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EXECUTIVE SUMMARY

In numerous application domains relevant to the Department of Defense (DoD) and the
Intelligence Community (IC), data of interest take the form of entities and the relationships be-
tween them, and these data are commonly represented as graphs. In its role as a DoD-sponsored
federally funded research and development center (FFRDC), MIT Lincoln Laboratory (MIT
LL) assisted the Intelligence Advanced Research Projects Activity (IARPA) with independent
scientific research and analysis of uncued detection techniques for anomalous characteristics
within massive graphs in which structure and content change over time, and observations may
be uncertain or corrupted.

As part of the Very Large Graphs for Information Extraction (VLG) technical effort, MIT
LL performed a second one-year proof-of-concept study on the impact that various uncertainty
mechanisms have on detection performance within Lincoln Laboratory’s Signal Processing for
Graphs (SPG) framework. Several models for data corruption and obfuscation are proposed,
including models from the open literature and several inferred from experience with real graph
data. Mechanisms include loss of information, edges observed in error, and confusion of vertices
with those having similar metadata. The quantitative impact of each uncertainty mechanism
on detection performance is demonstrated in simulation, with analytical results provided for
simpler models. In addition, a data framework was developed to evaluate the quantitative
differences and similarities between network datasets, to ensure proper data diversity in future
experiments considering multiple target datasets. Under this study, several application datasets
available in the public domain were characterized in this framework. Finally, it is demonstrated
that the key kernel in the SPG framework can be applied to a four-billion-vertex graph and
complete in under five minutes when run on a large supercomputing cluster.

The outcomes of the experiments and data characterizations lead to the recommendation
that future work use models for simulation that incorporate community structure into the
background, and to emphasize techniques that enable a simple scheme for multi-observation
fusion, allowing for different data with different uncertainty to be combined in a way that
enables an increase in performance without making significant assumptions about the under-
lying model. To ensure that algorithms developed in future efforts can handle diverse data, it
is recommended that both a fast-moving transaction dataset and a slower social dataset be
used in future experiments, with different characteristics in their distributions of clustering
coefficient, PageRank and eigencentrality, as these are the most prominent differences among
the several real datasets analyzed.

il
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1. INTRODUCTION

Many applications of interest involve relationships, connections, or transactions between
a large set of entities. In particular, detection of interesting sets of such pairwise interactions—
those that warrant deep investigation—within a large volume of data is a key problem in many
Lincoln Laboratory mission areas. For example, it would be desirable to detect computer
network traffic that is consistent with botnet activity, or people in a social network planning
a nefarious activity. In these applications and many others, the relational data of interest are
manifest in a graph.

Graphs are a common mathematical representation for relational data, and have recently
become extremely popular for encoding relationships in the vast array of data available via
web crawls and online social networks. Working with graph data of these sizes, however, leaves
many canonical algorithms impractical for use, especially in data with short time constraints.

With this in mind, MIT Lincoln Laboratory (MIT LL) developed a new technical area
called Signal Processing for Graphs (SPG), and a spectral framework for uncued detection of
anomalous subgraphs [1-4|. Building on this framework, MIT LL carried out a one-year proof-
of-concept study to determine the capabilities and challenges in the detection of anomalies in
extremely large graphs [5]. Under this effort, two real datasets were considered, and algorithms
for data modeling and anomaly detection were developed based on the phenomena observed in
those data. This study demonstrated the ability to discover botnet traffic within a set of web
proxy data when state-of-the-practice techniques left this activity undetected, and showed
the capability of performing a key algorithm on a billion-vertex graph using a commodity
computing cluster.

In a second one-year study, MIT LL considered the impact of data uncertainty and
corruption on detection performance using this framework. The notion of how to properly
sample a graph has been considered in the recent past [6], but the recent increase in research
on social networks is beginning to drive new work on the impact of noise, uncertainty, and
corruption in graphs in the social sciences [7] as well as the mathematics, statistics, and
computer science communities [8-12]. This is an area that is starting to gain traction among
network science researchers, and it is important to understand the implications of noise and
uncertainty on the SPG subgraph detection framework. This report documents the models
for data uncertainty used, and their impact on detection performance. Models from the open
literature are considered, as well as models intuited from experience with real datasets. In
addition, a data characterization framework was developed to determine features of datasets
that will allow verification that datasets used in practice cover the relevant graph characteristic
space.

The remainder of this report is organized as follows: Section 2 provides an overview of
the present study. Section 3 documents the models used for the underlying graph data and the
uncertainty mechanisms. The impact of these mechanisms on detection performance is shown
in Section 4. Analysis of real data is provided in Section 5, and the data characterization
framework is presented in Section 6. Section 7 provides a summary and outlines future work.
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2. STUDY OVERVIEW

The present study is a follow-on of the first Very Large Graphs for Information Extrac-
tion (VLG) study [5], which focused on scaling algorithms developed under the SPG effort to
large, dynamic graphs derived from real datasets. The objective of the new one-year study is to
quantify the change in graph data due to various uncertainty mechanisms, such as missing data
and noisy data. Understanding the effects of such mechanisms on detection performance is
required in a well-defined experimental framework for the detection of anomalies in very large
graphs. This study is intended to inform future development of large-scale systems for subgraph
detection, taking into account uncertainty in the data.

Several models for data uncertainty are considered in the experiments documented here.
These include missing edges, missing vertices, random insertion and removal of edges, a
propagation-based sampling approach, and an approach based on similarity of vertex meta-
data. These models are described in Section 3.

