detection and estimation algorithms to large graphs, being able to eval-
uate performance objectively, consistently, and e�ciently is important. Thus, an additional
task under this e�ort is to document a set of metrics to be used for performance evaluation.
These metrics are presented in Section 6. Section 7 demonstrates the performance of the al-
gorithms, on both simulated graphs and graphs derived from the two real datasets, according
to the metrics chosen under this e�ort.

7
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4. DATASET PREPARATION

The purpose of this task was to prepare two large relational datasets for processing and
analysis. These datasets were to include temporal information, as dynamic data are of speci�c
interest, as well as additional vertex and/or edge metadata. Under this task, raw data is to
be preprocessed in a way that allows time-varying graphs to be constructed. New generators
are also to be developed for the purpose of Monte Carlo simulations within MIT Lincoln
Laboratory's (MIT LL) SPG detection framework.

Under this task, MIT LL received from IARPA one dataset in the form of a large
XML document. This document contained data derived from the Thompson Reuters Web of
Science database, which is a metadata and citation database for papers in the sciences, social
sciences, arts, and humanities with 42 million records from 1900 to present. Records within
this database are represented from over 12,000 journals and 148,000 conference proceedings
and typically include �elds such as author(s), title, publication date, type, document IDs for
works cited, and may also include a number of other �elds, e.g., subject area, institution,
keywords, abstract. This dataset was parsed and ingested into Accumulo triple store database
in the D4M (Dynamic, Distributed, Dimensional Data Model) format [16]. D4M is a compact,
composable associative array implementation in Matlab (or Octave) developed at MIT LL.
This format extends the notion of associative arrays, which are indexed by string keys rather
than integers, to large-scale distributed databases, taking the form of sparse matrices, as shown
in Figure 3. D4M uses an exploded schema, which pushes the values stored in a database
into the rows and columns of a large sparse matrix, and this allows easy computation of
graphs using matrix algebra on the extracted arrays, as demonstrated in Figure 4. As shown
in the �gure, a coauthor graph can be constructed by �rst extracting an array from the
database where the rows are of the form `docid/<identifier>' and the columns are of
the form `author/<name>', then taking the outer product of this array with itself. Using
this database and storage format, MIT LL derived time-varying graphs based on coauthorship
(with authors as nodes) and citation (with documents as nodes), see Figure 5. As demonstrated
by the statistics of the citation graph in Figure 6, this database contains information to create
dynamic graphs with many millions of vertices.

The second dataset was derived from web proxy logs, with the collection setup for an
initial ingest of 5 days' worth of data shown in Figure 7. The proxy logs contain 18 �elds,
including source and destination IP addresses, temporal data, and various additional metadata,
as described in Figure 8. The data were parsed and graphs were constructed in a similar fashion
to the Web of Science data, using source and destination IP addresses as vertex identi�ers.
Over the course of one month (September 2011), approximately 650 million records were
logged, with 9,753 unique source IPs and 215,271 unique servers, as shown in Figure 9. In
the web proxy data, there were also known incidents of malicious activity that can be used
as ground truth, which will be discussed further in Section 7. The two datasets combined
provide a diverse set of properties, as shown in Table 1, which is desirable since any algorithms
developed under this e�ort should be relevant to graphs from a variety of applications.

Interacting with the database presented signi�cant challenges due to the scale of the
problems addressed and the complexity of algorithms applied to the data. The triple store
format used by Accumulo, in conjunction with D4M, allows extremely fast data ingest (several

9



Figure 3. The D4M architecture treats large triple store databases as sparse arrays, allowing easy
extraction of graphs from heterogeneous datasets.

thousand inserts per second on each of 20 concurrent processes) and provides an easy interface
for users accustomed to working with sparse matrices. However, multiple times, the database
crashed and needed to be rebuilt. This appeared to be a resource allocation problem; it
seemed to occur mostly when the system memory was being signi�cantly taxed. Memory is
also an issue when working with local D4M objects (associative arrays). Adding associative
arrays incurs a large memory expense in terms of sorting the row and column keys in Matlab.
Working with large graphs is pushing these state-of-the-art tools to their limits, and memory
management appears to be the principal bottleneck, both when working with the database
and with local objects. Moving forward, awareness of these issues will be important, as will
working toward potential solutions. In addition, a development of truly parallel D4M-like
language and/or API will be necessary as increasingly large datasets are being processed with
increasingly complex algorithmic techniques.

