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1. Introduction

There are many data processing problems in which decisions m~]st be

made, based on noisy data, which do not fit the well-known pattern of a binary

test between two hypotheses. Insteacl, there arc N distinct hypotheses (N >2),

each of which may be composite (i. c. , contain internal paraxmcters), and an

algorithm is sought whereby each observation, or sample, implies a ~lnique

choice of one of the hypotheses. We are not interested in randomized tests

or seqtlential tests, and the disctlssion is carried out in the simple context of

a finite - dimensional sample space with hypotheses expressed in tern~s of

w,c I1-behaved probability densities, each containing a finite number of real

parameters.

In this note, we suggest a simple algorithm for m~lltiplc-hypothesis

testing, based on the maximum -lik(:lihood technique for decicling between

hypothesis pairs. 7’hc algorithm is not optimum in any sense, but has the

virtue that it works, while possessing considerable intuitive appeal. The

procedure arose out of the consicl”6ration of a particularly simple, b~]t

practical, problem which req~]ires a multiple-hypothesis formulation, namely

the detection of interference in a monoplllse direction-finding system. This

problem, which arises in Air Traffic. Control surveillance, is discussed

here as an illustration of the testing algorithm.

2. M\lltiple-13y pothcsis Testing

I,ct x represent a sample, i. c. , a point in a multidimensional

observation space, from which a clccision must be made an~ong N hypotheses,

Iii(i=l, . . .. N). The decision rule must be a decomposition of the

a observation space, X, into N disjoint sets, I>i (i = 1 . . . , N), so that a

salmple falling into Di implies the choice of hypothesis i, while

●

N
u Di=X
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Hypothesis Hi is characterized by a probability density,

fi(x Iai),

which contains a finite set of parametc?rs, ~, . The ith
1

parameter set, a,, is
1

a point in a finite dimensional parameter space, Ai.

If we had only to decide between hypotheses Hi and H., we would follow
J

the generalized maximum likelihood principle, maximizing each probability

density over its respective parameters and comparing their ratio to a thresh-

old. In other words, we would accept Hi over Hj whenever

sup fi (x I ai)

ffi C A,1

sup fi (x I aj)

aj 6A,
J

In terms of the log likelihood functions

Ii (x) : log sup

ai c Ai

> h,.
lJ

fi(x lai) ,

(1)

(2)

wc write

T (i/ j): Ii(x) - Ij (x)> logkij (3)

This expression is to be read: ,,te sting H. over H,, accept H. whenever the

indicated inequality is true!!. If we set th~ thresh~ld, k. ., eqlual to unity, we
lJ

have. log ~. = 0, and the test amounts to selecting the !Imost likely explanation!!
lJ

of the data. In general we do not usc ~. = 1 because we anticipate the need
lJ

to control the inevitable decision-making errors, often in an unsymmetrical

way between the two hypotheses, Expression (3) can be rewritten in a sugges-

tive way by introducing two threshold parameters, pi and #j, as follows:
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T(i/j): li(x)-pj>lj (x)- p.
J

(4)

IT~words: “Hi is acccptcd if Ii (x) cxcccds its threshold, Pi, by at least as

o Tnuc.h as the amount by which Ij (x) cxc.teds its threshold, ~.’!. With just two

hypothesis ,
J

only the difference,

o

Wi-pj = logx. . ,
IJ

is rcleval~t, but (4) can be gcncralizcd to the+ N - hypothesis case quite easily.

A threshold, pi, is associated with each hypothesis and the !TCXCCSS!!, Ii (x) - p i,

is co]nputcd; the hypothc!sis with the largest excess is acccptcd. A prcc. isc

definition, in which ambiguities arc: resolved, is as follows.

For a givc]l saxllplc let

N
M (x) = Max

j=] [’j(x)-p] (5a)

‘Jhe I1,

M(x) = Jk (X)

for at least o]~e valllc of k. We assign x to the set I>k, whcr[, k is the smallest

index for which (5b) is true.

