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EXECUTIVE SUMMARY 

Growing concerns about the vulnerability of the electric grid, uncertainty about the cost of oil, and 
an increase in the deployment of renewable generation on domestic military installations have all led the 
Department of Defense (DoD) to reconsider its strategy for providing energy security for critical domestic 
operations. Existing solutions typically use dedicated backup generators to service each critical load. For 
large installations, this can result in over 50 small generators, each servicing a low voltage feeder to an 
individual building. The system as a whole is typically not well integrated either internally, with nearby 
renewable assets, or to the larger external grid. As a result, system performance is not optimized for 
efficient, reactive, and sustainable operations across the installation in the event of a power outage or in 
response to periods of high stress on the grid. Recent advances in energy management systems and power 
electronics provide an opportunity to interconnect multiple sources and loads into an integrated system 
that can then be optimized for reliability, efficiency, and/or cost. These integrated energy systems, or 
microgrids, are the focus of this study.  

The study was performed with the goals of (1) achieving a better understanding of the current 
microgrid efforts across DoD installations, specifically those that were in place or underway by the end of 
FY11, (2) categorizing the efforts with a consistent typology based on common, measurable parameters, 
and (3) performing cost-benefit trades for different microgrid architectures. This report summarizes the 
results of several months of analysis and provides insight into opportunities for increased energy security, 
efficiency, and the incorporation of renewable and distributed energy resources into microgrids, as well as 
the factors that might facilitate or impede implementation.  

In our cost-benefit trades, we have focused on resources that have been commonly used in the DoD 
to date. A wide range of traditional generation options and different renewable resources could be 
implemented into a microgrid; covering the entire spectrum of possibilities was outside the scope of this 
study. Over the course of the study, more than 75 people were contacted within all the military services, 
the Office of the Secretary of Defense, the Department of Energy (DOE), and the DOE laboratories. 
Forty-four installations were identified that either had existing microgrids, planned installation of 
microgrids, or conducted microgrid studies or demonstrations at their facilities. The aggregate 53 efforts 
at these installations were then categorized based on several key attributes including size, maturity, the 
inclusion of renewable resources, and the ability to operate in a grid-tied manner. The results of this 
survey are presented in Section 3.  

Preliminary cost-benefit trades were conducted to better understand how different environmental 
factors affected the choice of optimal microgrid architecture. Environmental factors in this context 
include location-dependent weather conditions, the properties of a given installation such as demand 
profile and land availability, and the limiting characteristics of the local electric grid and utility rate 
structures. Section 4 further describes the environmental conditions that strongly influence the costs and 
performance of DoD installation microgrids. 
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The analysis then compares several different high-level microgrid designs, presenting the cost of 
each as a function of the energy security provided by the architecture. Cost is specified as a net present 
value (NPV) given a 30-year project lifetime and a real discount rate of 2%. Energy security is specified 
as the number of days that an installation would be able to disconnect from the larger electric grid and 
operate as a stand-alone system, or “island.” The four different architectures that are analyzed are 

– Backup diesel generators that cannot operate in parallel with the local utility 

– Backup diesel generators that can parallel and participate in a demand-response program 

– Backup generators with solar PV integrated into a microgrid (fully islandable) 

– Same as above, but with battery storage to allow higher penetrations of solar photovoltaic (PV) 

These four cases are analyzed for three representative locations: Navy Base San Diego in San 
Diego, California, MIT Lincoln Laboratory on Hanscom AFB in Lexington, Massachusetts, and the 
Naval Support Facility Dahlgren in Dahlgren, Virginia. 

The results of this analysis show that the most cost-effective microgrid solutions will be those that 
take into account the needs of the local commercial electric grid and implement their systems so that they 
can earn value helping to meet those needs. In areas where commercial generation sources are stretched 
thin or with significant congestion on the electric grid, local generation can play an important role. A 
number of DoD installations enlist their backup generation resources in emergency demand-response 
programs, which aim to alleviate short-term congestion problems in the commercial transmission 
infrastructure. In these programs the installation is given a periodic credit on their electricity bill for 
promising to reduce the installation’s demand, either through load shedding or by turning on backup 
generators, when provided with a signal by the local utility. Analysis shows, and several installations 
have confirmed, that the financial savings from these demand-response programs more than pay for the 
cost of generation assets.  

In many areas of the country, solar PV generation is approaching, or has already reached, grid 
parity prices. Solar PV on military installations can be particularly attractive, since the land may be 
provided at reduced or no cost and the location, next to a large customer, may mean new transmission 
infrastructure is not required. As a result, the DoD has begun installing significant quantities of PV on a 
number of installations. If these solar generation resources were to be available to the microgrid during 
islanded operation, they could significantly extend the islanding time for the installation. Typical solar PV 
systems have anti-islanding provisions; therefore, both technical and contractual barriers need to be 
resolved prior to installing solar PV on DoD installations, if the system is to provide energy security 
benefits. 

For particularly promising PV locations, or those installations with requirements for extended off-
grid operation, microgrids with very high PV penetration may be the most effective solution. These 
microgrids have a number of technical concerns, particularly power quality issues that arise with isolated 
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low inertia electric grids. A number of technologies, including batteries and flywheels, could help 
ameliorate this problem, but further research and development will be required.  

For DoD installations located in wholesale electricity markets, there is an opportunity to enlist 
microgrid assets into the ancillary services market and potentially pay for a significant portion of the 
assets cost. The highest value ancillary services, including frequency regulation and spinning reserves, 
require a fast response to signals from the utility system. The technologies on more advanced microgrids, 
including energy storage and automated load management, are well suited to participate in this market 
during grid-tied operation. No existing installation microgrid has demonstrated the level of tight coupling 
with the utility energy management system and with the energy markets that would be required to benefit 
from these opportunities. The definition of a robust, cyber secure, interface between the microgrid and 
macrogrid that allows for coordination on short timescales is, however, an active area of research and will 
be a key determinant of the economic viability of more advanced microgrid architectures.  
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1. PROBLEM DEFINITION 

This study explores how to provide increased, cost-effective energy security for domestic 
Department of Defense (DoD) installations. Energy security is the ability of an installation to access 
reliable supplies of electricity and fuel and the means to use them to protect and deliver sufficient energy 
to meet critical operations during an extended outage of the local electric grid. Though there are a number 
of approaches to increased energy security, including improvements to the commercial electricity 
transmission and distribution infrastructure, this study focuses solely on improvements that could be 
made within the installation’s fence line.  

The U.S. electric grid, hailed as the “supreme engineering achievement of the 20th Century” by the 
National Academy of Engineering [1], is a highly complex system comprising over six million miles of 
transmission and distribution lines owned and operated by over 3,000 diverse organizations. Often 
referred to as “antiquated” or “broken” [2], the efficiency of the U.S. grid has actually improved steadily 
over the last century and the number of outages is on par with that of other developed countries. Still, 
regional power outages do occur, such as the Northeast Blackout of 2003 or the more recent Southern 
California Blackout of September 2011. In addition, as relatively large energy customers that are 
frequently situated in remote locations, DoD installations are commonly located at the end of 
transmission feeders. This leaves them particularly vulnerable to service disruptions from natural causes 
such as downed power lines. Recent reports have also highlighted the vulnerability of the electric grid to 
concerted attacks from adversaries, particularly cyber-based attacks which could disable portions of the 
grid for extended periods. 

The purchase and maintenance of backup power generation equipment on-base is a common means 
of ensuring continuity of operation during a disruption of the electricity supply. It is common for critical 
loads on installations to have dedicated backup generation sources, with the different military services 
providing varying guidance as to the required quantity of backup fuel that needs to be present. Moving 
from the prevalent model of single backup generators to a network of power generation and distribution 
equipment with intelligent controls offers a largely untapped opportunity to provide significant additional 
benefits to the installation. These benefits include 

– Increased reliability at a lower overall cost—The networking of sources allows fewer 
generators to be used and still achieve standard reliability criteria (n–1, n–2, etc.1). Multiple 
generators can also run on multiple types of fuel, allowing diversification of the supply chain.  

– Greater efficiency, which can lead to lower costs—Networking generation assets allow for load 
sharing, allowing fewer generators to run at higher load factors and therefore with greater  

                                                      

1 n–1 is a resiliency criterion that requires continued availability of the power network if any single asset were  
to fail. 
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efficiency. If the installation is running the generators often, the increased efficiency will lead 
to fuel and cost savings. 

– Enabler for the integration of renewable generation—The DoD is operating under a variety of 
federal mandates to increase the proportion of electricity generated from renewable sources on 
domestic installations. In order for these renewable resources to provide increased energy 
security, an intelligent electric power system will be required.  

– Ability to generate cost savings by using backup generation assets during normal operation—
Depending on an installation’s location, the local utility may provide a number of pricing 
structures that the installation can use to generate financial gain from the backup generation 
resources on-site. These include participating in a demand-response program, peak-shaving, or 
participating in the ancillary services market. 

– Ability to generate financial gain by exploiting advanced ancillary services—During grid-tied 
operation there is an opportunity for energy storage devices or aggregated loads to participate in 
the ancillary service markets that require near real-time operation. These services, including 
frequency regulation and spinning reserves, typically are valued more highly than resources 
that respond on longer timescales.  

The intelligent energy management system with local generation assets described above is 
oftentimes referred to as a microgrid and is the primary focus of this research.  

1.1 MICROGRID DEFINITIONS 

A large number of microgrid definitions exist from industry, government, and academia. The 
closest to a U.S. Government–approved microgrid definition is that developed by the Department of 
Energy (DOE) Microgrid Exchange Group: 

“A microgrid is a group of interconnected loads and distributed energy resources within clearly 
defined electrical boundaries that acts as a single controllable entity with respect to the grid. A microgrid 
can connect and disconnect from the grid to enable it to operate in both grid-connected and island-mode 
[3].”  

Requiring that the microgrid can operate in parallel with the electric utility grid leaves out a large 
number of systems on DoD installations that include multiple integrated generation sources and loads, but 
are not able to parallel with the grid. The goal of this study is to explore systems that provide energy 
security for DoD installations, and therefore begins with a very broad definition.  

In addition to the requirement to operate in parallel with the utility system, the DOE microgrid 
explicitly requires the microgrid to act as a “single controllable entity” with respect to the grid. This 
requires a degree of integration with the utility energy management system (EMS) that exceeds current 
practice within the DoD. Tighter integration with the utility system will likely provide significant 
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financial benefits to future installation microgrids, as discussed in Section 4.2.3, and is the focus of R&D 
efforts within the DoD. However, the criterion applied in this report only requires that sources and loads 
act as an “integrated system” and not as a single controllable entity.  