In simulation, detection performance was evaluated with these uncertainty mechanisms
in place. Each mechanism has a distinct impact on detection performance, and it is demon-
strated that fusion of multiple corrupted observations can achieve the same performance as
when no uncertainty mechanism is used. Performance in simulated weighted graphs is also
explored, demonstrating that thresholding based on weights may severely reduce detection
performance. These results are detailed in Section 4.

In the same real datasets as the prior study, mechanisms for error in the derived graphs
were inferred, informing or confirming some of the proposed models (in particular random
missing edges and the mechanism based on vertex similarity). Also, simulated uncertainty
mechanisms were applied to the Web of Science data, demonstrating phenomena similar to
what is seen in very simple models for random graphs. These results are presented in Section 5.

A data framework was also developed in order to understand the varying dimensions of
characteristics of very large graphs. A baseline set of characteristics was proposed, and several
real datasets from publicly available research repositories were characterized with respect to
this set, demonstrating the features that vary most greatly from network to network. Simulated
graphs were also generated, which match the real graphs in many of the chosen characteristics.
Building on the prior effort, additional parallel processing software was developed, enabling
fast computation of the principal eigenvector of the residuals matrix of a four-billion-vertex
graph on a supercomputing cluster in under five minutes. The results of this analysis are shown
in Section 6.
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3. MODEL DEVELOPMENT

The purpose of this task was to develop statistical models for graph uncertainty that
can be used in simulation to demonstrate the effect of uncertainty on detection performance
in the SPG framework. In this section, the kinds of uncertainty of interest in this context are
outlined, and several models are proposed.

There are a few dimensions to uncertainty in this context, as outlined in Table 1. In any
scenario in which graph data is of interest, there is a true (or “latent”) network representing the
relationships interesting to the analyst. However, this graph may not be observable, and the
observed graph may not match exactly with the relationships of interest. For example, if the
relationship of interest is “are friends,” this would be impossible to verify for an extremely large
network. Using a proxy for friendship, such as being connected on an online social network like
Facebook, makes the collection tractable, but not entirely accurate (not everyone is a member
of Facebook, some members may connect with casual acquaintances as well as friends, etc.).
This sort of uncertainty is referred to as “observation mismatch.” In addition, random errors
may occur in the collection process, which is called “collection uncertainty.” Either kind of
uncertainty may impact the observed vertices or edges.

3.1 LATENT GRAPH MODELS

Several models have been used under the VLG and SPG efforts as data generators. Some
key generative models are:

e The Chung—Lu model gives each vertex a weight, and the probability of an edge between
to vertices is the product of their weights. This model is used to create graphs with a
given degree distribution, but cannot create community structure.

Uncertainty Type Description Example

Graph encoding true

Latent Graph relationships of interest

Friendship network

Difference between
Observation Mismatch observable and desired
relationship

Observable proxy to
friendship, e.g., Facebook

Errors due to
Collection Uncertainty imperfections in the
collection process

Sensor noise
Entity extraction errors

Uncertainty regarding
Vertex Uncertainty an entity’s true identity | Ambiguous names
and attributes

Uncertainty regarding
Edge Uncertainty correctness of
observed connections

Edge connected to the
wrong person/document

TABLE 1

Dimensions of uncertainty in graphs.



Figure 1. Adjacency matrices for candidate latent graph models: Chung—Lu (left), Stochastic Blockmodel
(center), and R-MAT (right).

e The Stochastic Blockmodel creates a graph with community structure, where each vertex
is assigned to a community and edge probabilities vary between pairs of communities.
This model can create strong community structure, but does not create skewed degree
distributions, which are often seen in real graphs.

e The Stochastic Kronecker Graph family of graph models, such as the Recursive Matrix
(R-MAT) model, defines edge probabilities in a recursive manner by splitting the graph
in half, defining edge probabilities within and between each half, and recursing within
each of those possible subsets. This creates graphs with a fractal-like structure, and mild
community structure in addition to skewed degree distributions.

Sparsity patterns of the adjacency matrices of these graphs are shown in Figure 1.

In the previous VLG study, a model was suggested for incorporating vertex metadata into
edge probabilities. This was a generalized linear model (GLM) that modeled edge probabilities
in a logistic regression framework, in which the probability of an edge from vertex i to vertex
jis

1
1+ exp <—x£ ) ’

where z;; is a vector of attributes associated with vertex pair (i,j), and S are weights.
Fitting this model to real data, however, is too computationally complex for extremely large
graphs. Putting some restrictions on the types of attributes (specifically, allowing vertex
attributes and categorical vertex-pair attributes), and assuming that the graph is sparse,
this model can be modified such that analysis is tractable for very large graphs [13]. One
possible parameterization of this model allows for community structure and skewed degree
distributions, thus enabling a generative model with characteristics seen in real networks.
Detection performance in using this model as a dynamic background is shown in receiver
operating characteristic (ROC) curves in Figure 2, which also demonstrates the impact of
model mismatch.

Pij =
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Figure 2. Detection performance in a dynamic attributed graph. A much weaker subgraph is detectable
when considering both dynamics and community structure than when considering either property alone.



