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t. Introduction

There are many data processing problems in which decisions must be
made, based on noisy data, which do not fit the well-known pattern of a binary
test between two hypotheses, Instead, there are N distincet hypotheses (N >2),
each of which may be composite (i, e., contain internal parameters), and an
algorithm is sought whereby cach observation, or sample, implies a unique
choice of one of the hypotheses. We are not interested in randomized tests
or sequential tests, and the discussion is carried out in the simple context of
a finite - dimensional sample space with hypotheses expressed in terms of

well-behaved probability densities, each containing a finite number of real

parameters,

In this note, we sugpgest a simple algorithm for multiple-hypothesis
testing, based on the maximum-likelihood technique for deciding between
hypothesis pairs. The algorithm is not optimum in any scnse, but has the
virtue that it works, while possessing considerable intuitive appeal. The
procedure arose out of the considération of a particularly simple, but
practical, problem which requires a multiple-hypothesis formulation, namely
the detection of interference in a monopulse direction-finding system. This
problem, which arises in Air Traffic Control surveillance, is discussed

here as an illustration of the testing algorithm,
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l.et x represent a sample, i.c¢., a point in a multidimensional
observation space, from which a decision must be made among N hypotheses,
H; i=1, ..., N). The decision rule must be a decomposition of the
observation space, X, into N disjoint sets, Dy {i-1..., N}, sothat a

sample falling into Di implies the choice of hypothesis i, while

N
U D. = X
i=1 1



Hypothesis Hi is characterized by a probability density,

fi {x 'ai)’
which contains a finite set of parameters, Oti . The ith parameter set, o, is
a point in a finite dimensional parameter space, Ai'
If we had only to decide between hypotheses Hi and Hj’ we would follow
the generalized maximum likelihood principle, maximizing each probability
density over its respective parameters and comparing their ratio to a thresh-

old. In other words, we would accept Hi over Hj whenever

Sup f. (x i o)
o. € A,
! - > X, (1)
= Ay
Sup fi (x ) Otj)
o €A,
J J
In terms of the log likelihood functions
L. (x) z log Sup £, (x lai) ) (2)
o € A
we write
T/ £4,(x) - £,(02 logh;, (3)

This expression is to be read: ''testing Hi over Hj’ accept Hi whenever the

indicated inequality is true", If we sct the threshold, Aij' equal to unity, we
have log Aij = 0, and the test amounts to selecting the "most likely explanation'
of the data, In general we do not usc Aij = 1 because we anticipate the need

to control the inevitable decision-making errors, often in an unsymmetrical
way between the two hypotheses, Expression (3) can be rewritten in a sugges-

tive way by introducing two threshold parameters, Ky and ,uj, as follows:
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In words: "Hi is accepted if J?i (%} excceds its threshold, Ky by al least as
much as the amount by which ﬂj (%) exceeds its threshold, pj”. With just two

hypothesis, only the differcnce,
u' - uJ = ]OgAIJ ¥

is relevant, but (4) can be generalized to the N - hypothesis case quite casily.

A threshold, Mo is associated with each hypothesis and the "excess!', ﬂi (%) - B
is computed; the hypothesis with the largest excess is accepted. A precise
definition, in which ambiguities are resolved, is as follows.

For a given sample let

N

M (%) = Max [f (%) - u.l (5a)
=1 ] j
Then,
M(x) = ‘Ek (%) - pk (5b)

for at least one value of kK, We assign x to the set D, where k is the smallest

k
index for which (5b} is truc,

This algorithm has N-] {ree constants, say

which can be chosen (in principle) to control N-1] decision errors. Thesce errors

arc cxpress ed in terms of the prohability of choosing Hi when H, is true with

o cunihant Af A
a SsUosSiL O1 4.

J J
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In this algorithm, Hi is chosen only when every other Hj is rejected
according to a test of the type (3). It might be thought that a more general
algorlthm could be developed by 1ntroducmg N (N- 1) / 2 constants, ij (i> 3,

£ 00 - £ (x) Z loghy (i>3 . (6)

Then cach point, x, is either in Rij or its complement, for cach distinct pair,
(i, j). I x ¢ R L then I—I is "preferred' over H and hence for cach point, x,
all the palrw1se ”preferonces” arc established by the definitions (6). The diffi-
culty is that there is no guarantee that onc hypothesis will be preferred over all
others since the transitivity of the preference relation is not an automatic
consequence of (6). This is most easily seen for N = 3 and can be illustrated

in a two-dimensional sample space as shown in Figure 1.
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Fig. 1. Preference regions.