The definition provided here is not meant to supplant the DOE definition; instead its purpose is to 
provide a common reference frame for the remainder of this document. The DoD definition, provided 
below, does require the system to be able to disconnect from the grid, thereby distinguishing microgrids 
from the utility infrastructure used to supply physical islands, such as the Kwajalein Atoll, and from 
tactical microgrids that supply power to forward operating bases. Tactical microgrids have very different 
operational goals and mission constraints than DoD installation microgrids and will not be discussed in 
this report.  

“A DoD installation microgrid is an integrated energy system consisting of interconnected loads 
and energy resources which, as an integrated system, can island from the local utility grid and function 
as a stand-alone system.” 

Ultimately the precise definition of “microgrid” will only become important when it is tied to a 
specific funding or regulatory mechanism. For this report, the above DoD installation microgrid definition 
will be used. 

1.2 STUDY SCOPE 

There are three primary components of this research. First, a survey of DoD microgrids was 
conducted and the disparate efforts across the DoD have been categorized and are described. Second, the 
different architectures identified during the survey are analyzed for the level of energy security provided 
at a given cost. Finally, key parameters are identified that significantly influence the optimal selection of a 
microgrid architecture.  

Domestic electricity markets are going through a period of significant transformation, and the costs 
and services available to DoD installations are likely to change appreciably in the coming years. New 
technologies are continuously being introduced to the market, particularly in the area of renewable 
generation and energy storage. As the prices of these technologies fall, they will have a significant impact 
on cost-benefit trades for different microgrid architectures.  

As such, the findings in this report should be considered interim conclusions. The optimal selection 
of DoD energy security microgrid architectures and the added costs of energy security are challenging 
questions that require detailed assessments. The modeling and analysis presented in Section 5 are done at 
a fairly high level, but all of the assumptions are stated clearly, and areas in need of more detailed 
analysis are identified. This initial study attempts to begin framing this important issue and presents key 
areas in need of further study. 
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2. STUDY APPROACH 

Achieving the goals of this study, as described in Section 1, begins with assessing the financial 
tradeoffs of different microgrid architectures that provide increased energy security for DoD fixed-site 
installations. The first step in this process is to better understand the existing, ongoing, and planned 
microgrid efforts across the DoD. Next, the performance of these different microgrid architectures is 
assessed for a given mission and as a function of varying environmental factors. (In this context, 
“environmental factors” refers to not only the availability of natural resources such as sunlight and wind, 
but other location-dependant conditions such as the regulatory environment, base-dependent conditions 
such as demand profile and existing infrastructure, and utility-dependent conditions such as pricing 
structure and capacity.) Figure 1 illustrates this assessment approach.  

 

 

Figure 1. Assessment approach. 

There are a number of metrics that can be used to describe the energy security aspects of a 
microgrid. These include resiliency to different threats and the overall system reliability. To simplify the 
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presentation of results, a single metric is used in this study to quantify energy security. This metric is the 
length of time a microgrid can supply critical loads while disconnected from the utility grid, referred to 
here as islanding time.  

Given the mission of maximizing islanding time for minimum cost, different microgrid 
architectures are analyzed under varying environmental conditions. These architectures include a mix of 
traditional and renewable generation technologies and varying levels of energy storage, as well as 
different levels of interaction with the commercial electric grid. The microgrid architectures are analyzed 
for three different locations: Navy Base San Diego in San Diego, California, MIT Lincoln Laboratory on 
Hanscom AFB in Lexington, Massachusetts, and Naval Support Facility Dahlgren in Dahlgren, Virginia. 
For each of these locations, the demand profile, the local energy resources, and the local electricity prices 
are used in the analysis. The result of this assessment is a set of recommendations. These 
recommendations can be  

– technology investments that enable new microgrid architectures or  

– policy recommendations that can influence either the mission or the environment, particularly 
the regulatory environment, for the installation.  

Section 3 discusses current DoD installation microgrid efforts, classifies the different efforts based 
on several key attributes, and includes a more detailed discussion on several of the larger efforts. 
Section 4 discusses the different environmental factors that play a key role in the optimal microgrid 
architecture, including the structure of the local commercial grid, the attributes of a given installation, and 
the energy resources available in different parts of the country. Section 5 discusses the initial analysis 
including tradeoffs of different architectures as a function of location. Section 6 offers recommendations 
and identifies areas where additional work is needed. 
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3. OVERVIEW OF MILITARY MICROGRID EFFORTS 

To assess the different microgrid architectures already being explored within the DoD, discussions 
were held with over 75 personnel involved with DoD microgrids. From these discussions, a list of 
installations that qualify as microgrids was generated, and the different efforts could be categorized based 
on several key attributes. The criteria used to define a microgrid for this study was given in Section 1.1 
but is repeated below.  

“A DoD installation microgrid is an integrated energy system consisting of interconnected loads 
and energy resources which, as an integrated system, can island from the local utility grid and function 
as a stand-alone system.” 

Figure 2 shows the geographic distribution of the different microgrid efforts within the DoD that 
meet these criteria. It also shows several installations that may qualify, but that could not be confirmed 
over the course of this study. This survey should be considered a snapshot taken at the end of FY 2011, as 
installations continuously refresh their capabilities. 
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Microgrid efforts as of the end of FY 2011. Black: existing microgrids; Blue: efforts 
that are underway or demonstrations; Red: planned efforts or studies; grey: unable to 
determine microgrid status. Some locations have multiple efforts of the same type. Not 
pictured are the overseas microgrids at Kunsan AB and Osan AB, Korea. 

Figure 2. Military microgrid locations. 

3.1 DESCRIPTION AND CLASSIFICATION OF MICROGRID EFFORTS 

There are a large number of potential criteria that could be applied to the classification of DoD 
microgrid efforts. These include design-related characteristics (electrical, control, and communications 
system design), performance characteristics (cost, maturity), and the microgrid goals (energy security, 
power quality, reduced carbon dioxide emissions). The two variables that have the greatest impact on the 
performance of a DoD installation microgrid are the degree of integration of the microgrid with the larger 
macrogrid and the technical complexity of the microgrid, particularly its choice of generation resources.  

During grid-tied operation, it is the level of integration with the larger utility grid that will 
determine what utility services the microgrid can leverage to help offset the cost of resources on the 
installation. As will be described in Section 4.2, the faster a system can respond to requests from the grid 
operator the more value the microgrid provides to the larger utility grid with the financial benefits passed 
down to the installation.  
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During islanded operation, there are a number of key technical challenges which will drive the 
energy security benefits of the microgrid. Single backup generators that supply a given building or load 
typically run at low load factors leading to poor efficiency and maintenance concerns. Networking 
multiple generators allows generators to run more efficiently, but still relies on large amounts of diesel 
fuel storage to enable extended off-grid operation. The introduction of renewable generation, such as solar 
PV and wind, will reduce the amount of fuel storage required. At low penetrations (~20% and below) 
renewables can fairly easily be integrated onto a microgrid; however, the corresponding benefit is also 
quite modest. At higher penetrations, renewable generation potentially provides the greatest benefit, but 
its intermittency and low inertia (for solar PV) leads to significant technical challenges. 

Figure 3 shows where existing DoD installation microgrids and current R&D efforts fall relative to 
their degree of grid integration and technical complexity.  

 

Figure 3. Key microgrid parameters. 

Existing systems are primarily based on diesel generators with some systems being able to run in 
parallel with the local utility. No current DoD installation microgrids have the degree of integration with 
the utility grid necessary to participate in the ancillary services market. No current installation microgrids 
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can island with their intermittent renewable generation providing a large percentage of the installation’s 
power. There are, however, several R&D efforts that promise to demonstrate these capabilities within the 
next several years. 

To simplify the presentation of the current DoD microgrid efforts, the two main attributes described 
in Figure 3 are simplified to two categories each. This leads to the common implementation of four main 
types of microgrids, which are termed Type 1a (stand-alone backup generation), Type 1b (stand-alone 
generation with grid-tied RE generation), Type 2a (grid-tied backup generation that can be islanded), and 
Type 2b (grid-tied backup generation with islandable RE generation) (Figure 4). 

 

Notional schematics for how loads connect to the utility grid are shown for the four types of microgrids 
identified. Power sources are at the top of each panel and loads are at the bottom. Loads can connect through 
an either-or switch or with an on-off switch. The bottom half of the figure has systems that don’t interact with 
the utility grid vs. those that do. The left half of the figure has systems without renewable energy vs. those 
that do. Type 1a: stand-alone backup generation. Type 1b: stand-alone generation with grid-tied RE 
generation. Type 2a: grid-tied backup generation that can be islanded. Type 2b: grid-tied backup generation 
with islandable RE generation. 

Figure 4. Types of microgrids. 
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Applying these distinguishing features against all the microgrid efforts for which information could 
be found results in the data shown in Figure 5. This figure categorizes the different microgrid efforts 
based on the four different types shown in Figure 4, their size (on a logarithmic scale), and their level of 
maturity: existing, underway or demo, or planned or study. At the beginning of FY 2012, the DoD’s 
Environmental Security Technology Certification Program (ESTCP) initiated a new series of efforts on 
military microgrids; this figure does not show those efforts. 

 

Using the classification shown in Figure 4 for the way in which microgrids interact with the utility grid and 
the existence of renewable energy resources, microgrids for which there was obtainable data are shown. 
Existing microgrids (black outlined circles) are primarily without RE generation resources while those that 
operate in parallel with the utility grid are typically larger systems (the scale is logarithmic). Microgrids that 
are underway or were demonstrations (blue outlined squares) are primarily able to operate in parallel with the 
utility grid and incorporate many more RE generation resources. Microgrids that are planned or were studies 
(red triangles) have all been intended for systems that interact with the utility grid. Not shown are the 
purported existing efforts at Offutt AFB, Creech AFB, and Whiteman AFB, for which contacts were unable 
to be reached. 

Figure 5. Classification of existing DoD microgrid efforts by type, maturity, and size. 
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Almost none of the existing efforts include the integration of renewable generation onto a 
microgrid. The one exception is a smaller demonstration at Wheeler Army Airfield in Hawaii. The 
WAAF microgrid is the Honeywell-developed Smart Charging Micro-Grid (SCMG) developed for 
TARDEC. It is a compact ruggedized system of about 250 kW and includes significant stationary energy 
storage and a bidirectional vehicle to grid interface. The compact ruggedized nature of the SCMG closely 
resembles a tactical microgrid system. There are several ongoing efforts within the DoD that are looking 
to incorporate renewable generation onto an islandable installation microgrid, in particular the joint 
DoD/DOE SPIDERS (Smart Power Infrastructure Demonstration for Energy Reliability and Security) 
demonstrations at Joint Base Pearl Harbor Hickam (JBPHH) and Fort Carson, the microgrid project at 
Twentynine Palms in California, Ft. Bliss, and several of the FY 2012 ESTCP efforts described in 
Appendix B. 