10



Figure 4. The D4M exploded schema and associative array algebra. In the exploded schema (top), the
values in a triple store database are pushed into the row and column labels. To enable fast lookups
of both rows and columns, the transpose of the table is also stored. Graphs can be constructed easily
from the associative arrays (bottom) using linear algebraic operations on the arrays extracted from the
database.
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Figure 5. Types of graphs extracted from Thompson Reuters' Web of Science database.
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Figure 6. Statistics of citation graphs from the Web of Science database. Between 1900 and 2010,
the number of documents per year (top) increases signi�cantly, reaching about 2 million per year in
2009. The number of citations per document also increases over time. Over the entire dataset, the out
degree (number of references a document cites) and in degree (number of times a document is cited)
both follow power-law-like distributions, as shown in bottom left- and right-hand plots, respectively.
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Figure 7. Web proxy data setup and early ingest statistics.

Figure 8. Fields from web proxy logs and example entry values.
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Figure 9. Statistics from web proxy data over the course of one month. The number of records (top)
grows steadily over the 30 days, while most of the source IP addresses (middle) are encountered within
the �rst week. The number of server IPs (bottom) also grows more slowly as time progresses.
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TABLE 1

Properties of graphs derived from the two datasets.

Property Web of Science: Citation Web Proxy Logs

Number of Vertices 42 million 225 thousand

Number of Edges 500 million 650 million

Relationship �cites� �connects to�

Time Resolution 1 year 1 second

Bipartite no yes

Directed yes yes

Attributes categorical continuous

Ground Truth unknown known events
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5. ALGORITHM DEVELOPMENT

The purpose of this task was to expand upon previous algorithmic e�orts in the area
of uncued anomaly detection in dynamic graphs, and develop new algorithms informed by
datasets prepared under this e�ort.

Under this task, MIT LL developed two new algorithms to expand the previous modularity-
based analysis to include modularity of directed and bipartite graphs, as citation graphs are
directed and graphs from web proxy data are bipartite and directed. In addition, three new
behavioral models were proposed, with corresponding algorithms for anomaly detection. The
Web of Science data exhibited a preferential-attachment-like behavior, but one that depended
on the recency of the attachments, not simply the accumulated number of connections. The
correlation between citation records of di�erent years and a least-squares �t of the current
year's citation counts to those of the previous �ve years, shown in Figure 10, demonstrate this
phenomenon. A preferential attachment model with memory was developed that accounts for
this behavior, documented in [3].

Also, since the Web of Science is rich with metadata, a generalized linear model (GLM)
was developed in which edge probabilities are a function of a linear combination of metadata.
This approach leverages the fact that an attributed graph can be created with additional
information about nodes and edges, which could potentially enhance our ability to perform
inference on graphs. Speci�cally, for the citation graph, a model where the probability of an
edge existing between two vertices (that is, the probability that one document cites another)
is determined by the logistic function

g(x) =
1

1 + exp (−x)
applied to the weighted sum of categorical and real-valued attributes for each pair of vertices:
the subjects of the source and target vertex of the pair (categorical) and a real-valued constant
associated with each vertex. This technique fuses multiple random graph models and provides
a �exible approach to model graphs of various types with additional side information.

In the web proxy data, signi�cant periodic behavior was observed, predominantly due
to automated connections. This is exempli�ed in the connections made by a single server over
the course of a day shown in Figure 11. To address this issue, a model based on the weighted
average of previous connections was developed. The expected value of the current graph is
estimated as the weighted average of previous connections, i.e.,

E [G(t)] ≈
M∑

m=1

hmG(t−m).

Over all source�server pairs, a histogram of time di�erences between consecutive connections
is plotted in Figure 12, as well as the �lter coe�cients when �tted over 1 hour by minimizing

‖A(t)−
60∑

m=1

hmA(t−m)‖F (1)

over all values of h, where A(t) is the adjacency matrix of the web graph at time t with a
time resolution of 1 minute. Note that the larger values in the �lter occur at intervals that a

17
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Figure 10. Correlation of year-by-year citation records and a least-squares �t to previous citation
counts. The correlation heatmap (left) demonstrates the temporal dependence in citations, and a least-
squares �t of current citation counts to those in the last �ve years (right) con�rms this. Similar
shapes exist in the year-by-year least-squares �ts before 1945 (black) and since 1945 (red), with a phase
transition in between.

developer would be likely to hard-code as time to refresh a page (e.g., 10 minutes, 15 minutes,
30 minutes).