Each line in Figure 1 represents  a boundary defining a region R, and its

complement for onc pair of the three hypotheses Hl’ H2 and H3. The numbers

indicate the preferred hypothesis on either side of the line.



In each of the six regions, A, 13, C, D, E and F the pairwise preferences
cstablish one of the 3! possible hierarchies of choice, cach with a clear

"first choice". Thus, in region A, H. is preferred to H, and H, is preferred

1 3 3
to H,. However , in region G, H, is preferred to H,, H, is preferred to
[ - [ [

}
HS, and }13 is preferred to H],

clear choice. If, in Figure 1, we interchange the numbers 2 and 3 on the HZ*

hence the preferences are inconsistent with no

}13 boundary, then G becomes a region of consistent preferences while C and

} are not.
This situatlion will not happen in our algorithm since a clcar choice is

always made, The boundary between I and D, is the surface defined by:
fl(}()"ﬂlifz(x)’pz ’

while the D2 - D3 boundary is described by

G000 - by = A, (%) - i,

o

The intersection of these two boundarics is a subspace in which
S TN S C T

which is contained in the D, -13, boundary. Thus regions like G in Figurce 1

do notl arise.

3. ‘The Monopulse Data Editing Problem

For our purpose, an "amplitude-comparison monopulse system' can
be modeled as an antenna-receiver system in which rf signals arc derived from
cach of two cffective antennas having coincident phase centers, It does not
matter whether the two faniennas’ are realized by a pair of horn-ierminated
waveguides facing a single reflector, or by a pair of feed networks connected
to the elements of an array, so long as the phase centers coincide and the
main-beam voltage gains are real (i, ¢, ncgligible phase shift across cither
main beam)}, The two rf signals arce amplified and demeodulated to produce

two in-phasc and two quadraturce components of video, cach containing additive



Gaussiannoise. These four noise processes are mutually independent with
identical spectra. In the problem at hand, the receiver has detected and
synchronized its own timing on the early portion (preamble) of an anticipated
incident signal. The waveform is simple binary pulse-amplitude~modulation
(PAM OOK). The four video waveforms are sampled once at each bit position,
and we are concerned with deciding among various hypotheses regarding
the true state of affairs on the basis of one of these four-dimensional samples,
A separate decision is made for each bit position in the waveform (A more
general problem, not treated here, concerns multiple-hypothesis testing
based on a sequence of samples as one decision,) '

Let the in-phase and quadrature samples from antenna 1 be combined as
the real and imaginary parts of a complex observable, Zl’ and let the corres-
> The pair (7.1, 7..2)

represents our basic sample, and hypotheses will be formulated as probability

ponding components from antenna 2 be combined to form 7

densities in these two complex variables, The sample (Zl’ ZZ) always contains
the receiver noise components (nl, nz), which are independent, zero-mean,
complex Gaussian variables, satis{ying
. - 2 2 .
En. = 0 and E |n, | = 240 i= 1,2 (7
i i a

The noise variance, Ua’ is fixed by the receiver characteristics, and is con-
sidered known,

A signal, coming {rom a single direction {(azimuth), in the main beam of

both antennas, will produce sample components, (A]eub

. Azeiw), of the same

phase. The phasc,¥, isessentiallythe rf phase of the incident wave at the common
phase center of the antennas, and-the signal amplitude, Ai’ is the product of the
incident wave amplitude and the voltage gain of the iﬂ]— becam in the signal direction.
Signal direction is determined (1) from an estimate of AI/AZ' but this aspect of

the processing is not of direct interest here. If there are two signals in the main
beam, arriving from diffcrent directions, then each will contribute sample
components of the form just discussed, but cach signal has a different rf phasc, and
the two signals have unequal amplitude ratios, so that the resultani sample com-

.b
ponents must be modelled as (Ale1 1, Azeﬂz), where A] and AZ arc arbitrary

6



posilive constanls, and z,h} and abz arc arbitrary angle variables. The second
signal is interpreted cither as interference {rom another source, or as off-
azimuth multipath from the main signal. Obviously, the same model represents
the case of three or more main-beam signals.