The distribution of microgrids that can and cannot operate in parallel with the local utility is 
approximately equivalent. The systems that cannot parallel generally consist of multiple generation assets 
that are collocated at either one or more substations. These require a static switchover from utility to 
installation power which, depending on the hardware used, may allow for very brief paralleling to achieve 
synchronization enabling a soft transition. It is likely that there are some additional installations that fall 
into this category that were not able to be captured during this survey. With the increasing availability of 
gensets with paralleling capability, it is likely that more installations with generators dedicated to single 
loads will begin moving towards this architecture. 

The systems that can parallel with the utility can be further classified based on the forcing function 
that was the impetus for the development of the microgrid. These objectives include: 

Financial benefit: There are several installations that have tried in recent years to take advantage of 
the rate structure from their local utility by using local generation sources for financial benefit. One of the 
more significant efforts is at Ft. Bragg, North Carolina and involved the installation of 6 MW of diesel 
generators to perform peak-shaving. In addition, ANG Fargo, ANG St. Paul, and ANG Volk Field have 
installed backup diesel generators and enlisted these systems in demand-response programs. In these 
cases, the financial benefits from the demand-response program have more than paid for the lease of the 
generators. None of the installations listed currently participate in the more time-sensitive ancillary 
services markets such as spinning reserve or frequency regulation. A greater degree of automation and 
control will be required to participate in those markets. 

Critical Loads: The National Interagency Biodefense Campus at Ft. Detrick in Maryland is an 
example of a sustained critical load that requires a very high reliability power supply. In order to provide 
this high reliability, a microgrid system was installed at Ft. Detrick that supplies electricity with 99.999% 
reliability. An example of a short-term critical load would include the launch facility at Vandenberg AFB. 
Due to mission criticality, the base is required during heavy lift operations to provide two independent 
sources of power: on-base diesel generation and utility power. The generation assets on-base need to be 
running in parallel with the utility and need to be fully loaded, so the excess power (several MWs) is 
dissipated through a large resistive load. 
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Intermittent Electrical Service: Because of the fairly remote location of many DoD installations, it 
is not uncommon for an installation to be near the end of a utility feeder. This makes it more likely that 
the installation will experience more frequent power interrupts. NSF Dahlgren in Dahlgren, Virginia and 
MCAGCC Twentynine Palms in Twentynine Palms, California have responded to this situation by 
building, over the course of a number of years, substantial on-base generation capabilities. Both 
installations can operate these assets in a grid-tied manner. For Kunsan AFB in Kunsan, Korea, the local 
utility (KEPCO) requires 48 hours of downtime per year for the substation that feeds the base, in order to 
provide preventative maintenance. A system of eight MEP-12 generators (6 MW total) can feed the entire 
base during this annually planned outage and half can also operate in parallel with the utility. 

Utility Operated Assets: Both Tinker AFB in Oklahoma and Robins AFB in Georgia have utility-
operated natural gas-fired peaker plants located on-base. These plants can be islanded and provide the 
base with energy security during a grid outage. Wheeler Army Airfield and the Hawaii Electric Company 
are in the early phases of investigating a similar arrangement.  

3.2 DETAILED DESCRIPTION OF SEVERAL EFFORTS 

Representative examples of different existing microgrid approaches have been chosen in this 
section to be described in more detail (all efforts shown in Figure 5 are described briefly in Appendix A). 
Three examples of different implementations of Type 2a microgrids, systems that include conventional 
generation with the capability of operating grid-tied, are provided. NSF Dahlgren has an extensive 
network of diesel generators that was installed due to poor reliability in the local utility grid, and which 
participates in a demand-response program through a third part aggregator. Fort Detrick has two 
microgrids that were designed to provide highly reliable power to critical assets. Tinker and Robins AFBs 
have utility-operated natural gas peaker plants located on base that can be islanded and provide energy 
security if the local grid were to go down.  

In addition, three examples are provided of installations that are currently funded to develop 
Type 2b microgrids, systems that include renewable generation with the ability to operate grid-tied. 
Twentynine Palms has an existing microgrid which includes a 7.2 MW cogeneration plant, and is in the 
process of incorporating several MWs of existing PV onto their microgrid. The SPIDERS program has 
two microgrids currently under development. The first phase is a microgrid at JBPHH that includes a 
small quantity of PV and wind with conventional diesel generators. The second phase SPIDERS 
microgrid at Ft. Carson will be more advanced, including high penetrations of PV (2 MW) and the 
planned integration of plug-in electric vehicles. The Ft. Bliss microgrid includes solar PV, diesel 
generators, and lead acid batteries. During grid-tied operation, the Ft. Bliss microgrid will be able to peak-
shave using the generator and battery. In general, the Type 2a microgrids require more advanced controls 
and automation to balance and optimize renewable and conventional generation with energy storage.  
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3.2.1 NSF Dahlgren  

Naval Support Facility (NSF) Dahlgren, part of Naval Support Activity (NSA) South Potomac, is 
an installation within the Naval District Washington (NDW). NDW is developing a phased approach to 
increase their energy efficiency and energy security capabilities. In implementing this plan, the first phase 
was to install and network together meters for electricity, natural gas, and hot water. The work started 
about two years ago with now approximately 200-300 devices at NSF Dahlgren, NSF Indian Head, and 
Washington Navy Yard. They are in the process of finishing the other 18 fencelines in NDW.  

The second phase is to develop concept of operations (CONOPS) so that energy management can 
be automated and scaled where it makes sense. There will be a tremendous increase in sensor data, but 
human operators will still play a critical role, making clear and consistent CONOPS an important aspect.  

The third phase will be to allow the selective demand-response, load-shedding, or islanding of areas 
of an installation. NAVFAC (Naval Facilities Engineering Command) Washington has procedures that 
govern how transfer switches operate for switching between generation sources at a substation that may 
impose temporary obstacles. At the moment, some switching at substations requires people to be on-site, 
but since the procedures are there to increase safety, it may be possible implement this system with 
cameras instead. 

To implement this three-phased approach, NDW has started by taking existing systems and 
networking them together in a cyber-secure manner. This has been made easier by the fact that after 
September 2001, the Navy created a Public Safety Network (PSNet) that is used for Navy Public Safety 
operations in the continental United States (CONUS) area. The existence of this system meant that the 
smart meters can be integrated into an existing infrastructure.  

At NSF Dahlgren, there has been a microgrid system for many years. Originally, the microgrid was 
implemented because of service reliability problems with the commercial utility (Dominion Virginia 
Power [DVP]). A cost analysis a decade ago showed that the lost revenue from power outages more than 
paid for the lease of generators from the NAVFAC Mobile Utilities Support Equipment program. The 
generators installed were in addition to the critical load generators that were required for specific Navy 
working capital programs. In implementing the microgrid, NSF Dahlgren has put in a Supervisory 
Control and Data Acquisition (SCADA) system as well as switching systems at substations, which are 
collocated with the generators. The generators are at the substations, not at individual buildings, allowing 
power to be used throughout the base, depending on the configuration of the substations. The microgrid is 
operated in two modes: to provide backup power to the facility if the utility grid goes down, and to 
operate in parallel with the utility grid to reduce load on the utility grid. The generators cannot back-feed 
power into the utility grid (in addition to the financial and safety complexities that this would introduce, 
there are technical aspects that would need to be solved). 

Currently, all of their backup generation capacity is diesel-powered because, at the time of 
implementation, that was the option that made the most financial sense. As renewable energy and energy 
storage come down in price, NAVFAC and NDW would consider adding these to the microgrid since the 
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infrastructure already exists. NAVFAC and NDW are interested in both the financial and energy security 
aspects and stated that one has to complement the other. 

The cost calculations for the microgrid have also included different ways to interact with the utility 
market. The rate structure that the base formerly operated on made it economically attractive to use their 
generation capacity in an active effort to reduce peaks in energy usage through peak-shaving. This rate 
structure has since changed, and they are currently enrolled in a demand-response program, where they 
can, and do, curtail power usage or start their own generators to reduce apparent demand. NSF Dahlgren 
currently has 14 MW of generation capacity enrolled in the demand-response program through a third-
party, and they were called on several times last year to perform. The payments from the demand-
response program cover the costs of the generator leases, showing that energy security can be enhanced in 
a cost-neutral way (dependent on which part of the country the installation is located).  

The cost equation at NSF Dahlgren could change, as Dominion Virginia Power is currently 
upgrading the single 34.5 kV feeder to the base so that there will be an additional 115 kV feeder line. If 
the base no longer loses power regularly and the availability of the demand-response program changes, 
the lease economics for the generators could change.  

3.2.2 Fort Detrick  

There are two existing microgrids at Fort Detrick: at the signal corps area and at the central utility 
plant. The signal corps microgrid has existed since 1975 and is dedicated to and collocated with the 
mission, which is in a fenced area. Even though this is mission-dedicated capacity, Fort Detrick has 
started operating in a demand-response program through a third party, using a quarter of their 8 MW 
generation capacity (the peak mission load is around 2.5 MW), while still allowing n–12 redundancy with 
Fort Detrick’s generator sets. In the summer, the base frequently operates the microgrid in an islanded 
configuration due to frequent outages and poor power quality from the local utility. The mission 
requirements specify a 30-day supply of diesel fuel.  

The second microgrid is also mission-specific. Privately owned and developed through an enhanced 
use lease, it provides steam, chilled water, and conditioned electric power to medical and research 
missions at the National Interagency Biodefense Campus. This microgrid provides 99.999% electrical 
reliability so that its normal operation can transition seamlessly to backup generation. The capacity is 
being expanded from 6–7 MW up to 16–17 MW, but due to the mission criticality, it is not available for 
backup power for the rest of the base or for cost-saving measures through demand-response or ancillary 
service markets. The base pays 21¢/kWh for electricity from this microgrid, as compared to 8¢/kWh for 
electricity from the utility. 