Computational complexity was the principal issue dealt with in the algorithm develop-
ment task. While modularity has a structure that is exploitable for residuals analysis (i.e., the
residuals matrix of a sparse graph is a sparse matrix plus a rank-1 matrix), this structure is
not always present. Of the three new models, preferential attachment with memory has this
form. For the other two models, exploitable structures were found and leveraged. For the
moving average �lter for adjacency matrices, the expected value term is sparse and can be
computed e�ciently, and even held in memory in its entirety. Also, while a generalized linear
model (GLM) can be arbitrarily complex, if attributes can be decomposed into categories
(low rank), attributes of individual vertices (also low rank), or attributes based on connection
history (either sparse or low rank), then a useful structure can be exploited to aid in the
estimation and analysis process. Exploiting the structure of the models yielded algorithms
with complexity linear in the number of edges. When evaluating algorithms in the context of
billions�or potentially trillions�of nodes, probabilistic structures that can be exploited for
e�cient computation will be of very high importance. Analysis of real data highlighted the
need for deeper study into e�ects of uncertainty on algorithmic and modeling performance.
While dynamic techniques allow for smoothing some of the noise, considering uncertainty in
signal processing context is likely to provide signi�cant insight into this issue.

18



Figure 11. Server connections for a single source. Periodic connections are highlighted in the legend.

19



Figure 12. A histogram of times between connections in a web proxy graph (left), and the associated
moving average �lter to predict new connections (right).
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6. METRIC DEVELOPMENT

The purpose of this task was to build a set of metrics used for algorithm evaluation.
These metrics should quantify performance both in terms of modeling and detection ability,
as well as algorithm scalability to extremely large datasets.

Under this task, metrics in three distinct categories were compiled: detection metrics,
which quantify detection performance in the presence of truth (or signi�cance of detected
subgraphs in its absence); estimation metrics, which evaluate the quality of a model's �t to
the data; and complexity metrics, which quantify the time and memory requirements of an
algorithm both empirically and theoretically. These metrics are listed in Table 2.

Issues involved in the development of metrics primarily extended from complexity issues
in algorithm development, i.e., the ability to apply metrics e�ciently using the new models.
While detection metrics are generally easy to apply to a variety of algorithms and datasets, and
computational complexity can be computed for any algorithm, estimation metrics are often
inherently tied to a particular type of algorithm or model. That is, while it may be feasible
to compute certain estimation metrics for some datasets or algorithms, it may be di�cult to
apply all estimation metrics to all cases. For example, in one model it may be computationally
tractable to compute a graph's likelihood, but not the spectral norm of its residuals matrix,
and in another model the opposite may be true. Thus, when comparing algorithms, it will
be important to avoid making apples-and-oranges comparisons and �nd a common point of
comparison for all algorithms (the ability to e�ciently compute estimation metrics will likely
be an important algorithm evaluation criterion). This also underscores the need for methods to
e�ciently characterize datasets in a way that allows performers and evaluators to understand
the implications that the data have on the evaluation process.

21



TABLE 2

Candidate detection, estimation, and complexity metrics.

Metric Description Comments

Probability of
Detection

Probability of
False Alarm

Given a threshold, the proportion
of detection statistics that fall
beyond the threshold when the
signal is present

Given a threshold, the proportion
of detection statistics that fall
beyond the threshold when the
signal is absent

Used when truth is available;
Sweep threshold to generate
receiver operating characteristic;
Aggregate statistics such as
equal error rate and area under
the curve provide algorithm
comparisons

Statistical
Signi�cance

Likelihood of �nding a given
subgraph (or a subgraph with the
same properties) via random
sampling of the graph

Used when truth is not
available

Spectral Norm
of Residuals

Frobenius Norm
of Residuals

Largest singular value of the
di�erence between the adjacency
matrix and its expected value

Sum of squared residuals across
all pairs of vertices

Linear algebraic metrics for
closeness of an observation to
its expected value;
Used for model �tting and as
detection statistics

Graph
Likelihood

Likelihood that the observed
graph would occur under the
assumed model

Used for parameter estimation
when �tting data

Reduced
Chi-Squared
Statistic

Average (normalized) squared
distance of observation from
the expected value

Used to compare �ts of di�erent
models to data

Variance of
Parameter
Estimates
from Samples

Measure consistency of parameter
estimates when trained on
di�erent portions of the data