“Ibis algorithln has N-1 free constants, say

.
Pj -P, ! j= 2,. ”., N,

*
which can be chosen (in principle) to control N-1 decision errors. These errors

arc express c.d in terms of the J>robability of choosi]lg Eli when Hj is true with

aj c B., a subset of A..
J J
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In this algorithm, Hi is chosen only when every other Hj is rejected

according to a test d the type (3). It ]night be thought that a more general

algorithm could be developed by introducing N (N-1) / 2 constants, kij (i > j),

and the corresponding number of regions, Rij, defined by

4i(x)-lj (x) ~ log l,, (i>j) .
IJ

(6)

Then each point, x, is either in R. or its complement, for each distinct pair,

(i, j). If x c Rij, then Hi is “prc:~~rrcd” over Hj, and hence for each point, x,

all the pairwise !Ipreferellccs” arc established by the definitions (6). The diffi-

culty is that there is no guarantee that onc hypothesis will be preferred over all

others since the transitivity of the preference relation is not an automatic

consequence of (6). This is most easily seen for N = 3 and can be illustrated

ill a two-dimensional sample space as shown in l“igurc 1.

2
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Each line in Figure 1 represents a boundary defining a region Rij and its

co]mplemc~lt for one pair of the three hypothc~s HI, H2 and H3. The numbers

indicate the preferred hypothesis on either side of the line.
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In each of the six rcgiolls, A, 13, C, D, E and F the pairwisc prcfcrcnc. cs

establish OIIC of thc$..3! possible hierarchies of c.hoic. c, cac.b with a clear

“first c.boic. c”. Thus, i]~ region A, HI is prcfcrrcd to H3 and 1-13 is prcfcrrcd

10 Hz. However , ill rc, gion G, H] is preferred to HZ, 112 is preferred to

H3, and H3 is prcfcrrcd to H hc]lc[! the prcf{:rcnces are iTlconsistent with no
1’

clear. choice. If, in k“igurc 1, WC+intcrc. hangc the n~lmbcrs 2 and 3 on tbc H2 -

113 bou]ldary, thcr~ G becomes a re~ion of consistent prcfc:rcnc. cs while C and

1,” arc not.

This situation will not bappcn ill our algorithm since <i clear choice is

always made. The boundary bctw(:cn 111 and 112 is tbc surface define, d by:

~l(x)-P1 = 12(X) -p2

while tbc D 2
- D3 bounclary is dcscribcd by

12(X) -#2 = 13(x)-p3

‘lhc intersection of these two boundaries is a subspac. e in which

which is c.ontaincd in the D ~ -1>3 bou~~dary. Thus regions like: G in Figure 1

da not arise.

3. ‘1’hc Monopulsc I>ata k~cliting ~~roblcm

For our purpose, an ‘Ian? plitllde -compariso]l n?onopulse system!! can

bc ]moclclcd as arl a]ltcnna-rcccivcr systen~ in which rf signals arc derived from

cacb of two cff(:ctivc antc]~nas having coincident phase ccntcrs. It dots not

matter whether Lh[>two ‘Iantcnrlas” are realized by a pair of horn -tcr~minatcd

wav(, guides facing a stiIglc reflector, or by a pair of feed networks conncctcd

to the elements of all array, so long as t}lc phase ccntcrs coil,cidc and tbc

main -bc:am voltage gains are real (i. c. Ilcgligiblc phase shift across either

nlain beam). Tbc two rf signals arc an~plified a~~d dcmod~llatcd to produce

1.w,o ilj-phase a]ld two quadrature compo]lcnts of video, each containing additive
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Gauss ian noise. These four ]~oise processes are mutually independent with

identical spectra. In the problem at hand, the receiver has detected and

sy]~chronized its own timi]~g on the early portion (preamble) of an anticipated

incident signal. The waveform is simple binary pulse-amplitude-modulation

(PAM 00 K). The four video waveforms are sampled once at each bit position,

and we are concerned with deciding among various hypotheses regarding

the true state of affairs 01) the basis of one of these four-dimensional samples.