                                                      

2 n–1 is a resiliency criterion that requires continued availability of the power network if any single asset were  
to fail. 
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Fort Detrick has also commissioned a study to look at a wider microgrid deployment on the 
installation, including the ability to link backup generator requirements in a way that is more reliable and 
cost-effective. The study recommended a 10.3 MW diesel-powered generator microgrid design which 
would allow long-term backup capability, whereas the individual building generators are designed for 
short-term operation. (Refueling trips for the 50+ building generators becomes an issue with tanks that 
have limited individual capacity.)  

Fort Detrick also has ESTCP funding for an energy storage installation by SATCON and is 
investigating the possibility of a 10 MW solar PPA. Fort Detrick is an Army Net Zero installation. 

Challenges:  

Discussions with Fort Detrick also brought up that communications requirements could pose a 
challenge: the supervisory control and data acquisition (SCADA) equipment that they installed 
(Schneider Electric, Square D Power Logic) has a certificate of networthiness that is now required to 
connect systems to the installation local area network. Equipment without that certificate cannot be 
connected, leading to potential challenges if the smart meters were purchased before all networking 
questions were resolved. 

3.2.3 Tinker AFB and Robins AFB  

Tinker AFB and Robins AFB have on-site combustion gas turbines, owned and operated by their 
respective local utility companies, which provide power to the installations in the event of a power 
outage. Each base was approached independently by the utility companies when they were looking for a 
location to site peaking power plants. The generators were installed and paid for by the utility companies, 
with the base providing the land. 

Tinker AFB has two utility owned-and-operated 40 MW generators in one of the substations that 
operate routinely in the summer, but provide backup, islandable power for the base in the event that the 
grid goes down. The base has first rights to the power and, in the event of a grid power blackout, the 
generators can be used to blackstart the utility grid (blackstart is the ability to go from a shutdown 
condition to an operating condition without the utility grid – other generating units can then restart and 
synchronize to the unit that has restarted). The blackstart or islanding operation has yet to be operationally 
tested at Tinker. The 40 MW generators have about three days of backup JP-8 fuel for power generation. 
They began operating in 1988 and are on a second 15-year contract period. In addition, the utility at 
Tinker AFB wants to build a 250 kW solar array. The building targeted is on the 15 kV distribution 
system and would also be islandable, with the rest of the 80 MW backup power.  

Robins AFB also has an on-site combustion turbine plant, theirs consisting of two 80 MW 
generators. Operated by Georgia Power, the Robins plant is a peaking power plant during normal 
operation but, like the Tinker AFB power plant, can be islanded upon loss of grid power (this capability 
was tested three years ago at Robins). Normally the generators’ gas turbines run on natural gas, but they 
use a 1.3 million gallon diesel tank for backup (corresponding to about 18 days of operational capacity). 
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There is also a 3 MW generator used to blackstart the grid if both larger generators go down. In practice, 
though, the generators would most likely never operate in an islanded mode, as they tie into the Georgia 
power 115 kV primary line and feed loads off the installation as well. Restarting the grid and service 
decisions would be made by the utility company, but given the proximity of the base to the generation, 
Robins AFB is likely the first customer restored to power. 

3.2.4 MCAGCC Twentynine Palms  

Marine Corps Air Ground Combat Center (MCAGCC) Twentynine Palms has an existing microgrid 
that operates daily, powered by a 7.2 MW CHP plant fueled by natural gas with diesel backup. It 
normally operates 24 hours a day/seven days a week, generating power in parallel with the local utility, 
Southern California Edison (SCE), to provide electricity and heat to the main power loop of the 
installation. It is directly tied in to one of the substations and has the ability to operate in an islanded 
mode, should the main feed for the installation go down. There is a requirement for seven days of backup 
diesel fuel, with diesel storage at the cogeneration plant and elsewhere on the base. During the course of 
this study, many changes to the MCAGCC Twentynine Palms microgrid have been in process. ESTCP 
has funded several General Electric (GE) efforts at Twentynine Palms, including the installation of smart 
microgrid controls and the future installation of an energy storage system. The description provided here 
was current as of February 2012. 

Switchover to islanded operation is currently performed manually at the control room of the CHP 
plant, but in the next couple of months (as of February 2012) it will transition to automatic switching at 
the substation. While operating in islanded mode, switches and breakers allow the main power loop to 
shed loads if demand exceeds generation, with additional switches currently being added. 

There is also 3.2 MW of solar PV generation capacity operational on the base, distributed among 
approximately 30 individual building-level arrays and a larger 1.2 MW field that ties directly into the 
CHP plant substation. 1.3 MW of additional PV is installed and awaiting SCE interconnection approval. 
The PV arrays can feed the CHP plant in the event of power loss from SCE and has been operationally 
tested in early 2012 with load shedding plans implemented. There are more than 60 new switches to 
change power flows through the base and more than 140 buildings with Energy Management and Control 
System (EMCS) power management systems. Future plans call for more buildings with EMCS and tighter 
integration of those systems with the controls at the CHP plant. MCAGCC Twentynine Palms currently 
has about 80% of their buildings metered, which gives them insight into more than 75% of all electricity 
use. They are also adding natural gas, MBTU meters for hot water, and MBTU meters for cooling. Those 
meters will then tie back into the EMCS and the base-wide public works network. 

The main feed from SCE is a single 34.5 kV line, but the installation is outgrowing the ability of 
that line to provide power, especially in the summer and with the significant expansion of the installation 
that is underway. SCE is installing redundant feeder lines to Twentynine Palms, with dual 115 kV lines, 
which will improve electrical service in the whole area, but that is still underway (with planned finish date 
of January 2013), with some permitting issues that have extended the timeline repeatedly. Upon 
completion, the installation will own the infrastructure at the substation. 
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In addition to the solar PV upgrade, the plan calls for installation of a second CHP plant (it will be a 
dual 4.6 MW turbine for a final output of 9.2 MW powered by natural gas with propane backup so that 
there will be more diversity of backup fuel), more PV (5.5 MW), the ability to control the power factor of 
the generation resources with a capacitor bank, and a large-scale battery back-up. There has been a 
0.5 MW fuel cell in progress for several years, but it is not yet operational. 

Also, GE is conducting a smart grid demonstration at four buildings to show controllability of five 
generators (range 20–150 kW) as part of a multiphase effort. Unfortunately, due to permitting problems, 
they cannot currently be used in load-shedding applications, but only in an emergency if the installation 
needs to operate in an islanded mode. Other efforts include improving the power factor control with 
capacitor banks; better control of supplies, loads, and load-shedding; and installation of a battery backup 
system. 

The entire installation of Twentynine Palms consists of over 900 square miles of land area located 
in the high Mojave Desert of California. As such, the base is an attractive location for the large-scale 
implementation of renewable resources and is exploring the possibility of exporting excess power. This 
excess power would be provided through a power purchase agreement (PPA) to other Navy and Marine 
Corps facilities in southern California. It will take several years to gain the appropriate approvals but, if 
successful, will help to meet Federal and Navy renewable mandates.  

Challenges:  

California has more stringent requirements than other states in terms of emissions standards. 
Assembly Bill 32 (AB32) was signed into law in 2006 and aims to reduce greenhouse gas (GHG) 
emissions and cap them at 1990 levels by 2020 [4]. The law limits the total metric tons of GHG that can 
be produced, but there is no allowance for growth. This is a challenge since many buildings have their 
own generators, new buildings are being built, and many new buildings will have backup power 
requirements. The installation of the CHP cogeneration plant allowed Twentynine Palms to drastically cut 
the use of boilers that were high emissions and low efficiency, but this unfortunately did not count 
towards the California Air Resources Board (CARB) requirements for CO2 emissions reductions. There 
are holdups with the second CHP plant because of permitting considerations, but the base is pushing for a 
permanent waiver to AB32; it is currently scheduled for completion in January 2013. 

Communication with the substations has posed challenges because of cyber-security concerns. The 
original plan was to use a wireless communication system for the base EMCS. To help resolve these 
concerns, MCAGCC Twentynine Palms is in the process of running fiber optic connections to the 
substations, but at the moment they do not have communications support. This lack of communications 
control has delayed the smart grid demonstration that GE has been working on. This communications 
infrastructure will also be used for developing EMCS controls. The protocols running over the fiber optic 
lines will have cyber-security controls to allow the meters and EMCS systems to tie in to smart grid 
controls. 
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3.2.5 SPIDERS  

The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) 
JCTD is a multiphased joint effort to develop microgrids in a cyber-secure manner. SPIDERS is a 
collaboration between several of the DOE Laboratories with several organizations within the DoD and is 
led by the U.S. Army Corps of Engineers. The effort is subdivided into three phases, with build-out 
efforts at Joint Base Pearl Harbor Hickam (JBPHH) (Phase 1), Fort Carson (Phase 2), and Camp Smith 
(Phase 3). The goal is to deploy or apply technology over legacy systems, looking at the technical 
feasibility as well as the business case and value proposition. Phases 2 and 3 are adding elements of cyber 
security to allow situational awareness and the ability to coordinate power demands with the utility 
provider. 

The first phase includes traditional generation coupled with small-scale renewable generation (solar 
and wind) to island a water treatment plant at JBPHH. The preliminary design for the microgrid includes 
two diesel generators supplying a maximum of 2.4 MW, 50 kW of vertical-axis wind turbine generation, 
and the potential to incorporate a hydrogen storage system and small scale solar PV. The total critical load 
that is being serviced is approximately 650 kW. The contract for Phase 1 was awarded in November 2011 
to Burns & McDonnell Engineering Company. A key component of this phase is to work with the Navy 
accreditation process, the DoD Information Assurance Certification and Accreditation Process (DIACAP) 
[5], and platform IT to ensure that equipment developed for the microgrid architecture is able to be used 
with all network infrastructures. If desired, all services have the opportunity to implement the same 
architecture by leveraging the Navy’s accreditation approvals for the SmartGrid networks and system 
through the DoD’s reciprocity memo [6]. 

The Request for Proposals (RFP) for the second phase at Fort Carson was released in January 2012 
as a two-stage RFP, with first-phase responders down-selected to submit full proposals in the second 
phase. The Fort Carson microgrid will incorporate existing generation resources with large-scale 
renewable (solar) resources and battery backup (supplied in electric vehicles). The load that will be 
targeted for the Fort Carson demonstration will be a 2–3 MW critical load. The solar PV available on-
base is approximately 2 MW. Key components of this phase are to include cyber-security considerations 
(a major stumbling block for other implemented microgrid efforts) and the design of a microgrid with 
very high penetration of renewable generation. 