A final possibility is a combinatlion of onc or more signals arriving {rom
outside the main antenna beams, where the antenna gains are complex and vary
rapidly with angle. Such a combination, representing side and/or back lobe
interference has been modelled as Gaussian noise, characterized by sample
components (ml' mz) which arc statistically identical to the receiver noise
components, cxcepl for their variance
2 -

2 .
20‘b i=1, 2 (8)

I Im.
i

When this interference is present the total noise components of the sample are
still independent, zero-mean complex Gaussian variables, characlerized by
rclations like (7), with U.i replaced by Oi + Oi, considered known (this assump-
tion is discussed below).

With these models we can distinguish six possible hypotheses, depending
upon the number of main-beam signals and the presence or absence of side/back

lobe interference. ‘The hypotheses are defined in the following table,

Number of main- Side / Back
beam signals Lobe Interfercnce Hypothesis
0 NO 1
1 NO 2
22 NO 3
0 YES 4
] YES 5
=2 YES 6
Table I



If no main-beam signals are judged to be present, it is assumed that the signal
information bit is a ""zero'". If one or morc main-beam signals are found, this
information bit is assumed to be a '""one'', Interference is reported if it appears
to be present as side/back lobe interference, or if more than one main-lobe
signal appears. The presence of interfercence of cither kind is used to aid the
mes sage decoding algorithm, and also to  inhibit direction-finding on the signal
(by means of the amplitude ratio) , since a spurious value would quite likely be
found, Thus, the outputofthe decision algorithm is an estimated information

bit and an interference flag (""one' is present), according to Table II.

Information Interference
Hypothesis Rit Flag

| 0 0

2 1 0

3 1 1

4 0 1

5 1 1

6 1 1
Table II

Note that hypotheses H3, H5 and Ht’)’ although statistically distinct, all lead to
the same response., Moveover , it will turn out that }13 and Hf) are indistin-
guishable from the data, and He will later be dropped. H, and H_ must be tested

3 5
scparately, even though the resulting decision regions, D3 and D_, arc combinecd

to determine system response, The term '"data editing", as usec?here, refers
to the detection of interference and the resulling use of the interference flag

in decoding and direction finding. These latter topics are not discussced here,
and we return to the specific formulation of the multiple-hypothesis testing

problem,



According to our modcels, the probability densities for the six hypotheses

have the forms

1
4 :
£z, Zolay = @red) Zexp |- i (Zy Zalo) oy o
i 1 2174 a >
20 J
a
and (9)
r 2
LS(Z.,2, o)
) 2 - ’ .
£.(2,,2,]a) = [&w(oa+oi)] 2 exp |- — ]22 21-]11 = 4,5,6
L 2 (o, +0) |
where
L(z., 2,) = 120z, 2) = |z |2+ 1z, {* (no paramcters)
17 2 4171 72 ~1 "2 p '
(10)
2 2 2 h 2
{ = VA = - ] -
Ly (Z)s 2o |8y, Apl) = Lp(Z), 258, 800 = 12 - Aen(Ta |2, - Aper]
2 2 . i 12 ih, 2
4 ! = s ! Y = - ‘1? - - o

. . . . . 2
Since the variable parameters in all cases are internal to the functions Li’ the

required maxima of the probability densities involve the minima of the Ii‘ Since
2

1 ! and Li involve no paramecters, there is no minimization to perform, while
2
113 and L‘z can be made equal to zero by the parameter choices
Ac¥ o 7 i= 1,2
i i