Used when the model is �t
using a subset of the data

Asymptotic
Running Time

A tight bound (or upper and
lower bounds) on the order of
growth of the algorithm as dataset
size increases

Big-O (or big-Theta or big-
Omega) bound on complexity
(see [17])

Empirical
Running Time

Wall clock time to completion

Degree of
Concurrency

A measure of dependency between
portions of the algorithm

Measures �parallelizability� of
the algorithm

Parallel
Speedup

Factor that empirical (or
asymptotic) running time improves
when parallelized
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7. DEMONSTRATION

The purpose of this task was to demonstrate and evaluate the algorithms presented in
Section 5, using metrics documented in Section 6, run on datasets outlined in Section 4. This
section outlines the experiments run for this demonstration.

7.1 MODULARITY ANALYSIS OF WEB OF SCIENCE GRAPHS

After extracting the �rst two million records (chronologically ordered), the integrated
modularity of the citation and coauthor graphs was analyzed. At this point in time (the years
from 1900 to 1959), the citation graph consisted of 4,668,824 nodes, including documents in
the database and those cited by the included documents, and 549,726 unique authors [1]. The
modularity matrices were integrated as in Section 2 over a �ve-year window for each of the
graphs. The top 30 eigenvalues for each graph are plotted in Figure 13. In each plot, one
�ve-year window has a signi�cant increase in several of the eigenvalues, as indicated in the
�gure, and these windows were considered further.

The eigenspace of each graph for the indicated years contained some clutter, including
high degree vertices in the citation graph and large cliques in the coauthor graph. In addi-
tion to these less-interesting phenomena, however, emerging clusters were detected. Sparsity
patterns of the adjacency matrices of these subgraphs are shown in Figure 14. In the cita-
tion graph, on the top in the �gure, two subsets emerge with signi�cant internal connectivity.
These documents are primarily in the areas of biochemistry and microbiology, and focus on
the metabolic properties of acids and proteins. This subgraph increases its internal connec-
tivity gradually over the window, and the temporal integration applied to the modularity
matrices makes the subgraph as strong as a star graph (vertex with extremely high degree)
with twice as many vertices. The coauthor graph, on the bottom in the �gure, contains two
subgraphs whose density also increases over time, in this case pathology case records from
Massachusetts General Hospital published in the New England Journal of Medicine, and sim-
ilar documents in the newly founded American Journal of Medicine. This demonstrates sets
of medical researchers taking part in these cases and increasing their connectivity over time.
Again, temporal integration strengthens the subgraphs, making them as strong as cliques that
are 50%�100% larger.

Since there is no truth available in the Web of Science data, detection performance
was evaluated based on statistical signi�cance. In the coauthor graph, one million subgraphs
of the same size as the detected cluster were sampled by adding neighbors along a random
walk. The samples' integrated densities (weighted sum of volume of the subgraph) are plotted
against their normalized integrated densities (where the sequence of the subgraph's volume
is made to have unit norm) in Figure 15. Of the one million samples, only 428 fall near the
detected cluster (shown by the red dot in the green box), and all of the subgraphs within this
box stand out in the same eigenvector as the detected 32-vertex cluster. Thus, the detected
subgraph, coinciding with the inception of a major medical journal, is indeed an outlier among
the background of the coauthor graph.
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Figure 13. The 30 largest eigenvalues of integrated modularity matrices for the citation (top) and
coauthor (bottom) graphs derived from the Web of Science database.
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Figure 14. Emerging clusters from Web of Science graphs. The top sequence includes a set of biochem-
istry documents that gain signi�cant internal connectivity over time in the citation graph, while the
bottom sequence shows a subset of medical researchers whose collaboration in pathology cases increases
over time.

Figure 15. Integrated densities of one million samples from the coauthor graph. A detected cluster is
shown by a red dot in the upper right, a clear outlier, and only 428 of the 1 million samples fall within
the green rectangle surrounding this point.
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7.2 FITTINGWEBOF SCIENCEDATATOPREFERENTIALATTACHMENT

WITHMEMORY

The Web of Science citation network over the �rst 80 years was �t to the preferential
attachment with memory mechanism referred to in Section 5. This was compared to a standard
preferential attachment mechanism, where a document's attachment rate is based on the total
number of accumulated citations, and a model where both age and degree are considered
to model the citation rate. Results are presented in Figure 16. The values plotted are the
normalized variance (reduced chi-squared statistic), given by

1
|V |

|V |∑
i=1

(ki − λi)
2

λi
,

where ki is the in degree of vertex i and λi is its attachment rate. The values for preferential
attachment with memory are closer to 1, indicating that it is a better �t to the observed data
than the other models.