The third phase of the SPIDERS program will be a microgrid at Camp Smith, Hawaii that is 
capable of operating the entire installation independently from the local utility in a cyber-secure manner. 
The precise details for this phase are still being formulated, but the current plan is to do a microgrid for 
the entire campus (~15 MW) with diesel generators, solar PV, and energy storage. The plan is dependent 
on FY 2013 funds, so is not yet formalized. There have been serious power quality and power outage 
issues at Camp Smith over the last six months. 
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3.2.6 Fort Bliss  

 The Fort Bliss microgrid is an ESTCP funded development that is in-process as of February 2012. 
The project aims to construct a microgrid that will be integrated into the Dining Facility of the Battalion 
Combat Team-1 (BCT-1) complex at Ft. Bliss, Texas and is being executed by Lockheed Martin. The 
total peak power of the microgrid will be approximately 600 kW, with the expectation that it will be a 
scalable solution. 

The goals of the Ft. Bliss microgrid are to reduce green house gas emissions, lower operating costs, 
and enhance the energy security of the installation. The microgrid consists of existing diesel backup 
generators (250 kW), an existing PV array (100 kW), and a new lead-acid battery (300 kW/60 kWh). 
Advanced controls will be integrated into both the existing PV inverter and the diesel generator to allow 
for islanded operation and advanced performance optimization. 

The architecture of the Ft. Bliss microgrid is designed to be flexible with distributed control at each 
distributed energy resource (DER) interfacing onto a common integration bus. The distributed controllers 
interface with a centralized microgrid controller that optimizes the dispatching of DER resources, 
aggregates and displays system performance, and could act as a single gateway to the utility EMS.  

The utility rate structure at Ft. Bliss includes both a significant demand charge based on the peak 
demand (kW) during each monthly period and very different on and off peak energy charges during the 
summer months. By shaving peak demand and shifting demand to off peak time periods, the Ft. Bliss 
microgrid will aim to reduce overall operational cost of the system. Both the battery and the diesel 
generator will participate in the peak shaving activity, although the generator will be limited due to 
emissions requirements. 

Peak-shaving requires a knowledge of the installations energy demand, but does not necessarily 
require a direct tie to the utility EMS. Still, this is an important initial demonstration of the duel usage of 
energy-storage devices, both to provide additional energy security while off-grid and cost savings during 
grid-tied operation.  

The installation is also looking at an ESPC project (112 kW at a range facility, 112 kW at another 
range, 1 MW on post).  

3.3 SUMMARY 

Energy security is not a new problem for DoD fixed-site installations. Critical loads have 
historically been required to have a backup energy source to sustain operations if the grid were to go 
down. This strategy has resulted in installations that have a large number of smaller generators dispersed 
around the installation typically tied to the low voltage supply for individual buildings. While this system 
is simple to implement and provides a fairly robust solution to intermittent short duration power outages, 
it is not a system that is optimized to provide longer duration energy security. 
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The use of generation assets that can supply a larger portion of an installation, typically through a 
medium voltage connection, and can be controlled and operated through a base-wide energy management 
system, has a number of benefits. These include the ability to provide power more efficiently, the 
potential to provide reliable power more cost effectively, and reduced maintenance requirements (fewer 
large generators as opposed to many small ones). If facilities are going to be required to island for greater 
than 72 hours, then fuel storage will likely need to be centralized. The problem of dispensing fuel then 
becomes a logistics burden for large installations that could have over 50 critical loads.  

As DoD installations move towards centrally controlled generation assets tied to a medium voltage 
distribution system, the opportunity exists to operate these systems in a grid-tied manner. The added 
complexity required to operate on-base generation assets in parallel with the larger grid will depend 
strongly on the requirements of, and opportunities to work with, the local utility. Several installations, 
including NSF Dahlgren and Ft. Detrick, have determined that this added complexity is worthwhile either 
for increased reliability or to gain financial benefit through utility rate structures. These installations 
participate in emergency demand-response programs whereby the installation receives a monthly 
incentive based on the capacity of the assets enrolled in the program. Emergency demand-response 
programs typically involve a human-in-the-loop and require the installation to respond within an hour to a 
request from the utility. 

Microgrids at both Ft. Bragg and Ft. Bliss have more automated systems that are used for peak 
shaving. The Ft. Bliss microgrid will use a priori knowledge of the bases’ electricity cost structure and 
real-time energy usage data to shave loads using energy storage devices and generators. The Ft. Bragg 
microgrid uses diesel generation assets to peak-shave both to reduce monthly system peaks and for 
economic dispatch based on day-ahead hourly rates from the local utility.  

As will be discussed in Section 4.3.2, the DoD is operating under a number of renewable energy 
mandates. In order to meet these goals, the military has started looking at the significant deployment of 
renewable generation, particularly solar PV on select installations. Currently all of the renewable 
generation systems on an installation must be disabled when that installation loses grid power. There are, 
however, several installations that are in the process of implementing islandable, renewable generation 
systems, including Ft. Bliss, Twentynine Palms, and the SPIDERS microgrids at Ft. Carson and JBPHH. 
Through this ongoing research, a better understanding of the cost-effectiveness of integrating renewable 
generation onto installation microgrids will be achieved.  

The integration of high penetrations of renewable generation onto an installation microgrid will 
require a higher degree of sophistication, including advanced controls and energy storage systems. It is 
possible, however, that much of the additional cost of these more advanced systems can be offset by 
participating in the ancillary services market, thereby using these technologies for financial benefit during 
grid-tied operation. A project starting at Air Force Base Los Angeles in FY12 will be the first 
demonstration of assets on a DoD installation participating in the ancillary services market. This project is 
not planned to be a microgrid demonstration, and instead focuses on the integration of plug-in electric 
vehicles on DoD installations.  
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There is no standard approach to solving the problem of energy security. Each base has different 
existing infrastructure and mission requirements. But while there is no one-size-fits-all solution, the 
natural progression is towards more integrated systems that allow for greater flexibility and potentially 
longer off-grid operation. Additional research and, most importantly, site demonstrations will be required 
to fully understand the economic and technical tradeoffs in these complex systems. 
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4. ENVIRONMENT 

The location of a military installation influences the options available for energy generation 
sources, the options available for interaction with the local utility, the characteristics of the local 
electricity infrastructure, and the regulatory environment. In addition to the installation itself, the service 
it is a part of, the load profile of the installation, and the local energy manager play a large role in the 
successful implementation of microgrids that increase energy security. Renewable generation sources are 
discussed in Section 4.1, characteristics of the domestic utility grid and market options are discussed in 
Section 4.2, and characteristics of installations themselves are discussed in Section 4.3.  

4.1 LOCATION-DEPENDENT CHARACTERISTICS (RESOURCES AND WEATHER) 

The location of an installation has a strong influence on the cost equation for renewable generation. 
It is well known, for example, that the resources available for solar energy production are greatest in the 
Southwestern part of the United States, while the greatest wind resources are available in the plains states, 
Texas, and off of the eastern seaboard. The maps in Figures 6 and 7 show the distribution of solar and 
wind resources across the U.S., respectively. 

 

 

Figure 6. Solar PV resources in the U.S. 
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Figure 7. Wind resources in the U.S. 

While the average distribution of natural resources across the U.S. is well known, it is only one of 
the measurements of resource viability that is important for microgrid design. Depending on what kind of 
utility pricing structure the installation operates under, the financial benefit from renewable generation is 
dependent on the total performance of that resource over the entire year (the total kWh of energy 
produced) or on the peak production during times of peak load (for installations with real-time pricing). 
The benefit for energy security will need to be considered based, not on the average conditions, but on the 
resource availability during the least favorable time of the year.  

For example, the ability of photovoltaic generation to extend the length of time that an installation 
can operate in an islanded manner depends not on average values of solar availability, but on how much 
power is produced during the time when the installation must be islanded. This can be highly variable in 
the short term, so the length of islanding time required for that installation impacts the role renewable 
resources can have in meeting that requirement. The longer the length of time an installation must island, 
the less variation there is in power output from the renewable generation, and the more it can factor into 
the energy security strategy. The variability of renewable resources and their impact on energy security 
will be discussed in more detail in Section 5.3.4 with an emphasis on the impact that solar PV can play in 
meeting the energy security goals. 

There are other, nonintermittent, resources that could both provide energy security for an 
installation and help meet renewable mandates. Biomass, geothermal generation, and landfill gas systems 
are examples of dispatchable renewable resources that could fill this role. However, most of the efforts 
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within the DoD are focused on the integration of solar PV due to its increasing cost effectiveness, relative 
ease of installation, and general availability. As such, solar PV is the primary renewable resource 
examined in this study. Future work can, and will, incorporate other renewable resources as well as the 
impact of cogeneration. 

4.2 DOMESTIC ELECTRIC GRID CHARACTERISTICS 

Across the United States there exists a wide variety of electricity markets. Some of those markets 
provide mechanisms by which microgrid capabilities could be used to provide services to the utility grid 
that provide payback to the installation, helping to pay for the energy security provided by the microgrid. 
To highlight these options, this section provides a brief overview, from a DoD-relevant perspective, of the 
characteristics of the larger electric grid that are important in determining the openness of the local utility 
market, the revenue streams available, and the electricity pricing structures that exist. For a more in depth 
overview of the electric grid and the effects of deregulation, suggested reading includes “The Future of 
the Electric Grid,” an interdisciplinary MIT study, or “A Primer on Electric Utilities, Deregulation, and 
Restructuring of the U.S. Electricity Markets” by Mike Warrick [7, 8].  

4.2.1 A Brief Overview of the Electric Grid 

The domestic electric grid can be subdivided into three main components; the power generation 
plants that produce electricity, the transmission infrastructure that moves the electricity across long 
distances to load centers, and the local distribution system that provides power to end users. This system 
is shown graphically in Figure 8. 

 

 

Figure 8. Major components of the electric grid. 
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A large majority of the generation plants in the U.S. are fossil fuel powered, although there has 
been a steady increase in renewable generation facilities in recent years. Generation plants are typically 
very large to take advantage of economies of scale, and are located far from major load centers such as 
cities. Voltage is stepped up to higher voltages when leaving the plant in order to reduce losses during 
transmission.  

The transmission infrastructure moves power across long distances, including state lines from 
generating plants to customers. From a physical standpoint, the continental North American transmission 
system is divided into several distinct, disconnected regions as illustrated in Figure 9. These systems are 
not synchronized; therefore, there are no AC interconnections between the three regions, only a few high 
voltage DC interconnects exist.  

 

Physical separation of the North American electricity grid is generally thought of as having three main 
regions – the Western Interconnection, the Electric Reliability Council of Texas, and the Eastern 
Interconnection – with no AC connections between them.  