3.2 UNCERTAINTY AND CORRUPTION MODELS

The latent graph is observed through some imperfect mechanism, which is modeled as
the addition and removal of vertices and edges. The uncertainty mechanism models used in
the experiments in this report are the following:

Uniform Edge Removal This mechanism is relatively simple: each edge that exists in the
latent graph is observed with a fixed probability p, and no false edges are observed.
While simple, this model has the advantage of enabling some theoretical analysis (see
Section 4.1) and being consistent with one application-specific form of data loss (see
Section 5.2). This model is equivalent to performing an entrywise logical AND of the ad-
jacency matrices for the latent graph and an Erdés—Rényi random graph with probability
parameter p.

Uniform Edge Error This model considers every pair of vertices in the graph, and creates
an “edge error,” i.e., a missing edge or a false edge. This is equivalent to performing an
entrywise logical XOR of the adjacency matrix for the latent graph and an Erdés—Rényi
random graph with probability parameter p.

Degree-Biased Edge Error This model is a modification of the previous algorithm that
normalized the number of edges per vertex based on the vertex degree. That is, the
expected number of edge errors associated with a given vertex is proportional to the
number of edges adjacent to that vertex. This model is equivalent to performing an
entrywise logical XOR of the adjacency matrix for the latent graph and a Chung-Lu
random graph where the weight of each vertex is proportional to its degree.

Observed Subgraph In some cases, some of the vertices in a graph will not be observable.
This mechanism allows observation of the induced subgraph of the latent graph of
a randomly selected subset of vertices (i.e., the selected vertices and all connections
between them). This is similar to egocentric sampling |7].

Snowball Sampling A network may be estimated by sampling a few vertices, then recursing
on their neighbors. This simulates sampling by, for example, forwarding surveys [7]. Each
vertex is randomly assigned a probability of “forwarding” the sampling algorithm, and,
upon being chosen, selects a subset of its neighbors to also be included in the sample.

Similarity-Based Uncertainty An error mechanism seen in real data (see Section 5.1) is
confusion between vertices with similar metadata. This mechanism is modeled by a
stochastic matrix S that is based on a similarity measure between all pairs of vertices.
The ¢jth entry in the matrix, s;; represents the probability that vertices i and j will be
confused for one another when the graph is observed (or, for ¢ = j, the probability that
the correct vertex will be recorded). In this model, the expected value for the observed
graph, given the true graph with adjacency matrix A, is ST AS.

Any of these mechanisms may model either observation mismatch or collection error, and the
choice of the proper uncertainty mechanism will likely be application specific.



3.3 CHALLENGES AND RECOMMENDATIONS FOR FUTURE WORK

The primary lesson learned from the model development task is to use a model with
community structure, as most real networks have. As discussed in Section 6, the Block Two-
Level Erdés—Rényi (BTER) model is good for simulation of graph with this property. However,
a Chung-Lu/Stochastic Blockmodel hybrid can allow incorporation of additional attributes,
which may be of interest. In terms of uncertainty models, a reasonable model for uncertainty
in the context of a dataset can be inferred, as discussed in Sections 5.1 and 5.2. This may
be a moot point, however, since the latent graph can be recovered via weighting without
considering the specific mechanisms. On the other hand, knowledge of the mechanisms may
give an indicator of the reliability of the source. These phenomena are discussed in Section 4.
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4. LOSS QUANTIFICATION

The purpose of this task was to quantify the loss in performance when the uncertainty
mechanisms are applied in the observation process. In particular, the impact on detection
performance and parameter estimation are of interest.

Under this task, several experiments were performed to demonstrate both the negative
impact of data corruption on detection and estimation algorithms and the improvement in
performance that can be gained via fusion of multiple observations.

4.1 ANALYSIS OF UNIFORM EDGE REMOVAL

As a first experiment, the SPG detection framework was applied to an R-MAT back-
ground graph, possibly with a small cluster embedded. Before being received by the processing
chain, the uniform edge removal model was used to simulate missing data. To simulate model
mismatch, it was assumed that the background was generated by a Chung—Lu model rather
than the R-MAT model. Detection performance is shown in Figure 3, using an algorithm based
on a projection of the graph residuals into two dimensions [1]. While there is a performance
loss due to model mismatch, as demonstrated in the figure, this does not account for the
additional loss in performance due to the uncertainty mechanism, as shown in Figure 4.

Considering a simpler background model explains the cause of this loss in detection
performance. If an Erdés—Renyi background graph were used, all pairs of vertices would have
the same probability p of sharing an edge, and thus the residuals matrix of this graph has an
eigenvalue distribution that tends (as the number of vertices goes to infinity) to a semicircle
with radius proportional to the standard deviation of the entries', i.e., v/p(1 — p). If the graph
is sparse, p will be close to zero, and the largest eigenvalues will scale roughly proportionally
to \/p. This is demonstrated in Figure 5, with semicircles of Erdés-Rényi graphs shown on
the righthand plot. While the Chung-Lu model allows edge probabilities to vary between
different pairs of vertices, there is similar scaling of the maximum eigenvalue with respect

R-MAT fit to Chung-Lu R-MAT fit to R-MAT Chung-Lu fit to Chung-Lu
.F T T I WF T T I T T
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Figure 3. Detection performance with uniform edge removal. When detecting the presence of a cluster
embedded into an R-MAT background, fit to a Chung—Lu model, performance is shown on the left.
There is a reduction in performance due to model mismatch, as demonstrated by fitting the R-MAT
background to an R-MAT model (center) and a Chung—Lu background to a Chung—Lu model (right).