The remaining expression is

2 2 2 2 -t i - it 2 2
LS = Ly = Izll + lz, 24 Re (¢V2,) - 28, Re(¢7Z,) + A% 4 Af
— 2 2 _ -t 2 . - ih 2
= |z, 1" + |z,17 + {AI Re (e zl)} + [Az Re (¢ "Z,)
- -
- [Re (e 1“Zl)] . [Re(e ”hzz)] 2 2
From
cos“ 8 = 3 + %cosde
we infer that
_igh 2 _: —ith
{Re (e ! zl)] = 3| “bzl“ + 2 Re (¢ i zl)2
Co2ly 1% L i pe 2R 2
= §|L,1| T 2 Ke (¢ Ll)
Thus
2 2 3 2 2 i, 2 et
Ly = Lg = 2|27 + |z, 1% 4 [A] - Re (e 2’1)] + [AZ = Re(c = Z,)
- 2 Re [g'zwrzz 3 ZZ\]
= L 1 1 2’J
This expression is clearly minimized by the choice
’ 1 2
$ = zarg(Z, 4 Zg) ) (11)
so that
AT 5] 5 5
-2#%, 2 2 _
Re le (z] + Zz)J = jzy + 25|
together with the choices
o)
A .
A, = Re (e “bz])
. 4 (12)
A2 = Re (e ZZ)

10



The resulting minimum is

2 2 2 2 2 2
Inf L, = Inf L5=%(|Zl| +|zz|)—:zg|zl+z2

aEA, o.€A.
1771 i7"

We introduce the notation

2 2
Pz lz|"+ |z,
= L ll L] L
(13)
2 2
Q = IZ1 + ZZI ,
and summarize our results in the form of log likelihood ratios:
2 1
¢ {7 VAR T IR UV b Btk S S o
P4 Dosy Liny) - TLOLUE (L u_} - I
17172 a 202
a
2 1
£.(Z2 . Z,) = -2log(2707) - —5- (P - Q)
21 2 a 2
40
a
2
¢ (7 7\ = 22150 {205
--3\u s ‘_.421- -— [# LUB \LHI ’
1 a (14)
- - 2 2 - 1
L2, Z,) = -21log [217 (0, + ) 5 P
2 (o + 0)
: b
£z, z2)) = -2log 2w(02+02) - ! (P - Q)
5 1’ 2 a b A!"Z 1 n—z\
= o "I\Ua T Ub’

2 2
L2, 2,) = -2 log [ZN(aa + cb)}

11



4. The Decision Repions

According to equations (5} in Section 2, the testing algorithm involves the
differences ﬂi (x) - Mo where the M; are arbitrary constants to be assigned
later. Thus, the constant terms in equations {14) can be absorbed into the M-
In addition, the ﬂi (x) can all be multiplied by a fixed constant without changing
the decision regions. We therefore ignore the log - terms in (14) and multiply
by the factor ( —202). The cffect of the minus sign is to change from Max to Min

in cquations (5}, hence the decision regions are based on

6 ' -~
M(Z,, Z,) = ?fizml lgj(zl.zz) + ujJ (15)
where
g, (200 25) = 3(P - Q)
g3(2), Z5) = 0
] (16}
" -
g5 (Z)s Zp) =3x (P -Q)
and 2
(T:a + 0}\
R = -2 = > ] : (17)
= 2
Ua

12



The M. in {(15) are new arbitrary constants. Wgc can simplify things by assigning

those sample points for which

g (2 2)) + u < g (25 2,0 4 p o kA (18)

to region Di’ and making an arbitrary assignment of points for which two or
more of the g; t M;are equal. These boundary points will not contribute to
any integrals cxpressing decision probabilities or errors, since the functions
g) are all continuous.

We note that the sign of g 3 T Mg is independent of the data and hence one

of the two hypotheses, H, or H6’ is always preferred over the other, depending

on the choice of the H;- %‘his simply means that the data cannot support a decision

between HS and H6' and H6 is nowdropped fromour discussion with the understanding

that H3, as represented by g3 (Zl’ ZZ) + K g, Tepresents the composite casc

of two or more main - beam signals, with or without side/back lobe interference.
The decision region for H, is simply the intersection of the regions defined

by (18) for all valucs of k distinct from i, Since the 8 (Z1 , ZZ) depend only

on the quantitics P and Q, these two statistics are sufficient for decision between

all five hypotheses. Moreover, the regions defined by (18), expressed in the

(P, Q) - plane, are all half - planes, bounded by various straight lincs. The

defining conditions arc as follows, in terms of the coordinates P and Q.

Hl is chosen if

P+Q<zZ@, - p#,

P < My T By
{19a)

i)
Fo

A
3
(o)

(2R-1) P 4+ Q< 2R {4, - H)).