A separate decision is made for each bit position in the waveform (A more

general problem, not treated here, concerns multiple-hypothesis testing

based on a sequence of samples as one decision. )

Let the in-phase and quadrature samples from antenna 1 be combined as

the real and imaginary parts of a complex observable, Z ~, and let the corres-

ponding components from antenna 2 be combined to form 72 The pair (71, 72)

rcprcscnts our basic sample, and hypotheses will be formulated as probability

densities in these two complex variables. The sample (Zl, 22) always contains

the reccivcr noise components (nl, 112), which are independent, zero-mean,

complex Gaussian variables, satisfying

1; n; = Oand Elni 12= 2U2a i = 1,2 (7)

2.
The noise variance, Ua, lS fixed by the reccivcr characteristics, and is con-

sidered known.

A signal, coming from a single direction (azimuth), ill the main beam of

both antennas, will produce sample components, (Al C1?!’, A2e10), of the same

phase. The phase, $, is essentially the rf phase of the incident wave at the common

phase center of the antennas, and the signal amplitude, Ai, is tbe product of the
.th

incident wave amplitude a]ld the voltage gain of the ~— beam in the signal direction.

‘1) from an csti,mate of A1/A2, but this aspect ofSignal direction is determined

the processing is not of direct intc:rcst here. If there are two signals in the main

beam, arriving from different directions, then each will contribute: sample

components of the form just discussed, but each sig]~al has a differc:nt rf phase, and

the two signals have unequ~ amplitude ratios, so that the resultant sample c.nm -
i~ponents ]must be modelled as (Alc I , A2C:1t’JZ), where Al and A2 arc arbitrary

b

*
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4

positive constants, a]]d ~]1 and i;
2

arc arbitrary angle variables. The second

sigl~al is interpreted either as il~tcrf[; rcnce froln another source, or as off-

azi]mutb ~nultipath from the main sigr]al. Obviously, the same model represents

th(. cas[ of three or Inorc. ]nail~-beanl signals.

A final possibility is a co]mbi]lation of one or more signals arriving from

o~ltsidc the main antel~na beams, where the antenna gains arc co~nplex and vary

rapidly with angle. Such a combination, representing side and/or back lobe

i])tcrfcrcnce has been ]modcllcd as Gaussian noise, characterized by san~plc

co~~qponc])ts (1111, ]n2) which arc statistically identical t“ the rcccivcr ]]oisc

[Olllporlcnts, cxccpt for their variance

i= 1,2 (8)

Wl,cI~ this i]~tcrfcrcncc is present the total noise c.omponcnts of the sample arc

still independent, zero-mean complex Gaussian variables, cbaractcri~, cd by

relations like (7), with O: rcplaccd by U: + <, considered known (this assur)~p -

I.io]l is disc{]ssed below).

With these! nlodcls wc can distinguish six possible hypotheses, d[:pe]]ding

~]po]~ the ]~ulnbc-r of n~aill-beam signals ancl the prcscncc or abscllcc of side/l>a[k

lob( i]~tc$rfercncc. ‘1’hc hypotheses arc’ defined in the following table.

N[llr?bcr of T?~air~- Sidc / Back
bcaT~l sig~~als I.obc I1]terfcrcncc—— Ilypotbcsis

0 NO 1’

1 NO 2

22 NO 3

0 YI;S 4

1 YE:S 5

>2 YES b

Table I—.—
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If no Tnain-beam signals are judged to be present, it is assl~mcd that tbe signal

information bit is a ‘Izero!f. If onc or more main-beam signals are found, this

information bit is assumed to be a !Tone!!. Interfert!nce is reported if it appears

tO be present as side/back lobe interference, Or if more than one main-lobe

signal appears. Tbe presence of interference of either kind is used to aid tbe

mcs sage decoding algorithm, and also to inhibit direction-finding on the signal

(by means of the amplitude ratio) , since a spurious value would quite likely b[;

found. Thus, tb[> output of the decisio]~ algorithm is an estimated information

bit and an interference flag (I!one!f is present), according to Table II.