! See, e.g., http://mathworld.wolfram.com/WignersSemicircleLaw.html
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Figure 4. Detection performance with a stronger foreground. When the strength of the foreground
increases, detection performance is similar to cases without model mismatch shown in Figure 3.

to the observation probability (lefthand plot). Since the foreground power is characterized
by the eigenvalues of its adjacency matrix rather than its modularity matrix, it will scale
proportionally to the observation probability, thus causing lower detection performance as its
power is reduced more quickly than that of the background.

4.2 FUSION OF MULTIPLE OBSERVATIONS

While uncertainty in data can quite negatively impact detection performance, fusing
multiple corrupted observations may allow some of this loss to be regained. As notionally
depicted in Figure 6, it is desirable for the framework to accept several observations, possibly
with significantly different uncertainty mechanisms, and analyze the resulting data with an
increase in detection and inference ability.

Fusion of multiple observations was considered in two categories. In one case, distribu-
tions of the observations are assumed and the expected loss (e.g., number of edge errors) is
minimized. In the other category, no prior knowledge of the distributions of the observations is
assumed, but each observation has a weight corresponding to its “reliability.” In simple cases,
such as an Erdés—Rényi graph with uniform probability of error, the former kind of Bayesian
analysis may be tractable, as shown in Figure 7, but it can become much more complicated
with more sophisticated models for error.

The ability to recover detection performance with a weighting scheme is demonstrated
in the following set of simulations. The simulation setup is similar to that in Section 4.1. As
shown in Figure 8, each error mechanism has a unique impact on detection performance. Each
mechanism was set to create 20% edge errors, i.e., the number of false edges plus missing

12
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complicated structure, its mazimum eigenvalues also tend to scale proportionally to the square root
of the observation probability (right).
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Figure 6. Notional diagram of multi-observation fusion. A desirable outcome of this study is a
demonstrated ability to fuse multiple corrupted observations and provide an increase in detection
performance.
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Figure 8. A comparison of the impact on detection performance in simulation using each uncertainty
mechanism. Each mechanism was tuned to create 20% edge errors in expectation.

edges is 20% of the total number of true edges, in expectation. Uniform corruption leaves
performance roughly equal to uncorrupted detection performance, since the errors do not
correlate and are less strong than the embedded cluster. Degree-biased edge errors cause some
loss in performance, since they somewhat correlate with the background noise. Similarity-based
errors degrade performance slightly more, and random edge and vertex removal seem to cause
quite similar reductions in performance. The mechanism that causes the greatest reduction in
performance is snowball sampling.

Observations from four mechanisms (uniform deletion, degree-biased edge errors, snow-
ball sampling and similarity-based errors) were fused in an attempt to recover detection
performance. Using a simple fusion method in which all edges are considered only matched
performance of the highest-performing observation (though there is often an increase in per-
formance if only mechanisms that remove, but do not add, edges are considered). Weighting
each observed graph in accordance to its individual performance, however, allows recovery of
performance on the latent graph itself, as shown in Figure 9.

Additional cases were considered in which less redundant data were available. In these
scenarios, a graph corrupted via degree-based corruption with an average edge error of 50%
was fused with another graph with 20% edge errors, either with similarity-based errors or
uniform edge removal. As demonstrated in Figure 10, the case of fusion with similarity-based
errors recovers equivalent performance with the latent graph, while fusion with a graph with
uniform edge removal, which has a much more substantial impact on detection performance,
yields a slightly lower probability of detection. Thus, even using relatively little data, the
performance lost to various error mechanisms can be regained through the simple weighting
scheme employed here.
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Figure 9. Detection performance when fusing four observations via a weighted combination. Simply
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weighted combination of all observations recovers detection performance with no uncertainty mechanism
in place.
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Figure 10. More difficult cases of multi-observation fusion. A graph with greater degree-based corruption
is fused with a graph with similarity-based errors (left) and uniform edge removal (right). Fusion with
the graph with similarity-based errors recovers equal detection performance to the latent graph, while
fusion with the graph with deleted edges yields a small gap in performance.
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Figure 11. Distributions of edge weights for simulation. The edge weights for the background follow
a beta distribution (left), while the foreground weights may have either a beta, uniform, or delta
distribution (right). In all cases, the expected edge weight is 0.8.

4.3 IMPACT OF THRESHOLDING EDGE WEIGHTS

One potential concern when considering graphs with uncertainty is how to threshold the
graph, i.e., how much confidence there must be in the existence of an edge before considering
the edge to exist. An experiment to that effect was performed, with results indicating that a
weighted, rather than thresholded, graph should be used in the analysis process. The same
background and foreground as in Section 4.1 is used, and edges are given a weight according
to the beta distribution shown in Figure 11. The foreground graph is given weights from three
distributions with the same expected value, also shown in the figure. The change in detection
performance for the different edges’ weighting schemes is displayed in Figure 12. There is a
small but appreciable difference in detection performance when including the edge weights, up
to a 5% increase in probability of detection for a given false alarm rate.

When a graph with weighted edges has those weights thresholded, on the other hand,
the difference in performance is much more significant, as shown in Figure 13. When the
foreground and background come from the same distribution, there is a substantial decrease
in performance. By the same logic as the case explored in Section 4.1, this is because the
foreground power is being reduced at a greater rate than the background power. When the
distributions differ, weighting can actually be beneficial to performance, as also shown in the
figure. In the case where the threshold is set below the lower bound of the support of the
foreground weight distribution, there can be a boost in performance, as background activity
will be reduced. This is unlikely to be known in practice, however, and an error in such a
judgement call may have a substantial negative impact on the ability to detect anomalous
subgraphs.