13



I{Zis chosen if
P+ Q2 2, - ),
P - Q <2 (i, Hy)
(R-2) P - RQ < 2R (4, - H,), and
P - Q< (g hy).
H,is chosen if
P Z Ky - Ky
P - Q2= 2(H, Hs)
P Z Ry, Ky o
P - Q2 2R (g, He)e
H, is chosen if
R
P Z RT3 By ~ Hy)
(R-2)P - RQ > 2R (4, - H,) ,
P < R(,u3 u4), and
P + Q< 2R (kg - Hy).

14

and

{19b)

{19¢)

{19d)



H5 is chosen if
(2R -1) P + Q= 2R (yg - K

2R
P-Q>.—.—-._._
SR-1 (Mg - Ky,

g

Q < 2R (p3 - “5)’ and {19¢)

™
€

Q22R(p.5 - u4).

Arbitrary assignments of boundary points have been made in cquations (19)
which involve ten distinct straight lines, corresponding to the ten pairs of
hypotheses. P and (Q are inherently positive, and P> Q, by the Pythagorean
inequality, hence only that portion of the first quadrant in the (P, Q) - plane

hnturnnn tha T - wmel thn
DECLTWOECT v

o 13 o] — M 3
[ o aAXis ana ine i1in

e P = Qisa
a boundary line crosses that porticon, it can have no effect on any decision region.
When parallel lines enter into the definition of a decision region, only one will
be effective, depending on the relative values of the .. Thus, a considerable
varicty of shapes is available for the regions D,, and error probabilities will
have to be formulated and assigned in order to choose among them.

Note that H, is chosen over H_ {refer to Tablc 1) if P 4 Q exceeds a constant,
1)

This is the detection statistic obtained by Hoistetter and Decl.ong'’’ in their

analysis of amplitude -~ comparison monopulse. Dectails may be found in that
paper concerning the estimation of signal direction {rom the parameter cstimaltces

given in (11) and (12), once H, has been accepted. We sec also that H, is chosen

2 2

over the signal - plus - interference hypotheses, Hg and H., if P - Q is sufficiently

small. This test, which is related to a requirement that the monopulse beam out-

puts be in phase, has been obtained by McAulav(Z) for 112 against }-]5, and
DcLong(?’) for H, against Hs. An appreximation to the P-0Q test has also been

obtained by McGarty (4}.

15



The boundary lines and the hypothesis pairs they separate are the following:

(H,» H)) P+ Q= 2, H) (20a)
(H4. H5) P+ Q = 2R (u5 - u4) (20b)
(1,, Hy) P - Q= 2(u,-u) (20¢)
(Hy H) P - Q= B0 (Hg - Ky (204)
(Hj, H,) P -~ Q= 2R (- u,) (20¢)
(1, H,) P=py-u (201)
(H), Hy) P o= goT (B - ) (20g)
(H,, H,) P = Ry -H, (201)
(H), H) (2R -1) P + Q = 2R (U, - p)) (201)
(H,, H,) (R-2) P - RQ = 2R (p, - §,) (20)

In practice, R will be relatively large compared to unity, and in this case line
(201) is nearly parallel to lines (20f), (20g) and (20h). Also, line (20j) becomes

nearly parallel to lines {20c), {(20djand {(20€¢). In this limit, our testing regions

become insensitive to the assumptlion that 012), the interference power, is known,
An interecsting possibility would be to consider 02 + 0123 lto be another unknown

parameter in hypotheses 4 and 5. Returning to equation (14), we would find
that the estimates of this parameter are P/4 (on H4) and (P -Q)/4 (on HS), while

g4 and Eg would be changed from the expressions given in (16) to

16



sl F 4 - 5 2- =
g4 (2] Z,) = 40 logPh
(21)

I

2
85 (Zln ZZ) 403. log (P - Q)

The (P, Q) - plane still suffices to define the decision regions, but some of the
boundary lines would no longer be straight.

Returning to equations (20), we note that HZ' H3 and }15 are separated from
onc another entirely by lines of the form P - Q = constant, while H], H3 and
H4 arc scparated among themselves by the value of P alone, The presence of
a single main - becam signal is detected by the value of P 4 Q, whether the back-
ground noise is receiver noisc or random interference.