Figure 9. Subdivision of the North American grid. 

The distribution system converts the power from higher transmission level voltages to lower 
voltages that can be used by end customers. The distribution provider is also responsible for interacting 
with end customers including negotiating and setting rates. 
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4.2.2 Deregulation and the Electricity Markets 

Traditionally utilities were vertically integrated enterprises that owned and operated generation, 
transmission, and distribution assets as well as providing service to captive end customers. Because 
utilities were a monopoly, their rates were negotiated with regulators and priced to reflect the utilities’ 
costs and an agreed upon rate of return. Starting in the late 1990s, the power industry in the United States 
began to deregulate. In regions of the country where deregulation has occurred, the formerly vertically 
integrated utility monopoly has transformed into a competitive market where a large number of 
enterprises compete to provide power. 

Traditionally it is the role of a balancing authority to ensure that loads and generation resources are 
matched over a given control area, thus maintaining a stable frequency for the utility system. There are 
currently more than 100 different balancing authorities in the U.S. and Canada, as shown in Figure 10.  

 

Balancing authorities across the continent are shown in white bubbles, and NERC regional entities are shown 
by different colored regions. Physical breaks between the regions shown in Figure 9 are shown here with 
black double-headed arrows [9]. 

Figure 10. Balancing authorities and NERC regional entities. 
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Independent Systems Operators (ISOs) or Regional Transmission Organizations (RTOs) are larger 
balancing authorities that may act across state lines. In certain deregulated markets these entities also act 
as wholesale electricity markets to provide nondiscriminatory access to transmission, to help with 
regional planning, and to enable competition in the wholesale electricity market. As competition in 
wholesale markets has led to the greatest diversity of market options, the location of all CONUS fixed 
installation military installations are shown overlaid on top of the map of ISOs and RTOs (Figure 11). 

 

 

The seven ISOs and RTOs in the U.S. are shown in color with the locations of all military installations superimposed in red. 

Figure 11. ISO/RTO boundaries and military installations. 

Currently two-thirds of all consumers are served by wholesale markets, with the remaining served 
by a combination of vertically integrated utility companies, municipally owned utilities, federally owned 
utilities, or cooperatives. Regardless of market structure, the general strategies that all balancing 
authorities follow for normal (noncontingency) operation include: unit commitment, forward scheduling, 
load following, and frequency regulation. Figure 12 [10] illustrates the time scale for these strategies. Unit 
commitment and day-ahead scheduling are determined days and, in some cases, up to three years in 
advance through a bidding process. Load scheduling is determined on the same day and is usually 
obtained through economic dispatch. Frequency regulation has a short required response time, ranging 
from seconds to a minute. 
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Figure 12. Generation and load balance. 

4.2.3 Electricity Prices and Ancillary Services 

The wide variety of stakeholders in the electricity market complicates the determination of options 
available for military installations in different regions, in different markets, and with different utility 
providers. Particularly within the wholesale markets, a wide range of pricing options exist that depend on 
the grid infrastructure, the generation resources online at a given moment, and demand requirements. 
Utilities also have distinct rate structures for specific types of customers and different pricing alternatives. 

Even within a state’s boundaries there are often a large number of balancing authorities and utility 
companies. Energy market choices based solely on the state where the installation is located would almost 
always be too broad; finer granularity has a significant effect. As an example, the breakdown of balancing 
authorities and utilities with the location of all DoD installations in California are shown in Figure 13.  
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The left panel shows the different control areas for the 10 balancing authorities in California with military 
installations overlaid in red. Highlighted in black text are installations that have or are implementing 
microgrids. The right panel shows the 57 different utility companies and the areas in which they operate. 

Figure 13. Balancing authorities, utilities, and DoD installations in California. 

Further confusing the determination of electricity prices, even within a given ISO or RTO there is 
no single price for electricity or services. Due to congestion in the transmission system, it is more costly 
to supply power to certain locations within a service area. Locational Marginal Prices (LMPs) are 
provided at 295 different nodes within the PJM Interconnection RTO; the Midwest ISO (MISO) reports 
LMPs at 1964 different locations. 

The price of electricity for any consumer, including DoD installations, consists of energy usage, 
transmission, and distribution costs. Energy usage costs depend on the mix of generation resources (coal, 
natural gas, nuclear, wind, etc.) employed in the local area and vary depending on the time of day and 
year. Utilities typically dispatch their generating plants with the lowest operating cost first and reserve 
more costly, and often faster-responding, generation assets to respond to shorter-term fluctuations in 
demand.  
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Transmission and distribution assets are scaled to meet the peak demand on a system, and as such it 
is common for large consumers to pay a transmission cost based upon their peak demand. This peak can 
be the peak demand over the course of an entire calendar year, the peak demand in a given month, or the 
peak demand on the day of the total system peak demand. 

It is therefore common for a large electricity customer, such as a DoD installation, to have both an 
energy charge based on the kWh of energy used over the billing period and a separate demand charge 
based on peak kW. The energy charge can either be a negotiated flat rate or, for certain installations 
within an open market region, a real-time price that updates on an hourly basis. The peak demand charge 
can either be a direct charge or it can be tied to the energy usage charge where the kWh rate is based on 
the peak kW demand over a defined time period. 

To protect the system and to ensure reliable generation and load balancing during contingency 
events, such as a sudden loss of power generation or the failure of a transmission line, balancing 
authorities also acquire operating reserves for contingency operations. In the areas of the country with 
open energy markets, bases can enlist their on-base assets in these programs for financial gain.  

Contingency operations fall into the following categories: spinning, non-spinning, and replacement 
reserves. Spinning reserves are unloaded generation assets that are online, that are synchronized to the 
grid, and that can respond immediately to an event. The North American Electric Reliability 
Corporation’s Disturbance Control Standard (NERC’s DCS) requires that spinning reserves reach full 
output within 10 minutes. Non-spinning reserves are generation sources that do not have to be 
synchronized to the grid and therefore do not need to respond immediately; however, non-spinning 
reserves still have to reach full output within 10 minutes as required by the NERC’s DCS. Some 
balancing authorities also have replacement reserves, which have a longer response time of 30 to 60 
minutes. Replacement reserves are used to replace spinning and non-spinning reserves. 

During normal operation, the system operator must continuously match supply and demand to 
ensure the frequency of grid is maintained very close to the nominal 60 Hz. They do this by directing a 
very small portion of the overall grid generation capacity, roughly 1%, to follow minute-to-minute 
commands to increase or decrease output. This service is known as frequency regulation and, as shown in 
Figure 14, is the highest priced of the ancillary services.  

Figure 15 [11] outlines the different categories of operating reserves for normal and contingency 
operations along with the resources’ required response time and duration of operation. Regulation, 
spinning, non-spinning, and replacement reserves make up what is known as ancillary services. Services 
that require fast response time are more valuable to the market than those that respond slowly; the 
breakdown of day-ahead average price of ancillary services in California ISO in 2011 is shown in Figure 
14. The prices are similar in the Midwest ISO [12].  
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Figure 14. Ancillary services pricing for California ISO, 2011. 

 

Figure 15. Required response time and duration of operating reserves. 
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Currently, frequency regulation resources, typically generators, have automatic generation control 
(AGC) which can be automatically dispatched by the balancing authorities control center operator. 
Recently, FERC order 755 requires power operators to compensate owners of frequency regulation 
sources based on performance and capacity [13]. Order 755 requires RTOs and ISOs to account for 
frequency regulation resources’ accuracy in following the AGC dispatch signal. Although this order does 
not explicitly favor one technology over another, it is clear that it favors a more responsive system that 
will be able to follow the AGC dispatch signal more accurately. Energy storage devices, such as batteries, 
should benefit from this new regulation, as they typically have better fine control over power output than 
other assets that typically bid into the market, such as natural gas peaker plants. 

As an alternative to adding expensive short-term generation assets to the network, market operators 
have also developed a mechanism to shed large quantities of load for abbreviated time periods. By 
decreasing demand on the transmission and distribution infrastructure, congestion can also be alleviated 
potentially preventing brownouts or blackouts. These programs are known as demand-response programs 
and are available either through aggregators or directly to large customers, including DoD installations. 
When enlisting in a demand-response program, an installation will promise to drop a certain amount of 
load (in MWs) upon a signal from the local market operator or utility. The installation is then provided 
with a financial credit on its electricity bill based on the quantity of assets enrolled.  

A number of installations participate in the program by using dispatchable distributed energy 
resources on-base to curtail the installation’s total power draw. The Defense Logistics Agency (DLA) 
helps installations enroll in demand-response programs, and currently 60+ government installations 
participate through the DLA. Data from 2009 for the number of locations, revenue, and enrolled capacity 
for locations in the PJM Interconnection are shown in Figure 16. 

 

  

Demand-response rates for locations in the PJM Interconnection with a breakdown of the number of locations 
in blue (left vertical axis and columns) and total enrolled capacity in MW in hatched green (right vertical axis 
and columns). 

Figure 16. Payback for DLA demand-response programs in PJM (2009). 
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Figure 17 summarizes the relative value of the different ancillary services and demand-response 
programs. Faster response times are more valuable to the system and, therefore, those services are priced 
higher.  

 

 

Figure 17. Faster response time results in greater benefits in the ancillary services market. 

There are a number of different assets on an installation that could participate in either the demand-
response or ancillary service markets. Diesel generators can participate in demand-response programs and 
potentially in replacement and non-spinning reserve programs, assuming they meet state and federal 
emission requirements. Energy storage systems on bases are well suited to enlist in spinning reserve and 
frequency regulation markets; controllable loads on an installation can participate in demand-response 
programs and, in some ISOs, can bid into the spinning reserve market as well. The spinning reserve 
market is particularly well suited towards load-shedding applications due to the need for fast, but short 
duration, response.  

The analysis conducted in Section 5 focuses primarily on real-time pricing and demand-response 
programs, as those are the mechanisms currently leveraged by bases to pay for on-base assets. As 
installation microgrids become more integrated with utility systems, other programs may become more 
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advantageous for a given installation. In general, the location of an installation within a wholesale 
electricity market will give the installation more flexibility to tailor the rate structure towards the 
microgrid architecture. This is a complex task, and it would be advantageous if this expertise lay in a 
central resource that could assist installation energy mangers make informed decisions.  

4.3 DEPARTMENT OF DEFENSE INSTALLATION CHARACTERISTICS 

Characteristics of DoD installations that are important for determining an optimal microgrid 
architecture include the installation’s load profile, the availability of land, the existing infrastructure on 
the installation, and the availability of skilled personnel. 