4.4 CHALLENGES AND RECOMMENDATIONS FOR FUTURE WORK

One significant challenge in loss quantification is evaluation of the impact on parameter
estimation. Uniform edge removal has the advantage of only removing data, and removing
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data equally across the graph. Thus, the impact is that edge deletion is commensurate with
the loss of data due to the missing edges. This is also true when only a subset of vertices
are observable. However, for random corruption models, the uncertainty mechanism presents
a challenge for the estimation procedure, requiring iterative estimation procedures that may
not scale to sizes of interest.

Given the difficulty in estimating parameters in the presence of uncertainty mecha-
nisms, and the ability to detect in weighted graphs (and in particular those obtained through
multi-observation fusion), the most appropriate algorithms when operating on extremely large
graphs should not rely on detailed knowledge of the uncertainty mechanism, but rather fuse
observations via a simple weighting scheme?, which has been shown to be effective in this
study.

In practice, edges are often chosen or disregarded depending on the confidence of an
analyst in the veracity of the data. As discussed in Section 4.3, however, this has the potential
to drastically degrade detection performance if there is not accurate prior knowledge of the
distribution of edge weights (or, in some cases, even if those distributions are known perfectly).
This suggests that evidence of the presence of an edge should be weighted by confidence in
the observations (similarly to the multi-observation fusion example), to avoid disregarding
information that could substantially improve signal detectability.

2 The weighting scheme used here is to apply the logistic function f(z) = 1/(1+e™") to the sum of weights
corresponding to existence of edges from different observations. That is, if an edge between i and j exists in
observation o (i.e., aj; = 1), then weight w, will be included in the sum. Thus, an edge in the resulting graph
has weight f (Zo afjwo) if it exists in any of the observations.
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5. DATA ANALYSIS AND MODEL REFINEMENT

The purpose of this task was to analyze real datasets to determine the applicability of
the uncertainty mechanisms to real, dynamic graph datasets. This involves considering known
errors in the data, and applying the uncertainty mechanisms to the data, treating the observed
graph as “truth,” and determining the impact on detection and estimation performance.

Under this task, errors in the Web of Science data and the web proxy logs were analyzed
to understand the way in which uncertainty manifests itself in real data. These errors informed
some of the models presented in Section 3. In addition, uncertainty mechanisms were applied
to the Web of Science data to determine the impact of these models on real datasets.

5.1 ERRORS IN WEB OF SCIENCE

Upon initial investigation in the Web of Science database, one particularly egregious
error that came up relatively frequently was the citation of documents several decades in
the future. Considering these edges in particular allowed insight into uncertainty and error
mechanisms in this real dataset. Three distinct forms of error were observed in the data. One
mechanism involved several documents in 1997 being cited by documents in the 1970s. While
this provided an interesting case study of error correction using a few simple D4M (Dynamic
Distributed Dimensional Data Model) commands, there was not much useful information that
could be gleaned from the context of these errors. The document identifiers were not similar,
nor was any other vertex metadata. Another common error is two vertices that have the
same document identifier. A mechanism like this can be modeled similarly to the similarity-
based uncertainty mechanism, with simple random edge rerouting. Finally, one error category
inspired the similarity-based uncertainty mechanism described in Section 3. This involved
records pointing to other database entries that matched (1) the last two digits of the year, (2)
the page number, (3) the journal volume, and (4) the first four letters of the first author’s last
name.

5.2 ERRORS IN WEB PROXY LOGS

The most apparent source of error in the web proxy logs is occasional loss of connectivity.
At various points in the available data, there is no traffic recorded for several minutes at a
time. The result of this is an uncertainty mechanism like uniform edge deletion, assuming that
the connections made in the time periods in which data are missing is representative of the
overall traffic patterns.

5.3 UNCERTAINTY MECHANISMS APPLIED TO WEB OF SCIENCE

In the previous study, some interesting emergent behavior was found surrounding the
year 1976 in the Web of Science citation graph, involving analytical chemistry papers receiving
significant cross-subject citations. Uncertainty mechanisms were applied to the citation graph
around this period in time, to determine the impact of these mechanisms on a real dataset. In
particular, uniform edge removal and uniform edge error were applied to the data. In the case of
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Figure 14. Example error in Web of Science database.
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Figure 15. Singular values of Web of Science citation graph with randomly removed edges. Note that
the “radius” of the distribution when half of the edges are removed is reduced by approrimately a factor
V2, as in an Erdés-Rényi random graph.

uniform edge errors, no significant difference was seen in the resulting spectral space, since the
random error edges were quite weak in comparison to the actual background. When random
edges were removed, while the subgraph was still detectable due to its strength, there was a
similar scaling of the eigenvalue distribution as was seen in the Erdés—Rényi case. As shown
in Figure 15, the distribution of the singular values of the integrated residuals matrix when
half of all edges are removed contracts by approximately a factor of % This demonstrates a
case in which missing data impacts the background power just as it does in a simple simulated
background.

Another experiment was run in which the uniform corruption mechanism was applied
to a subset of the Web of Science, and the task was to recover the original graph. Three
observations were made: one with 0.1 errors per vertex, one with 1 error per vertex, and one
with 10 errors per vertex. Results are shown in Table 2. Empirical risk minimization assumes
all observations are equally good, and thus provides an estimate close to the one with many
errors per vertex. By weighting the estimates, a significant reduction in the number of errors is
achieved, made even smaller by prior knowledge of the number of true edges. This constrained
version provides exactly the same performance as the Bayesian approach that assumes an
Erdés—Rényi distribution.