Information
IIypOthesis

Interference
Bit Flag

1 0 0

2 1 0

3 1 1

4 0 1

5 1 1

6 1 1

Table 11

Note that hypOtbcsei H3, H5 aIld H6, altbOugh statistically distinct, all lead tO

t.hc same response. Moveovcr , it will turn out that H3 and H are indistin-6
guishablc fro]m tbc data, and H6 will later be dropped. H3 and H5 must be tested

separately, even though the resulting dccisiOn regiOns, D3 and D51 are cOmbincd

tu determine system response. The term “data editing”, as used here, refers

to the detection of interference and the resulting use of the interference flag

i~~dccodi]lg and direction finding. These latter topics are not discussed here,

and wc return to the specific for]nulation of the multiple -bypotbesis testing

problem.
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According to our models, the probability densities for the six hypotheses

have the forms

[

‘i (z], ‘~lai) = (2~03)-2CXP - L: (Zl, Z21ai)1
i = 1,2,3

20 2 J
a

where

2
‘2

L:(zl, 22) = L;(zlt 22) = Izit 2 t 12212 (1 lcters)

1o)

o Paral

ei*12+

Si]lc. c the variable parametc!rs in all cases arc internal to the functions L:, the
.

required maxi-of the probability densities involve the minima of the L;. Since

L~ al~d L: involve no parameters, there is no minimization to perform, while

L; and L: can be made equal to zero by the parameter choices

9
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The remaining expression is

2
‘2

=L~= IZ112 + 12212 - 2AlRe (e-i$Z1) - 2A2 Rc (e-i’!’Z2) + A; + A;

[ 1
= 12,12 t 12212 + Al - Re (c-iu’Zl) 2 +

- ~e(c-izl)] 2- ~c(c-izz)]2
[

- i?l,
‘2

1
- Re (c 22) 2

.

Fro]n

wc infer that

Thus

L; = 1..: = i(lzllz
[

t 12212) i Al
- i~

- Rc(e 21)
1[

2+ - ill)
‘2

1
- Re (c 22) 2

[
-Zio(z; ,. z;,-~Rc&

1

This expression is clearly minimized by the choice

so that

[
Rc e -2$(2; t 2;)

1
=Iz:t z:

together with the choices

(11)

(12)



The resulting minimum is

.

We introduce the notation

(13)

and summarize our results in the form of log likelihood ratios:

~l(zl, z2) =
1-2 10g(2m 0:) - — P

2 U2
a

12(21, 22) = -2 log (2nu:) - JT (P - Q)
4ua

13(21, 22) = -2 log (2na:)

14(21, 22) = -2 log
[
2T (0: + 1

~)] 2 (f t 0:)

- —.—

15(21, 22) = -2 log
[ 1
2n (02 t 0;) - 1

a
4(U: t u;)

~~(zl, 22) = -2 log
[
2n (0:

1
t 0:)

(14)

P

(P - Q)



4. T“hc: Decision Regions

According to equations (5) in Section 2, the testing algorithm involves the

differences Ii (x) - Vi, where the pi are arbitrary constants to be assigned

later. Thus, the constant terms in equations (14) can be absorbed into the pi.

In addition, the I i (x) ca]~ all be multiplied by a fixed consta~lt without changing

the decision regions. We therefore ignore the log - terms in (14) and ~ultiplY -

by the factor ( -2u~). Tl~e effect of the minus sign is to change from Max to Min

i]]equations (5), hence the decision regions are based on

M(

where

g,

and

b

‘1’
22) = MI1~

[
gj(zl, 22) i p.

j=l J1
‘1’

22) = P

(15)

Q)

(16)

g5 (Zl, 22) =4 (P -Q)

g6 (21$ 22) = o

12

(17)



.’

.

The vi in (15) are new arbitrary constants. We can simplify things by assigning

those sample points for which

gi ‘z]> 22) t pi < gk(Z1, 22) t pk , k \ i (18)

to region Di, and making an arbitrary assignment of points for which two or

more of the gi t pi arc equal. These boundary points will not contribute to

any integrals expressing decision probabilities or errors, since the functions

gk arc all continuous.

We note that the sigl~ of p ~ - P6 is independent of the data and hence or~e

of the two hypotheses, H3 or H , is always preferred over the other, depe Ilding
6

on the choice of the fli. This simply means that the data cannot support a decision

between H3 and H6, and H6 is nowdroppcd from our discussion with the ~lndersta,lding

that H3, as represented by g3 (Zl, Zz) t P3 , rc!prcsents the composite case

of two or more main - beam signals, with or without side/back lobe inter fcrcncc.