If two boundary lines intersect, and also have a hypothesis in common, such

as (20a) and (20d) which both involve H,, then a third boundary line must also

pass through the intersection, in this c?:’ise (20i), scparaling Hl and H5 (this can
be verified by direct substitution). This is an example the phenomenon discussed
at the end of Scction 2, and many other three - line intersections may be anticipated.
Only cight of the ten possible cases actually arise {(corresponding to the ten possible
hypothesis triplets), however, because of the parallelism of many of our boundary
lines.

There are many possibilities for the actual shapes of our decision regions,
depending upon the choice of the H- In order to give all the boundary lines a
chance to traverse the attainable sample space, the right sides of equations (20a)

through (20i) must all be positive, since the corresponding left sides have that

property. This results in the inequalities

,u3>,u5>,u2>,u] R and
(22}
#5>.U4 >l-11 ’

which cstablishes an ordering between all pairs except g, and Ky We must also
order the three sets of parallel lines. Thinking of R as large compared to unity,

we assume further that

17



R(Bg = Hy) > py -t (23a)

R
Riuz - Hg) > By -Hy = goy (g - H,), and (23b)
R {u N 0 - T S ¥ ‘)-—B—lu-u\ {220
=~ \r'3 LlV: U B r"3 r‘l 4 R_l \l"‘4 r-l.r A\ Ay

These conditions are not strictly necessary, but are eminently reasonable,
considering the relations (22).

In Figure 2 we give an illustration, consistent with inequalities (22) and
(23), showing all ten lines and all eight triple intersections. The letters label-
1

in

jige]

the lines refer to equations (20}, In Figurc 3 we show the resulting deci
regions, obtained by application of equations (19). There are, in cffect, four
adjustable constants in the choice of the regions Di' With the assumplions of
cquations (23), they may be taken to be the (P, Q) - coordinates of the point

where Dl’ D2 and D4 meet, the distance from there to the point where DZ’ D4
and D5 meet, and the distance from this latter point to the point where D D4

and _I)5 meet. ’

In order to choose these constants we must assign four error probabilities,
There is no guarantce that any set of four such probabilitics can be attaincd,
but reasonable compromises can probably be found by trial and error. Ii should
be recalled that in our problem H3 and H5 resull in the same system response,
hence D3 and D5 should be united and thought of as a single decision region. One
possible choice of error probabilities, each of which should be '"small”, would be
E(2/1), E(3+5/1), E(3 + 5/4) and E(3 + 5/2), where E(i + j/k) stands for the
| is actually valid. E(2/1) is-

the simple false - alarm probability of declaring an information ""one'" to be

probability of declaring Hi or Hj 1o be true when H

present (but interference absent) when only receiver noise is contained in the data.

In the same true situation, E(3 + 5/1) is the probability of falsely declaring the

. [ win e SAN U RERSE W
oI'ma4ation one’’, E{J + 5/ 4, wWnicn

=
$
-

PJ. Couviive U
probably cannot be made as small as FE(2/1), to which it is analogous, is the
probability of correctly recognizing the presence of side/back lobe interference,
but falsecly declaring an information "one'. A bound must be assigned to this

crror for a range of values of 02 or R, The last error, E(3 + 5/2), is the

b L

18
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Fig. 2. Decision boundaries.,
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Fig. 3. Decision regions,
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probability of correctly recognizing the presence of an information '"one', but
falsely flagging the presence of interference, hence casting doubt on the decoding
and rejecting the measurement of signal direction. In general, this probability will
will depend on the signal - to - noisc¢ ratio which exists under HZ, and E{3 + 5/2)
will be subjected to a bound over a range of signal - to - noise ratios. The nature

of these errors is summarized in Table III,

True Paramecters Error Reported Paramelers
Information Interference Type Information Interference
0 0 E{2/1) 1 0
0 0 E(34 5/1) 1 1
0 1 E(3 + 5/4) 1 1
1 0 E(3 + 5/2) 1 1
Table 111

The error probabilities are not casily computed. On hypotheses I“I1 and

H4 the probability density in the (Zl’ ZZ) sample space has the form

(2, 2,) = (2n 0?2 exp - (P/2 05 (24)