5.4 CHALLENGES AND RECOMMENDATIONS FOR FUTURE WORK

The greatest challenge in analyzing uncertainty in real data is the lack of ground truth.
To understand the causes of error in real data requires knowledge of the latent graph, which
is typically not available, and requires using portions of the data obviously in error, as done
in this section. This can lead to interesting models for graph errors, but there is no guarantee
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Average Errors | Average Errors

Method (Web of Science) | (Erdés—Rényi)
Empirical risk 162,643 162,784
Weighted

empirical risk 5,374 5,417

Constrained
weighted 6 0
empirical risk

Bayesian
(Erdés—Rényi 6 0
prior)

TABLE 2

Recovery of the Web of Science citation graph from multiple corrupted
observations.
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that all sources of uncertainty have been covered. This is another reason to use a weighting
scheme based on source reliability, as suggested in Section 4.4. In addition, the empirical results
in Section 5.3 demonstrating that weighting observed graphs enables equal performance to a
Bayesian technique for recovery of a real graph suggest that such a technique would be broadly
applicable.
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6. DATA FRAMEWORK DEVELOPMENT

The purpose of this task was to build a set of data characteristics and a framework for
comparison of graph data. This will ensure that proposed algorithms are applicable in a wide
variety of scenarios.

Under this task, MIT LL proposed the list of graph characteristics shown in Table 3.
This covers a standard set of graph characteristics, in particular focusing on those that
can be computed for extremely large graphs (which is why, e.g., betweenness centrality is
not included). A diverse set of large network datasets were characterized in the context of
these features. In addition, the Block Two-Level Erdés-Rényi (BTER) generator was used to
simulate networks with similar degree and clustering coefficient distributions [14].

6.1 NETWORK DATASETS

In addition to the Web of Science and web proxy logs, many datasets from publicly
available repositories were analyzed. Data from the Stanford Network Analysis Project (SNAP)

Characteristic/Statistic Relevant Questions

Are there multiple distinct types of vertices?

Vertex categories Is the graph bipartite (or multi-partite)?

Is there a natural scale regarding the edges?

Weights If there are non-binary values, what are the units?

Update rate How quickly do the data (both vertex and edge sets) change?

Are there distinct relationships between the same pairs of vertices?

Relationship types How is each relationship characterized by the above features?

Size How many entities and relationships are in the data, per time?

How many of the vertices have low/high/intermediate degree?

How quickly does the number of vertices with a given degree decrease
as degree increases?

Does the degree distribution change over time?

Degree distribution

How many complete triangles are in a typical node’s neighborhood?

Clustering coefficient distribution

Does this tend to change with degree (e.g., do low-degree vertices
have a higher clustering coefficient)?

Eigencentrality/PageRank

How influential are nodes according to these centrality metrics?

Size of connected components

How many vertices can be reached by tracing relationships?

Average distance (eff. diameter)’

How many hops between the average pair of vertices?

*May not scale to extremely large graphs

TABLE 3

Characteristics of graph data.
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large dataset collection® and the repository of the Laboratorio di Algoritmica del Web (LAW
— Laboratory for Web Algorithmics)* were downloaded, comprising the following 13 graphs:

e US patent citation network

e Amazon product similarity links

e Enron email network

e Wikipedia voting network

e Road networks for California, Pennsylvania, and Texas
e LiveJournal and Friendster networks

e Gnutella peer-to-peer network

e Autonomous system traceroute

e Traces of .eu and .cnr domains from 2005 and 2000, respectively

Global statistics for these graphs, as well as different time resolutions for the Web of Science
and web proxy graphs and four instantiations of the BTER model, are shown in Table 4°.
Among the global statistics, most have known correlations (number of edges scaling slightly
superlinearly with number of vertices, number of triangles scaling similarly to number of
edges, etc.). The biggest outliers are the road networks, due to their extremely high diameters.
Among the other datasets, considering their degree-based statistics (plotted in Appendix A)
shows that clustering coefficient always drops precipitously with degree, and PageRank and
eigencentrality often linearly increase with degree. Four notable exceptions to this trend are
the autonomous system, Friendster, Wikipedia, and patent citation graphs, in which PageRank
does not reliably increase with degree. Also, in several cases, such as LiveJournal, eigenvector
centrality appears “bimodal,” i.e., a given vertex seems to be on one of two lines dictating
eigencentrality with respect to degree. Generating graphs from the BTER model matches
many of the characteristics of the real data, including varying dependencies of eigencentrality
on degree. In particular, the BTER generated graph fit to the Enron email dataset has a
characteristic profile strikingly similar to the web proxy graphs.

6.2 SOFTWARE FOR PARALLEL ANALYSIS

Over the course of the first VLG study [5], MIT LL considered uncued anomaly detection
in large, dynamic graphs with attributes by analyzing the spectral properties of the graph
residuals (i.e., the difference between the observed graph and its expected value under an
assumed model) [13,15,16]. In addition to analyzing two real datasets, synthetic data was

3 Available at http://snap.stanford.edu/data/index.html.

4 Available at http://law.di.unimi.it /datasets.php.

5 “OVERFLOW?” for the number of triangles in the is due to lack of precision in the software used to
compute the statistics. According to the SNAP website, the number of triangles in the graph is 4173724142.