The decision region for Hi is simply the intersection of the regions defined

by ( 18) for all values of k distinct from i. Since the gk (Zl , 22) depend Only

on the quantities P and Q, these two statistics are sufficient for decision between

all five hypotheses. Moreover, the regions defined by (18), expressed in the

(P, Q) - plane, are all half - planes, bounded by various straight lines. The

dcfinirlg conditions am as follows, in terms of the coordinates P and Q.

HI is chosen if

P+Q<2(UZ-Pi)>

P <)3-PI,

P < &( P4-Pl) t and

(2R-1) P + Q < 2R(P5 - VI).

(19a)

13
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H2 is chosen if

P+Q22(#2-pi),

P- Q<z(p3-p2) ,

(R-2) P - RQ < 2R (#4 - p2), and

H3is chosen if

P ?k~-P1l

P- Q22(W3-P2)*

P ZR(P3-P4), and

P- Q22R(P3 - P5).

}14 is chosen if

P ~A(’4 -’l)’

(R-2) P- RQ22R(P4-P2),

P < R (P3 - y4) , and

ptQ<2R (#5-&4).

14

(19b)
.

(19C)
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H5 is chosen if

(2R-l)PtQ~2R(p5-pi),

P - Q < 2R (P3 - P5), and

P+ Q22R(u5-p 4).

(19C)

Arbitrary assignments of boundary points have been made in equations ( 19)

which involve ten distinct straight lines, corresponding to the ten pairs of

hypotheses. P and Q are inherently positive, and P > Q, by the Pythagorean

inequality, hence only that portion of the first quadrant in the (P, Q) - plane

between the P - axis and the line P = Q is attainable fro,n the data. Unless

a boundary line crosses that portion, it can have no effect on any decision region.

When parallel lines enter into the definition of a decision region, only onc will

bc effective, depending on the relative values of the pi. Thus, a considerable

variety of shapes is available for the regions Di, and error probabilities will

have to bc formulated a)ld assigned in order to choose among them.

Note that H2 is chosen over Hl (refer to Table 1) if P + Q exceeds a coIIstant.

l-his is the det[!ction statistic obtained by Hofstetter and DcLong(.!.) i~~their

analysis of amplitude - comparison monopulsc. Details may be found in that

paper concerning the estimation of signal direction from the parameter estimates

given in (11) and (12), once H2 has been acccptcd. We sec also that H2 is ~hOsen
.

~vcr the signal - PIus - interference hypotheses, H3 and H5, if P - Q is sufficiently

small. This test, which is related to a requirement that the monopulse bealn otlt-

(2) for lJZ against ~35, al~d.
p~lts be in phase, has been obtainecl bv McAulav

DcI.ong(3) for Hz against H3. An approximation to the P-Q test has also been

obtained by McCarty.

15



The boundary lines and the hypothesis pairs they

(Hl, Hz) P+Q=2(p2- #1)

(H4, H5) P+Q=2R(P5-H4)

(Hz, H3) P- Q=2(p3-p2)

separate are the following:

(20a)

(20b)

(20C)

(H2, H5) P-Q=— R2! ~ (P5 - P2) (20d)

(H3, H5) P- Q=2R(p3-p5) (20C)

(Hl, H3) P=p3-ul (20f)

(Hl, H4) p = *( P4-P1) (20g)

(H3, H4) P= R(P3-P4) (20h)

(Hl> H5) (2 R-l) PtQ=2R(~5-pl) (20i)

(H2> H4) (R-2) P- RQ=2R(p4-p2) (20j)

In practice, R will be relatively large compared to unity, and in this case line

(20i) is nearly parallel to lines (20 f), (20g) and (20h). AIso, line (20j) becomes

nearly parallel to lines (20c), (20d) and (20e). In this limit, our testing regions

become insensitive to the assumption that u;, the interference power, is known.

An interesting possibility would bc to consider u: t u; to be another unknown

parameter in hypotheses 4 and 5. Returning to equation ( 14), we would find

that the estimates of this parameter arc P/4 (on H4) and (P -Q)/4 (on H5), while

g4 and g5 WOUld be changed from the c:xpressions given in ( 16) to

.