4.3.1 Installation Load Characteristics 

From an energy security standpoint, the load profile of the installation in general, and the load 
profile of critical assets [14] in particular, strongly influence the cost effectiveness of renewable 
generation assets. In situations where the load profile is well correlated to the renewable energy 
generation resource, large quantities of costly energy storage may not be required. Also, when renewable 
generation is closely correlated to base load, it increases the viability of renewable generation for 
providing energy security. Conventional generation assets will be sized to make up the difference 
between demand and renewable generation; therefore, a higher degree of correlation means fewer 
conventional generation assets will be required on a microgrid. Section 5.3.2 provides a more detailed 
discussion of the important characteristics of an installation’s load profile. 

The determination of which assets are considered critical and will be incorporated onto a microgrid 
is an important aspect in establishing the extent of the system. The difficulty is that the definition of what 
is considered critical may heavily depend on the duration and type of event that occurs. For instance, a 
gymnasium would not normally be considered a critical asset, but in response to a natural disaster, the 
gymnasium could be used for triage or for housing displaced families and could be considered a critical 
asset. More advanced microgrids will ideally include the flexibility to distribute power across the 
installation depending on need and circumstances.  

4.3.2 Renewable Generation Viability 

Many laws and executive orders have been passed in the last decade that mandate changes in the 
sources of and the way that the Federal government uses energy. These mandates are shown graphically 
in Figure 18. In addition, specific departments within the military have set higher goals, with the 
Secretary of the Navy setting the goals to reduce petroleum use by 50% by 2015, to have 50% of total 
energy consumption coming from alternative sources by 2020, and to have 50% of installations be net-
zero by 2020, among others.  
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Changes in energy use are shown as a percentage of their value from the year in which the mandate sets as 
the base year. All changes are absolute, with the exception of alternative fuel use, which is designated to 
increase 10% per year from 2005. For this chart, the base value that is shown is 5%, although that is notional. 
EISA 2007: Energy Independence and Security Act of 2007; EPAct 2005: Energy Policy Act of 2005; 
NDAA 2007: National Defense Authorization Act for FY2007. 

Figure 18. Laws and Executive Orders mandating changes in energy generation and use. 

Many installations have made progress towards meeting the federal or service-specific goals, but 
the task gets more complex as initial simple fixes are completed. The availability of renewable resources 
(typically solar, wind, and geothermal) will affect the choices for the different services and installations as 
to the method by which they meet the mandate of 25% renewable energy by 2025 [15].  

It is likely that installations in areas of the country that are particularly attractive from a resource 
viability and electricity price standpoint may be candidates for large-scale renewable generation. A 
recently completed analysis on solar PV production on Mojave Desert installations [16] identified high 
quality land with 7,000 MW of potential generation capacity at five installations. For installations that 
will be installing large-scale renewable generation, likely either through a power purchase agreement or 
other 3rd party mechanism, it is important that adequate pre-planning is done to allow a portion of that 
asset to be used for energy security. Currently, all commercial PV systems are designed with anti-
islanding provisions – when the grid goes down, they are disabled. This is primarily for the safety of 
personnel working on the utility grid. In order for the PV system to be available on a microgrid, the 
controllers for the solar inverters will need to be able to operate islanded, the PV system will need to be 
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sited in a location accessible to the microgrid, and contractual provisions will need to be included that 
gives the base first right to the power produced by the PV system.  

4.3.3 Installation Resources 

Potentially the single most critical determinant in the success of a microgrid project is the presence 
of skilled and motivated electrical technicians and engineers to design, operate, and maintain the system. 
In the current funding environment, many installations are seeing a significant reduction in these 
important positions where staffing is already thin. In addition, the skill sets required to operate these 
complex systems are in high demand in the commercial industry, making it more difficult to hire and 
retain the right people. There has been a move in recent years to privatize these operations on domestic 
DoD installations [17]. Privatization could help in the hiring and retention of the right workers, but could 
make other aspects of installing energy security microgrids more difficult. The right financial incentives 
will need to be designed that impel the private organization to build systems that provide energy security 
in addition to being cost effective. 

The existing installation infrastructure is not directly considered in cost-benefit trades described in 
Section 5, but it is important in determining the appropriate microgrid design for a given installation. The 
expense of implementing a microgrid will depend significantly on what of the existing electrical 
distribution system, generation assets, metering, and command and control system can be leveraged. If an 
entirely new energy management system is required, if the distribution topology needs to be seriously 
reconfigured, or if the existing generation assets cannot be used in a microgrid, those costs could drive the 
choice of microgrid architecture.  

4.3.4 Cyber Security and Metering 

The wide range in monitoring capability across different installations, as mentioned in Section 
3.2.1, is due to the availability of cyber-secure infrastructure, with the Navy farthest along in obtaining 
data from distributed smart meters. The Navy developed a system, Public Safety Network (PSNet), after 
9/11 to support First Responders, Emergency Management, and the monitoring of critical infrastructure. 
The Navy plans to interface facility metering data to this network to allow for centralized data collection 
and analysis. Naval District Washington (NDW) has also developed smart metering and communication 
nodes which have gone through the required certification process and are being installed in several 
installations within NDW. 

There are several other efforts within the DoD to develop cyber secure metering systems for fixed 
site installations, most notably the SPIDERS microgrid projects. It is critically important that a baseline 
set of security requirements are established for installation microgrids, and a collection of hardware is 
certified for use in these applications. The services continue to install additional meters, and additional 
guidance to the services on metering will be forthcoming this spring [18]. 
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5. MODELING AND ANALYSIS 

A cost-benefit analysis at the system level aids in evaluating the costs associated with increased 
energy security of existing and future microgrid architectures for domestic DoD installations. This is an 
initial investigation into the economics and technical tradeoffs of implementing microgrids on domestic 
DoD installations. These should be considered preliminary results only. Only a small set of the potential 
architectures are explored, and then at only a very high level. The results presented in this section are 
meant to be illustrative of major cost-benefit trades in determining the optimal microgrid architecture. 
Additional rigorous analysis coupled with testbed demonstrations will be required to fully understand the 
additional costs of energy security and the preferred implementation strategy.  

5.1 DESCRIPTION OF MICROGRID ARCHITECTURES 

Figure 19 depicts four types of microgrid architectures distinguished by its generation resources and 
level of integration with the utility grid. This classification is explained in greater detail in Section 3.1. A 
cost-benefit analysis is performed for Type 1a, Type 2a, and Type 2b architectures. In the Type 1b 
architecture, the renewable generation is not able to island and therefore does not improve the energy 
security of the installation. The renewable generation would just be used to offset electricity provided by 
the local utility. Therefore, Type 1b architecture is not included in this cost-benefit analysis. The 
following describes those microgrid architectures analyzed in this study. 
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Figure 19. Microgrid architectures. 

Type 1a: Backup generators, not grid interactive 

The Type 1a architecture mirrors that of the existing emergency backup system for most domestic 
DoD installations. At present, generators are typically used to provide backup power during emergency 
events. Generators’ emission regulations and allowed annual duration of operation, set by the 
Environmental Protection Agency (EPA) at the federal level and by state and local authorities, vary 
depending on their intent and purposes. Appendix C discusses the emission regulations schedule set by 
the EPA. This analysis assumes that the generators in this architecture comply with Tier 2 emission 
regulations matching the current EPA rules for large, greater than 560 kW (751 hp), stationary emergency 
generators. 

Throughout this study, it is assumed that multiple generators are able to parallel and load share. 
Many older generators on DoD installations do not currently have the ability to load share and can only 
operate as stand-alone units. The goal of this analysis is to contrast different microgrid architectures and 
therefore assumes that the generators have been outfitted with intelligent controls that allow the 
generators to participate in the microgrid.  



 

 

41 

The number of generators selected to run at any given time has a total power capacity to meet the 
installation’s hourly power demand plus an additional capacity that matches 10% of the installation’s 
maximum hourly power demand. This additional 10% is the spinning reserve required to absorb short-
term fluctuations in demand and also to meet standard (n–1) reliability criteria. This in effect forces the 
generators to run at a lower load factor and therefore a slightly reduced efficiency. This is still a much 
higher load factor then would be expected for stand-alone generators that cannot power share. 

Type 2a: Backup generators, grid interactive 

In the Type 2a architecture, generators are still the only power generation sources during emergency 
events similar to Type 1a architecture. In contrast to the system in the Type 1a architecture, where the 
generators are not tied to the utility grid and are turned on only during a truly emergency event, the 
system in the Type 2a architecture integrates with the utility grid. The system’s integration with the utility 
grid allows the owner of the generators to enroll the generation assets in a demand-response program to 
gain monetary payback to help offset the initial and operational costs of the generators. The demand-
response program considered in this report is an emergency demand-response program from permitted 
generation, i.e., the installation drops its overall load by turning on its backup generators.  

The frequency in which the generators operate depends on the demand-response programs. The 
EPA along with state and local authorities have set more stringent emission standards for generators 
enrolled in demand-response programs, requiring these generators to satisfy Tier 4 emission level in the 
near future [19], incurring an extra cost for either a replacement or for converting existing Tier 2 
generators to Tier 4 generators.  

Currently, there is only one manufacturer (Caterpillar) that markets Tier 4 generators. In addition, 
most DoD installations already have a set of generators, and a conversion to Tier 4 emission levels likely 
means implementing after-treatment strategies to reduce emission levels of existing Tier 2 generators to 
meet requirements of Tier 4 generators instead of replacing the generators entirely. For the purpose of this 
study, it is assumed that this conversion is required if a generator is enrolled in any demand-response 
program, and the cost of the conversion and additional switchgear required to parallel with the utility 
system is 40% 3 of the initial cost of a Tier 2 generator. 

Type 2b – Low penetration of PV: backup generators and PV, grid interactive 

The Type 2b architecture builds upon the framework of Type 2a architecture and adds on renewable 
generation to the portfolio of power generation resources. For this analysis, only one renewable 
technology, solar PV, is considered. In the low penetration case, the capacity of solar PV is set at 25% of 
the base load of the system.  

                                                      

3 This value is estimated based on private communications with Cummins’s and Caterpillar sale engineers.  
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In addition to electricity from solar PV, generators provide the additional power to meet the 
installation’s hourly power demand. Similar to the other two previous architectures, there is a spinning 
reserve requirement for the generators. The generators are set to run at only 90% of their maximum power 
capacity. Due to the relatively small quantity of PV, it is assumed that the 10% spinning reserve from the 
generators can still absorb any mismatches in supply and demand. Fuel for the generators is the only 
source of energy storage on the microgrid modeled in this case. The size for the power capacity of the 
renewable source is selected such that, due to the low penetration of PV, no additional energy storage is 
required in this system. 