28



Statistics of real networks.

29

Avg.
Effective Clust.

Dataset # Vertices # Edges Diameter _ |Diameter # Triangles | Coeff.
Patent Citation 3774768 16518948 9.181146 18 7515023 0.08
Enron 36692 367662 4.72041 12 7515023 0.5
LiveJournal 4847571 68993773 6.870505 18] 285730264 0.27
Friendster 65608366/ 1806067135 5.858562 23(OVERFLOW/(0.162295
Gnutella 6301 20777 8.471423 20 2383 0.01
Autonomous System 1696415 11095298 9.337051 36 28769868 0.26
.eu Domain 862664 19235140 7.883786 19 202170577 0.60815
.cnr Domain 325557 3216152| 14.765241 30 20977629(0.452944
Wikipedia Voting 7115 103689 3.971075 10 608389 0.14
Amazon Product

Similarity 735323 5158388 9.972961 23 4464791|0.355271
California Road 1965206 5533241| 500.761632 851 120676 0.05
Pennsylvania Road 1088092 3083796| 533.368422 786 67150 0.05
Texas Road 1379917 3843320| 667.416515 1058 82869 0.05
BTER LiveJournal 4762974 86783914 5.807724 14 527840253 0.57
BTER Autonomous

System 1679032 21392478 4.989197 131 200397577 0.69
BTER Wikipedia 6895 99880 3.919973 9 597207{0.145521
BTER Enron 35798 176492 4.780367 9 1112672|0.582943
\Web of Science: 1990 | 3301147 7787200 11.141949 25 565526] 0.0222
\Web of Science: 2000 | 6179522 16413449 9.973632 26 1232648 0.020607
\Web of Science:

'86-'90 6781053 36554823 8.51555 23] 24765408{0.085228
\Web of Science:

'96-2000 11393928] 70175362 7.90054 22 49914742 0.07915
\Web of Science:

'81-2000 16548581 183409708 6.609184 20 299670458 0.129466
\Web Proxy: One

Minute 3429 8875 5.557352 9 0 0
\Web Proxy. One Hour 19742 226156 3.850693 8 0 0
\Web Proxy: One Day 56132 1423536 3.829959 7 0 0

TABLE 4
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Figure 16. Weak scaling of parallel eigendecomposition. The rightmost point in the plot demonstrates
a 4-billion-vertex graph being processed in less than 5 minutes.

generated to test the algorithms at greater scale. The key algorithm in the SPG process-
ing chain—the partial eigendecomposition of a sparse matrix minus its low-rank expected
value—was implemented using the Scalable Library for Eigenvalue Problem Computations
(SLEPc) for parallel eigenvalue computation [17]. Using this method, the principal eigenvector
of a billion-vertex graph’s modularity matrix was computed on 64 commodity compute cores.
Under the present study, the Anasazi library was used, and was run on the supercomputer
Hopper at the National Energy Research Scientific Computing (NERSC) Center. Results for
weak scaling (218 vertices per core) are shown in Figure 16. Running time per processor
increases fairly slowly, until over 2000 processors are used. Despite poor scaling with large
numbers of processors, this demonstrates the ability to compute the principal eigenvector of a
four-billion vertex graph’s residuals (modularity) matrix in under five minutes. Strong scaling
results (8M vertices) are shown in Figure 17, also demonstrating a decrease in performance
per core for large numbers of cores.

6.3 CHALLENGES AND RECOMMENDATIONS FOR FUTURE WORK

One noteworthy observation of the real data is that, while the road networks are substan-
tially different from the other graphs in their diameters, the variations in statistics for the other
graphs do not separate the graphs into qualitative classes. For example, the autonomous system
graph and the patent citation graph have similar clustering coefficient distributions despite
being fundamentally different in terms of their rate of change, while the autonomous system is
substantially different from the .eu and .cnr domains, despite all being internet-based graphs.
Thus, the statistics considered here do not seem to provide a basis for discriminating between
various graph types, e.g., distinguishing fast, transaction-based data from slower-moving social
networks.
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Figure 17. Strong scaling of parallel eigendecomposition. Computation time per core increases after
1024 cores, likely due to communication overhead.

To ensure that data analytics are applicable to a variety of graph data, a framework must
be tested on data from a diverse set of sources. Apart from the road networks, the real networks
considered in this study have characteristics that are by and large similar. Thus, to cover the
space of graphs of interest, representative graph datasets should be chosen that are diverse
in the areas of greatest variance: the slope of the degree distribution, the average clustering
coefficient, and the dependence of eigencentrality and PageRank on degree. Selecting datasets
that are diverse in these key characteristics, as well as in terms of the rate of change, will
ensure that developed algorithms are applicable to a significant cross section of graph data.

Simulation of large graphs with characteristics similar to those in real networks is
necessary for evaluation with ground truth, and the BTER model has proven to capture many
of these properties. One in particular is lacking: it always generated graphs where PageRank is
linearly dependent on degree. Despite this, BTER provides a level of accuracy that is missing
in other current generators, and there is new open source software for fitting to real data and
generation on parallel machines®.