.

—
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~4 (z]) 22) = 4 m: log P

g5 (Zl, 22) = 40: log (P - Q)

(21)

The (P, Q) - plane still suffices to define the decision regions, but some of the

boundary lines would no longer bc straight.

Returning to equations (20), wc note that H2, H3 and F15 arc separated from

one another entirely by lines of the form P - Q = constant, while H], H3 al~d

H4 arc separated among thcmsclvcs by the value of P alone. The presence of

a si)lglc main - beam signal is detected by the value of P + Q, whether the: back-

ground noise is receiver noise or random interference.

If two boundary lines intersect, and also have: a hypothesis in common, such

as (20a) and (20d) which both il~volvc H2, then a third boundary line must also

pass through the intersection, in this case (20i), separating HI a,ld H5 (this can

be verified by direct substitution). This is an example the phenomenon discussed

at the end of Section 2, and many other three - line intersections may be anticipated

OIIIY eight of the ten possible casc~s actually arise (corresponding to the ten possible

hypothesis triplets), however, because of the parallelism of n~any of our boundary

lines.

There arc many possibilities for the actual shapes of c,ur decision regions,

dc!pending upo,I the choice of the p . . In order to give all the! boundary lines a
1

chance to traverse the attainable sample space, the right sides of equations (20a)

through (20i) must all bc positive, since the corresponding left sides have that

property. This results in the inequalities

P3>P5>P2’P, , and

(22)

P5>P4>P, *

which establishes an ordering between all pairs ~xccpt P2 and P4. WC must als O

order the three sets of parallel lines. Thinking of R as large compared to unity,

we assume further that

17



R(V5-P4)>P2-P1 , (23a)

R(P3-P5) >P3 -Az >R+ (P5-P 2), and

R(P3-P4) >P3-P1 >R~(P4-P1).

(23b)

(23c)

These conditions arc not strictly necessary, but arc eminently reasonable,

col]sidcring the relatiol~s (22).

In Figure 2 WC: give an illustration, consistent with inequalities (22) and

(23), showing all ten lines and all eight triple intersections. The letters label -

ling the lines refer to equations (20). In Figure 3 wc show the resulting dcc. ision

regions, obtained by application of equations (19). There arc, in effect, four

adjustable constants in the choice of the r[:gions D,. With the assumptions of
1

equations (23), they may be taken tO b{! the (P, Q) - coordinates of the point

where D ~, D2 and D4 mc:ct, the distance from there to the point where D2, D4

aIld D ~ meet, and the distance from this latter point to the point where D 3’ ‘)4
and D meet.

5

In order to choose Chcsc co]lstants WC:must assign four error probabilities.

T-here is no guarantee that ally set of four such probabilities can be attained,

but reasonable compromises can probably be found by trial and error. It should

be rccallcd that in our problcm H3 and H5 result in the same system response,

hcncc D3 and D5 should be united and thought of as a single decision region. One

possible choice of error probabilities, each of which should be ‘Ismall!!, would be

k~(2/1), E(3 t 5/1), E(3 t 5/4) and E(3 i 5/2), where E(i t j/k) stands for the

probability of declaring Hi or Hj tO be true when Hk is actually valid. E(2/1) is..

the simple false - alar In probability of declaring an information !roncft to be

present (but interference absent) when OIIly receiver noise is contained in the data

In the same true situation, E(3 t 5/1) is the probability of falsely declaring the

presence of interference along with an information ‘lone!!. E(3 t 5/4), which

probably cannot be made as small as E(2/1), to which it is analogous, is the

probability of correctly recognizing the presence of side/back lobe interfcrcncc,

btlt falsely declaring an information “one”. A bound must be assigned to this

error fOr a range of values of u; , or R. The last error, E(3 + 5/2), is the

18
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probability of correctly recognizing the presence of an information “one”, but

falsely flagging the presence of interference, hence casting doubt on the decoding

and rejecting the measurement of signal direction. In general, this probability will

will depend on the signal - to - noise ratio which exists under H2, and E(3 t 5/2)

will be subjected to a bound over a range of signal - to - noise ratios. The nature

of these errors is summarized in Table 111.