To evaluate detection performance using a graph with a preferential attachment with
memory (PAM) graph, a Monte Carlo simulation was run in which the background is a 2048-
vertex graph, generated by preferential attachment with memory over 16 samples. At the last
of the 16 samples, a signal may be embedded in which high-rate vertices swap their attachment
rates with high-degree vertices. As a detection statistic, the spectral norm of the residuals
matrix is used. Results are shown in Figure 17, with detection performance compared to
cases using residuals based on modularity, for either the current sample or the accumulated
graph. Using the true model improves residuals analysis, and the improvement in detection
performance is seen in the receiver operating characteristics. Performing spectral analysis
on the Web of Science citation network, �t to preferential attachment with memory with a
�ve-year history, yields singular values as shown in Figure 18. Times to completion for the
singular value decomposition are also shown in the �gure.

7.3 FITTINGWEBOFSCIENCEDATATOGENERALIZEDLINEARMODEL

The Web of Science data was also �t to the GLM, to demonstrate the impact of using
vertex metadata in modeling. Six covariates were used: �ve indicating the age of the document
being cited (0 years, 1 year, 2 years, 3�5 years, and 6�10 years), and one indicating whether or
not the two documents share the same subject. The model was trained on a random sample of
5,000 papers published in each year from 1900 to 1959, and 20,000 papers published within the
past 10 years (as candidates to be cited). The maximum likelihood estimate for the weights
for each covariate were estimated via an iterative procedure.

Estimates of the parameters over the course of the years is shown in Figure 19. The
red band in the top heatmap indicates that publishing in the same subject has a drastically
greater impact on citation probability than does a document's age. In the center and bottom
plots, the co-subject covariate is separated, showing a slight increase in the importance of the
recency of the cited document in 1945 (the year where the phase transition occurred in the
preferential attachment coe�cients), as well as a decrease in the importance of the document
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Figure 16. Comparison of model �ts to Web of Science citation network. The reduced chi-squared
statistic is plotted. In the top plot, the preferential attachment model with memory is compared to
a standard preferential attachment mechanism, using all previous attachments to generate new at-
tachment rates. In the bottom plot, preferential attachment with memory is compared to a model in
which age and degree are both considered, using the attachments that occur within the documents in
the database.
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Figure 17. Detection performance in a background that grows by preferential attachment with memory.
Performance is signi�cantly improved when the observed graph is �t to a preferential attachment with
memory model (bottom), rather than using modularity (top and middle).
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Figure 18. Spectral analysis of Web of Science residuals after �tting to preferential attachment with
memory. The top 10 singular values for each year are presented (left), along with the time required to
compute the singular values on a commodity machine (right).

being in the same subject. This demonstrates that metadata in addition to time and degree
are useful for probabilistic modeling of large graphs.

Detection performance using backgrounds derived from the GLM was also evaluated in a
Monte Carlo simulation. Residuals were analyzed using modularity, the GLM with estimated
parameters, and the GLM with true parameters. Results are shown for all cases in Figure 20.
In the top row, a 4-vertex clique is embedded into a 5-class random graph with 200 vertices
in each class. The probability of a connection between vertices in the same class is 0.0075,
and between vertices in di�erent classes it is 0.0025. From left to right, the probability of an
intra-subject connection is reduced to 0.005, and then to 0.0025, making the graph an Erd®s�
Rényi random graph. As the community structure decreases, the cluster becomes easier to
detect using the spectral norm of the residuals. Note that performance is the same using the
GLM whether parameters are estimated or given. In the bottom row, rather than embedding
a clique, 20 of the vertices are given the wrong class label. As the probability of inter-class
connection increases from 0.0025 (left) to 0.005 (center) to 0.0075 (right), the mislabeling
become more detectable using the same statistic. In all cases, �tting the observation to the
GLM yields performance at least as good as, and usually much better than, using modularity.
Note here that there is a performance di�erence between using true and estimated parameters,
likely due to additional errors in the estimation process due to the mislabeling.