Computational performance using the NERSC machine was quite favorable in compar-
ison to LLGrid, largely due to the optimized communication network. For parallel compu-
tation, even on a network highly tuned for interconnected computation, there is a loss in
performance when using a large number of cores. This is, in part, because one-dimensional
partitioning is being used, where each processor has a block of rows. This requires all-to-all
communication between iterations of the eigensolver, which is the likely bottleneck. Changing
to a two-dimensional partitioning scheme, which is allowed in Anasazi but not SLEPc, should
enable better scaling performance.

In addition to computational scaling issues, a loss in precision has been noticed when
multiplying by the rank-1 expected value in the modularity matrix. Multiplying by this term

5 Available at http://www.sandia.gov/~tgkolda/feastpack/ .
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gave unstable performance in terms of convergence, which was circumvented for the time being
by using several averaged background models as the expected value, still resulting in a sparse
matrix, but with more nonzeros. This problem would best be resolved by using extended
precision arithmetic, for which there are publicly available software packages. This solution,
however, will significantly increase the algorithm’s memory footprint.
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7. SUMMARY

This report documents research into the effect of uncertainty on detection and inference
in very large graphs. Several models for uncertainty are proposed, including some from the open
literature and some based on experience with real data, including the Thomson Reuters Web
of Science database and a set of web proxy logs. The impact of these uncertainty mechanisms
on detection performance is evaluated, and a simple weighting scheme based on the impact
that a mechanism has on detection performance is shown to enable the same performance
as when no uncertainty mechanism is applied. It is also shown that real datasets have errors
that stem from uncertainty mechanisms similar to the proposed models, and that some similar
phenomena occur when applying the mechanisms to real data as when applying to simple
random graphs. Finally, a set of graph features for characterizing very large graphs is proposed,
and several large network datasets are analyzed in the context of this feature space. The Block
Two-Level Erdés—Rényi model is shown to also have features quite similar to those in real
data.

An ongoing follow-on study aims to determine hardware-centered issues with performing
this sort of residuals analysis on very large graphs. Under the present study, it is demonstrated
that a four-billion vertex graph can be processed in under five minutes using a state-of-the-art
supercomputing system. To achieve the ability to process terascale graphs in a similar time
frame, the inefficiencies of current computing hardware for processing large, sparse datasets
must be addressed.
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APPENDIX A: CHARACTERISTICS OF GRAPH DATASETS

This appendix includes all vertex-wise statistics of the real graphs analyzed in Section 6.
Each of the figures includes the degree distribution, and, with respect to degree, the clustering
coefficient, eigencentrality, and PageRank of the vertices. In addition to showing the clustering
coefficient, eigencentrality, and PageRank for each individual vertex in blue, the average value
for a vertex of the specified degree is shown in black. Simulations using the BTER model are
included based on the degree distribution of the autonomous system graph (Figure A.2) and
the LiveJournal graph (Figure A.17) in Figures A.3 and A.18, respectively, as well as those
fit using an eye-calibrated clustering coefficient distribution for the Enron graph (Figure A.6)
and the Wikipedia graph (Figure A.19) in Figures A.7 and A.20. Also, it should be noted that
the clustering coefficient is always zero for the web proxy data (Figures A.11, A.12, and
A.13), since the graphs are bipartite.
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Figure A.1. Vertex statistics of the Amazon product similarity dataset: degree (upper left),
clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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Figure A.2. Vertex statistics of the Skitter autonomous system dataset: degree (upper left),
clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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of completion of this report.
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Figure A.14. Vertex statistics of the California road network dataset: degree (upper left),
clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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Figure A.15. Vertex statistics of the Pennsylvania road network dataset: degree (upper left),
clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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Figure A.16. Vertex statistics of the Texas road network dataset: degree (upper left),
clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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Figure A.17. Vertex statistics of the LiveJournal social network dataset: degree (upper left),
clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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Figure A.18. Vertex statistics of the BTER simulation (with LiveJournal degree distribution)
dataset: degree (upper left), clustering coefficient (upper right), eigencentrality (lower left), and
PageRank (lower right).
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Figure A.19. Vertex statistics of the Wikipedia voting network dataset: degree (upper left),
clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).

54



Number of Vertices
o

10F 3 1
10“ Ll L 10'2 R | L L
0 1 2 3 0 1 2 3
10 10 10 10 10 10 10 10
Degree Degree
. BTER Fit to Wikipedia » BTER Fit to Wikipedia
107 T — = 10 amay — T g
[ ] [ ]
- bd -
10 E
E ] 3
- F ] 10 3
E A i E r ]
- [ ]
g10 F 3 S I 1
= E ] 2 s . 1
8 r ] o .
i I 1 104? i E
10 | = 3 ! ]
3 ] [ 1
F ] - i E
104 L . L 10'5 i L
0 1 2 3 0 1 3
10 10 10 10 10 10 10 10
Degree Degree

BTER Fit to Wikipedia

Clustering Coefficient
o

BTER Fit to Wikipedia

T
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Figure A.21. Vertex statistics of the Web of Science citation network (1990) dataset: degree (upper
left), clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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Figure A.22. Vertex statistics of the Web of Science citation network (1986-1990) dataset: degree (upper
left), clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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Figure A.23. Vertex statistics of the Web of Science citation network (2000) dataset: degree (upper
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Figure A.2/. Vertex statistics of the Web of Science citation network (1996-2000) dataset: degree (upper
left), clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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Figure A.25. Vertex statistics of the Web of Science citation network (1981-2000) dataset: degree (upper
left), clustering coefficient (upper right), eigencentrality (lower left), and PageRank (lower right).
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