2
2 T (IionH4. From (24)

it follows that the marginal probability density of the statistic P is

2
where, according to (9), 02 = ”i on Hl and o = 0O
P 2
{{P) = ——g~cxp - (P/2 a7y (25)
40

However the joint marginal of P and Q appears to be difficult to obtain, and the

regions of integration required are awkward Lo work with,
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In the remaining case, E(3 + 5/2), a useful approximate evaluation can

be made, as follows. We have

z = Ay z, = Al
1 T M S T H2
and hence
ith 2 jth 2
P = ‘Ale + nl| + |A2e + nzl
’ (26)
2 2 - b 2 2
= A + A5 + 2Re (e T(An 4 Ayn)| 4 |n1| + fnZI
and
jih 2 W 2
Q = [(Ajer +n))7 + (AeT + n,)7| (27)
In the expression for Q we write
—~ _ | Y ' Pi'b \2 . s ' ,—iw \Zl
Q= (A 4+ e n) 4+ (A, + ¢ ny) |
2 2 - -2ith 2 2
= IA] + A2 + 2 e (Aln1 + AZnZ) + e (nl + nz)l

(Af + A§)|1 + zl,

where 2 2
Y ekt s I 2™ Y™ )
Z = 2e > > + e 5 >
A1 + > A1 + A2
We put
Zz = X 4+ iY

[T L g, |
ol 11 K}&l_)a, Iul

1+Z|=1+X+%Y24 .....
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to second order in |Z ], assumed small compared to unity. This will be the

casec for large signal - to - noise ratio, hence

2 2 - ith
Q = Al + A; + 2 Re [e (A]nl + Aznz)]

+
-2 —
+ Re |e leb(nz + nz) 1 ——2—~[Im [(a 1“(A n + A,n
1 2 2 2 171 2
A+ A !
1 2
Thus P and Q agree through first order, and we can write
Yy i 2 -2 }
P-Q = lc“nl2+ 'e l‘nl - Re 021”(n2+n2ﬂ S 2 X
1 2 1 27 AZ 4 AZ
(, ‘ 1 2 (28)
- 3th ] 2
x  {Im [e (Ajn, + A,n,) 4
L
If we let
St
c n1 = ul + v,
-ith _ .
n, = 4, iv, s
then
2 2 2 2 2 2 2
P'Q—ul+v1 +u2+vz--ul+v1 u, t vy
2 2
- Av, + A v,)) +..
2 ( 11 22
Al + AZ
) (A.v, + A,v )2
=t v -2 22 3
5 Al + A2
2
(Ayvp = By
= 2 z 2 *
Al + A2
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To this order, we put

™ FaaY 2
o 3

T s (29)
where
2 3
£ = () (A v, ~A,v) (30) -
12 21
AT + A
1 2

Since vy and v, are independent Gaussian vaviables with mean zero and variance
2 . . .
0_, £ is Gaussian, with mean zcro, and variance

2 2 2 2
A2 . A2 Ef)v, mAyv))7 = 2o, Gh
;T oA

Returning to E (3 + 5/2), we note that the union of rcgions D, and D,
is contained in the set
- 2R {pg - wy)
P-0 2 g sk

which lies below line d in Figure 1. Thus

f 1
E (34 5/2) < Prob 4@2 2 sz{l (Mg = )
L J .

R (32)

= prob {Iel z[RZ—Ril (s = 1) J_
which is a simple error function. It is a remarkable fact that this error
probability is insensitive to signal - to - noise ratio (provided the latter is
large).

If hypothesis 5 is true, and the signal power is large compared to the
total of receiver noisc and interference power, then equations (29) through (31)
remain valid, with ci replaced by 02 + Oli’
(32) expressesthe approximate probability of declaring H, or H_. when H5 is

3 5
true; that is the probability of correctly recognizing the presence of side/back

hence an error function just like

lobe interference along with a signal,
We have left some loose ends in this problem, but our intention was to
illustrate the general method of multiple - hypotheses testing, which appears

fto have some practical utility.

24



REFERENCES

E.M. Hofstetter and D, ¥. Del.ong, ''Detection and Parameter
Estimation in an Amplitude - Comparison Monopulse Radar",
IEEE Transactions on Information Theory, Vol. IT-15, No. 1,
pp 22-30, January 1969.

Private Communication.

Private Communication.

Private Communication.

25