True Parameters Error Reported Parameters

information Interference T ypC Information Interfcrcncc

o 0 E(2/1) 1 0

0 0 E(3 + 5/1) 1 1

0 1 E(3 + 5/4) 1 1

1 0 E(3 + 5/2) 1 1

Table III

The error probabilities arc not easily computecl. On hypotheses H, and

H4 the probability density in the (Zl, 22) sample space has the form

f(zl, 22) = (2mu2)-2 exp - (P/2 02) , (24)

where, according to (9), 02 = ~~ on HI and U2 = o: t < .n H4. From (24)

it follows that the marginal probability density of the statistic P is

f(P) = —Prcx]> - (P/2 U2) o
4U

(25)

However the joint marginal Of P and Q appears to bc difficult to obtain, and the

regions of integration required arc awkward to work with.
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In the remaining case, E(3

bc made, as fOIlows. We have

t 5/2), a useful approximate evaluation can

‘1 ‘ ‘2
= A2eid’ +- n2

nl !2 + lA2eit” t n212

=A:t A: t 2Re
[
e-i’’~Al,~l t A2n2)

1
t Inllz t ln212

and

Q = l(Ale
ill]

t nl) 2 t (A2e
i?ll

t n2)2 I .

In the expression ior Q we write

-ill) 2
Q=l(Altenl)

-i@n ,2
t(A2te21

= I A; + A; + 2 e-iv(A1nl t A2n2) t C-2i’b(n~ t ‘~) I

=(A:tA:)lltzl,

where -id) A1nl t A2n2
2 2

z~2e
‘2i$ ‘1 + ‘2 ,

te
A: t A: A: t A;

w e put

z, =XtiY

and expand:

4

*

(26)

(27)

lltzl=ltxt+Y2 +....
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to second order in I Z 1, assumed small compared to unity.

case for large signal -
b

to - noise ratio, hence

1
t2Re e ‘i’” (Alnl

1
t A2n2)

This will be the

.

J

Thus P and Q agree throtlgh first order, and we can write

P- Q=Ic
-itin,12

[

le-i~,,2[2 - Re ~-2~’’(n:t ~;): - 2
A: t A;

x { Im [e-i’’(A1nl + A2n2) 2 +...

1
If wc let

-i$
c

‘1 E ‘1
t iv]

-ii)
<! ‘25”2+iv2’

then

P- Q=u; tv:
2 2 22tu; tv2-ult v,- U2+

2
(AIV1

2
t A2V2) t. . .

A: t A;

(AIV1 t A2V2)
2

= 2(V: t v:) -2 + .
At + A;

x

(28)

2+
. .

- A2V1)2(A~”2 _ t.
=2

A: + A:
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TO this order, we put

P-Q=~ (29)

where

(30)

Since v] and V2 arc independent Gaussian variables with mc:a,, zero and “ariancc:
~2
~, & is Gaussian, with mean zero, and “ariancc

(31)

Returning to E (3 i 5/2), we note that the union of regions D3 and D5

is contained in the set
2R (P5 - P2) t

‘- QZ R-l

which lies below line d in Figure 1. Thus

f 1

{

E(3+ 5/2) < Prob ~2 Z~(#5 -p 2)’

f

{[

(32)

= PrOb I(I z & (P5 - P2)]

&

J

which is a simple error function. It is a rclmarkable fact that this error

probability is insensitive to signal - to - l~oise ratio (provided the latter is

large).

If hypothesis 5 is true, and the signal power is large compared to the

total Of receiver ~loisc and interfcrcllcc! power, then. equations (29) through (31)

relmain valid, with o: rcplacc:d by u
2

+ 0;, hcncc all error function just like

(32) exprcsscsthe approximate prob~bility of declaring H3 5Or H whc:n H is5

truc~ that is the probability Of correctly recognizil~g the prescnc. e of side/back

lobe interference along with a signal.

We have left soimc 100SC ends in this problem, but our

illustrate the gcnerd method of multiple - hypotheses testing,

to have some practical utility.
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