Finally, the Web of Science citation graph was �t to an approximation to the GLM in
which the probability of citation is the product of (1) the citing document's rate of citing
others, (2) the cited document's rate of being cited, and (3) the rate at which documents of
the same subject as the citing paper cite documents of the same subject of the cited paper (i.e.,
a unique constant for each ordered pair of subjects). This allows an expected value matrix
whose rank is commensurate with the total number of subjects. A residuals analysis similar to
the previous modularity-based technique was performed, and �ve analytical chemistry papers
stood out signi�cantly in the residuals space, as illustrated in Figure 21. These documents
all have high degree, and to this data have accumulated thousands of citations, but they are

29



Figure 19. Covariate weights when �tting Web of Science to a generalized linear model (log base 10
scaling). Publishing in the same subject has a much greater impact that publishing recently, as shown
in the top plot. The rescaled heatmap in the center, with subjects on the bottom plot, shows a peak in
the importance of recency around 1945.
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Figure 20. Detection performance in a background generated by a generalized linear model. In a 5-class
simulation, the embedding of a 4-vertex clique (top row) is more detectable as the intra-class connection
probability is decreased (left to right), while the detection of mislabeled vertices becomes easier as this
probability is increased (bottom row, left to right).
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Figure 21. Documents detected through GLM-based residuals analysis. In the years from 1972 to 1976
(left to right), �ve analytical chemistry papers (squares in the center) stand out in the residuals space
due to being cited by many di�erent subjects (circles around the perimeter).

greater outliers than several papers with even greater degree. As shown in the �gure, these
documents are cited by papers in a wide variety of subject areas, and this signi�cant amount
of cross-subject citation boosts their strength. This demonstrates the impact of vertex and
edge metadata on detection results in the analysis of graph residuals.

7.4 EVENT DETECTION IN WEB PROXY DATA

After being parsed and inserted into Accumulo in the D4M format, the web proxy logs
were used to construct a time-varying graph with a resolution of one minute. A �lter was
constructed to �t the current connections to the previous one hour of activity according to
(1). The ratio of the Frobenius norm of the residuals matrix to the Frobenius norm of the
adjacency matrix over the course of one day is plotted in Figure 22. The spike in activity
at approximately 0400 is a strong outlier, making the residuals much stronger. Upon fur-
ther inspection, this point in time coincides with the connection of a computer to a server for
operating system updates, which concentrates residuals on a small subset of vertices. The sub-
traction of periodic behavior via the moving average �lter signi�cantly lowers the background
activity, thus making this activity much more prominent. As in the citation graphs, taking
into account past connections improves the ability to predict new ones, and, thus, enables
detection of other behaviors via residuals analysis.

In addition to the aforementioned coordinated behavior, which turned out to be innocu-
ous, there was a known instance of a botnet on one of the internal machines. The modularity of
the web proxy graph around the moment the infected computer was connected to the network
was analyzed, with the principal two-dimensional subspace de�ned by the left singular vectors
(sources) and right singular vectors (servers) are plotted in Figure 23. Before the infected
source is placed on the network, the residuals are presented on the top row. Speci�cally, in the
space of the sources (left), no vertex stands out exceptionally. Fifteen minutes after the com-
puter is connected to the network (bottom row), the infected node is signi�cantly separated
from the rest of the sources, and most of the outliers among the servers connect to this vertex.
The botnet caused the infected computer to connect to many servers with a small number of
incoming connections, and when the residuals space is integrated over 30 minutes, as shown
in the �gure, this behavior causes the infected source to stand out in the residuals space.
This separation occurred after 15 minutes of activity, while the botnet went undetected for 10
days until it was found by manual inspection of logs. This demonstrates the potentially vast
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Figure 22. Detection of coordinated behavior in web proxy data using a weighted average of past
connections. The highlighted spike in activity corresponds to coordinated activity between a few servers
and a single source.

improvement in the detection of coordinated behavior enabled by graph analytics. Overlayed
scatterplots of the 60 minutes preceding the moment plotted in Figure 23 are shown in Figure
24, indicating that the this botnet could be detected via analysis of residuals with very few
false alarms.

A log from a seized botnet was also used to generate foregrounds which, when embedded
into the web proxy graph, allowed Monte Carlo simulations to quantify detection performance
in the background. The organization of the botnet is presented in Figure 25. The log contains
44,448,856 records covering 19 days, and includes 667,029 unique source IP addresses (bottom
layer) and 10,207 unique repeater addresses. Fifty of the more active source IP addresses were
embedded into the web proxy log graph, and their residuals were integrated over a 24-hour
window. The embedding procedure caused a substantial di�erence in the L1 norm of one of
the singular vectors of the residuals matrix, as shown in Figure 26. This analysis is similar
to that performed in [11]. In the space of the singular vector with the anomalously small L1

norm, the sources with the embedded botnet tra�c are separated from the other nodes, as
also shown in the �gure. Running a simulation with 1,315 random embeddings into randomly
selected 24-hour windows, and detecting based on the largest deviation in singular vector L1

norms, detection performance is shown in Figure 27. The equal error rate is just under 20%,
which may be reduced if more sophisticated temporal integration is used (the present results
use a simple averaging �lter). This analysis allows detection performance to be quanti�ed in
a rigorous way, with the infected nodes being randomly distributed across the graph.
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Figure 23. Detection of botnet activity in web proxy logs. After the infected source is connected to
the network (bottom row), the infected vertex (highlighted in green) stands out in the residuals among
the sources (left column) much more than any vertex does before it is connected (top row). The space
of servers (right column) is also primarily dominated by servers to which the infected node connects
(highlighted in red).
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Figure 24. Residuals among sources for 60 minutes before the infected computer is connected. The
infected node, highlighted in red, stands out much more than any other node does over this time,
suggesting that it can be detected with few false alarms.

Figure 25. Organizational structure of a seized botnet.
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Figure 26. Detection of embedded sample from the seized botnet in a web proxy graph. The embedding
of a sample from the seized botnet log into a background graph created from the web proxy logs causes
one of the left singular vectors in the residuals matrix to have a very small L1 norm (top), which
indicates that the embedded subgraph is separable in the space of that vector (bottom).
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Figure 27. Receiver operating characteristic for the detection of a sample from the seized botnet em-
bedded into a web proxy graph.

7.5 COMPLEXITY ANALYSIS AND DEMONSTRATION AT SCALE

The detection algorithms presented in this report all rely on performing an eigendecom-
position on the graph's residuals matrix. Since, in the applications of interest, graphs are
typically sparse, k eigenvectors of a graph's adjacency matrix can be computed by an iterative
procedure (the Lanczos method) in O((|E|k+|V |k2+k3)h) time, where h is the number of iter-
ations, which depends on the smallest gap between consecutive eigenvalues. For most random
graph models, however, the residuals matrix is dense. Thus, for computational tractability, it
is important that these models have an exploitable structure that allows easy matrix-vector
multiplication (the primary driver of the Lanczos method's complexity for small k).

Classical modularity analysis bene�ts from the fact that the expected value matrix has
rank 1, and thus matrix-vector multiplication can be implemented as (1) multiplication by a
sparse matrix, (2) a vector inner product, (3) a scalar-vector product, and (4) a vector addition
[1]. Preferential attachment with memory has a similar structure, and thus computation
bene�ts from the same technique, with the asymptotic running time not changing from that
for the adjacency matrix. The moving average adjacency �lter, on the other hand, uses the
weighted sum of previous connections to de�ne the expected value. If most connections are
not seen over the course of the time window, the expected value matrix will also be sparse,
and the complexity will scale with the total number of connections seen over the time period
considered.

The generalized linear model does not, in general, have such an exploitable structure.
Maximum-likelihood training requires an iterative numerical approach. The cost at each iter-
ation is dominated by p2 vector-matrix multiplications by the n× n covariate matrices, for a
total cost of O(n2p2) per iteration. The complexity of residuals analysis is dominated by the
Lanczos-type spectral analysis, which requires p matrix-vector multiplications at each step,
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Figure 28. Running times of parallel computation of graph residuals.

at a cost of O(n2p) per iteration. As with modularity approaches, if the matrix of model
parameters has a low-rank structure, we can exploit it to improve computation. For example,
assume the p covariates for each edge are �categorical� covariates, i.e., binary indicators of
membership in one of p classes. Under this assumption, the sum of all covariate matrices
can be represented as a rank-p matrix, reducing the respective costs of training and analy-
sis to O(np3) and O(np2) per iteration. Also, exploitable approximations, such as the one
used at the end of Section 7.3, and simpli�ed approximations for parameter estimates, will be
extremely important in analysis of large networks using metadata for modeling.

To demonstrate that residuals analysis can be performed on graphs even larger than
those considered in this study, a parallel eigensolver for modularity-based residuals analysis
was implemented in SLEPc [6]. Eigenvectors were computed on simulated graphs, with sizes
from 220 to 230 vertices and an average degree of 8, distributed across 64 commodity machines.
Running times to compute 1, 10, and 100 eigenvectors are presented in Figure 28. Computing
1 eigenvector requires far less time than computing 10, while computing 100 requires only
slightly more time, due to the relatively large gap between the �rst and second eigenvalues.
On a 1-billion vertex graph, 1 eigenvector was computed in about 70 minutes, and 2 eigenvec-
tors required approximately 9 hours. This result, however, demonstrates that such residuals
analysis on gigascale graphs is possible, and can likely be done subject to application-relevant
latencies given more resources or possibly custom hardware.

7.6 DEMONSTRATION CHALLENGES

In the process of demonstrating the algorithms on the datasets, the most signi�cant
issues were computational complexity and the evaluation of detection performance in the
absence of ground truth. Algorithm complexity limited the capability to train the generalized
linear model (GLM), although more recent developments have signi�cantly reduced the time
required for training (as discussed in the previous subsection). The Web of Science citation
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graph was sampled for the purpose of training, and the parameters were cross-validated across
several samples. These samples were taken uniformly at random across source and destination
vertices for each year. While a more e�cient method of training was determined later, in
the course of future algorithm research, it is likely that some approaches will have complex
training procedures that will require sampling the network. Graph sampling is still an active
area of research, and additional work in which extremely large graphs are the data of interest
will need to consider sampling procedures developed/applied under the study and generate
new techniques.

When evaluating the signi�cance of detection results when truth is not available, sam-
pling is also used. Properties of the detected subgraph (such as the rate of densi�cation, as
shown in Figure 15) are compared to those of many randomly sampled subgraphs. Since, in
this case, the intention was to �nd gradually densifying subgraphs, the sampling method was
based on adding all neighbors of nodes along a random walk. For more complex behavior
patterns, however, other sampling methods will be necessary.

The application of the algorithms to the web proxy data utilized the presence of both
sparse truth data and domain expertise. The sparse truth data described four cyber events that
were used to both tune the algorithms and demonstrate their e�ectiveness. Domain expertise
was used after the identi�cation of other statistical anomalies to distinguish which anomalies
corresponded to previously unknown truth events. In future e�orts, collaboration with domain
experts will be vital in order to evaluate the cues identi�ed by the uncued statistical techniques.

A majority of the algorithms developed under the VLG study have linear computational
complexity (commonly in number of relationships or edges). Even with e�cient algorithms,
however, computational limitations were commonly encountered. As previously mentioned,
a parallel expressive associative array API will be necessary to support increasing problem
scales. However, those will only improve capability (i.e., the ability to process large datasets)
and not e�ciency. Observed e�ciency for graph and sparse array computations was often
on the order of 10−3�10−5. This number is only expected to get worse as more complex data
structures are analyzed (increased number of attributes, probabilistic graphs, etc.). To address
this, full system designs (coupled across hardware, software, algorithms, and data) will have
to be considered.
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8. SUMMARY

This report documents novel algorithmic developments in the analysis of massive dy-
namic graphs, all informed by real data. One data source is Thompson Reuters' Web of
Science database, which is used to build citation and coauthorship graphs. The other source
is web proxy logs, which are used to build a bipartite graph of computers connecting to web
servers. Based on phenomena observed in the data, three new models for graph behavior
were developed: a preferential attachment mechanism with memory, a weighted average of
the previous connections in a stream of graphs, and a generalized linear model for modeling
based on attributes. These algorithms have been demonstrated on the datasets of interest, and
have proven, both in simulation and in real networks, to enhance detection performance when
incorporated into the model for graph residuals. Empirical results include the detection of a
botnet (after 15 minutes of activity) in the web proxy log, which, using current techniques,
took 10 days to detect.

An ongoing follow-on study aims to expand this work by incorporating uncertainty into
the graph analytics. This will allow the fusion of multiple observations, each with di�erent
trust levels, and to quantify the impact that this has on subgraph detection. Other avenues
of investigation include continuing to scale to larger graphs, and documenting properties of
graphs in a variety of application domains, allowing for algorithm development that spans the
space of graphs in many dimensions.
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