Type 2b – High penetration of PV: backup generators and PV, grid interactive, with battery 

Similar to the previous Type 2b case study, this architecture includes both generators with 10% 
spinning reserve and solar PV. The solar PV penetration for this architecture is increased from 25% in the 
previous case to 75% in this case. Due to the higher level of solar PV penetration in this architecture, a 
bank of batteries that can store 15 minutes of the maximum output from the solar PV system is installed 
to smooth out any short time scale second-to-second or minute-to-minute fluctuation of electricity 
generation from solar PV. The battery energy storage addresses two issues: (1) to provide stability by 
helping absorb short-term fluctuation in supply and demand, and (2) to reduce the cycling of the 
generators, thus prolonging their lifetime.  

This study assumes that a distributed energy storage with 15 minutes of potential solar energy is 
sufficient in order to evaluate the first level cost analysis of implementing high penetration of solar PV to 
a microgrid. However, a more thorough investigation is required to assess the distributed energy storage 
requirements for integrating high penetrations of solar PV onto a microgrid.  

5.2 ANALYSIS METHODOLOGY 

The two primary metrics used throughout this analysis are the islanding time a microgrid can 
support and the net present value (NPV) of the microgrid. There are other important energy security 
metrics such as reliability and resiliency, and there are other cost metrics such as the levelized cost of 
energy, but in this study all of the results are presented as a function of NPV and islanding time. 

5.2.1  Energy Security 

The main metric used to assess microgrid performance in this study is the duration in which it can 
provide the necessary power to the installation, or island time. It is the minimum islanding time over the 
course of the year that is used. For a microgrid with only generators, the energy is stored in the fuel, and 
the minimum islanding time is simply the time period with the greatest total demand. The addition of 
solar PV makes the determination of minimum islanding time a little less clear, because it is both the 
installations demand and the solar PV system’s generating capacity that determine minimum island time. 
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To further illustrate the minimum island time metric, Figure 20 shows the profile of island time for 
each hour of the year for Naval Base San Diego (NBSD), MIT Lincoln Laboratory (MIT LL) and Naval 
Support Facility Dahlgren (Dahlgren) for a microgrid with diesel generators. The values on the x-axis 
indicate the time of year when an outage occurs, and the values on the y-axis correspond to the length of 
time the system can provide power to the installation. In this case, the fuel capacity is set to be sufficient 
to allow a minimum island time of seven days, no matter when the islanding event must occur. For 
MIT LL, this worst-case islanding time occurs in the middle of July, the hottest and most energy-
intensive time of the year, and for NSF Dahlgren it is late June. The worst-case island time for NBSD 
occurs a few weeks later, in early August. By scaling energy storage capacity based on these worst-case 
time periods, it means that the base will be able to support longer islanding periods during the rest of the 
year.  

 

 

Figure 20. Island time profile with seven-day minimum. 

As another way to interpret the curves shown in Figure 20, Figure 21 shows the cumulative 
distribution function (CDF) of the island time for a minimum island time of seven days. A CDF describes 
the probability that the variable on the x-axis will occur at or below the value x. For instance, in  
Figure 21, the line drawn at 0.5 in the y-axis indicates that for 50% of the time Dahlgren and MIT LL will 
have at least 8.5 days and NBSD will have 10 days of islanding capability for a system designed for a 
minimum of seven days of islanding. This shows that NBSD has a much higher variability in its demand 

5

10

15

20

25

0 2000 4000 6000 8000

NBSD
MIT LL
Dahlgren

Is
la

nd
 T

im
e 

(D
ay

s)

Time of Year (Hours)



 

 

44 

profile for the year shown. One caveat to this analysis is that the fluctuation in power use at NBSD is due 
to when ships are in port and using shore power (as shown in further detail in Section 5.3.2). It seems 
unlikely that these loads would be serviced by an energy security microgrid; however it provides a useful 
example of an installation with an atypical load time history. 

 

 

Figure 21. CDF of island time for seven-day minimum. 

Results provided in this report assume that the system must have enough capacity to provide power 
to the installation for 100% of the time for a range of island time between 1 and 30 days. By designing for 
this worst-case scenario, it ensures that the system is over-designed for an outage occurring at any other 
day and time. In practice, only a portion of the installation’s loads would be placed on the microgrid 
system. The analyses in this study assume that 100% of the installation is being incorporated into the 
microgrid. As discussed in Section 4.3.1, it can be difficult to determine exactly which loads should be 
considered critical, as it likely depends on the event and duration. As long as the shape of the demand 
curve does not appreciably change, then the results presented should scale linearly. 
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5.2.2 Cost Analysis 

To determine the total cost of a project over its lifetime, the net present value (NPV) is calculated 
for each microgrid architecture. NPV is calculated as shown in the following equation: 

( ) .Cost   InitialExpense(i) AnnualIncome(i) AnnualNPV
30

1i

−−=∑
=  

In Equation 1, i represents the year of the project counting from the present year. The annual 
income or expense of the project for a given year i is calculated in today’s dollars using 

,
DR1
1X(1)X(i)

i









+
=

 

where X represents the annual income or expense and DR is the real discount rate. An assumption is 
made that the raw annual income and expense do not change over time. What does change is the time 
value of money. Equation 2 accounts for the future value of income or expense due to discount rate and in 
this analysis, i varies from 1 to 30 years. Therefore, Equation 1 can be rewritten as 

( ) ,Cost   Initial)PVF(Expense(1) AnnualIncome(1) AnnualNPV −−=  

where PVF is the present value factor and is dependent on the real discount rate and the lifetime of the 
project, and is expressed as 

.
DR1
1PVF
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1
∑
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5.3 ANALYSIS INPUTS 

The costs of various generation and storage resources, the load profile for an installation, the solar 
insolation, and the cost of electricity all figure prominently in the cost-benefit trades. This section 
summarizes the information used in the analysis. 

5.3.1 Costs and Financial Inputs 

Table 1 summarizes the inputs used in this analysis. The real discount rate of 2.0% is obtained from 
the White House Office of Management and Budget for 2012 [20]. In the past 10 years, the real discount 
rates have been fluctuating between 2.0 and 3.2%.  
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Table 1 

Analysis Inputs 

 

 

 

 

 

 

 

 

 

 

 

 

Generators 

Figure 22 shows the total cost for Tier 2 generators up to 1000 kW in size, including material and 
installation as published in RS Mean Electrical Cost Data [21], and an estimated additional 25% for 
overhead cost. For generators with a capacity greater than 400 kW, the total cost asymptotes to a range 
between $300 and $350/kW. In order to convert a generator from Tier 2 emission level to Tier 4 emission 
level, a price increase of 40% is expected [22]. To date, only Caterpillar markets Tier 4 generators. As 
more companies include Tier 4 generators in their product line, the cost is anticipated to decrease as a 
result of market competition. 

Finance 

Real Discount Rate 2% 

Generators 

Cost of Assets and Installation $350/kW 

Additional Cost for Tier 4 40% 

Fuel Cost $4.00/gallon 

Annual OM Cost 4% of fuel cost 

DR Payback Rate $3000/MW/month 

Solar 

Cost of Installation $3.50/W 

Annual OM Cost 1% of installation cost 

Batteries 

Installation Cost $650/kWh 
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Figure 22. Estimated total installation cost of generators. 

For the demand-response program payback rate, $3000/MW/month is used in this analysis unless 
otherwise stated [23]. As an example, at MIT LL two generators with a total capacity of 1 MW are 
enrolled in a demand-response program, and the payback rate is $3125/MW/month [24].  

Solar PV 

In recent years, the cost of solar PV has decreased significantly to the point that grid parity is 
attainable in some locations. Within the last year, the price for PV modules decreased by $0.85 per watt, 
which results in a system price decrease of 23–27% [25]. The total system cost for 2011 was modeled to 
be $3.43/W for commercial rooftop, which matches both NREL estimates (Figure 23 [25, p.33]), and a 
price quote received for a 1 MW install of rooftop PV [26]. Therefore, $3.43/W is the cost of solar PV 
selected in this study. 
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Figure 23. NREL modeled 2011 installed system price for solar PV. 

In practice, the most likely method for the widespread deployment of solar PV systems on DoD 
fixed installations is through a Power Purchase Agreement. In a PPA the installer, or a third party, retains 
ownership of the PV system after installation and sells the power produced to the base at an agreed upon 
rate. The owner of the PV system can then benefit from the federal tax credits and can sell the Renewable 
Energy Certificates (RECs) in the commercial markets. In markets with high quality solar resources and 
good REC markets, it is possible for an installation to install a PV system with no upfront cost and then 
purchase electricity at below market rates through a PPA. For example, Nellis AFB saves over $1M/yr in 
electricity costs with its 14.2 MW PV array [27].  
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Battery 

Figure 24 shows the expected and target cost of lithium ion battery from A123 [28]. As noted, the 
current cost is $500–$700/kWh, and it is expected to reduce to $400–$500/kWh within the next few 
years – as the automotive industry increasingly purchases more batteries for plug-in electric and hybrid 
electric vehicles, the price is expected to fall due to economies of scale. In this analysis, the battery cost is 
assumed to be $650/kWh. 

 

Figure 24. Estimated cost projection of lithium ion batteries. 

5.3.2 Installation Load Profiles 

Figure 25 shows the hourly power demand for NBSD, Dahlgren, and MIT LL, respectively, for one 
year of data. Figures 26–28 present the hourly power demand for the three locations in a format to show 
the demand by time of day (0–24 hours) and day of year (0–365 days). As shown, MIT LL and Dahlgren 
have a similar profile, which has peaks during the middle of the weekdays and valleys during the nights 
and weekends. In addition, power demand increases during the summer and decreases during the winter. 
In contrast, NBSD has a highly variable demand profile that depends on when ships are docked at the 
base and provided with shore power. 
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Figure 25. Hourly power demand profiles. 

 

Figure 26. Hourly power demand for MIT LL in MW. 
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Figure 27. Hourly demand profile for NSF Dahlgren in MW. 

 

Figure 28. Hourly power demand for NBSD in MW. 
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The power demand profile is relevant when sizing the microgrid for determining the required 
minimum number of generators. To size the energy storage capacity, the figure of interest is the total 
energy demand to island an installation for a desired time. As the islanding time’s duration increases, the 
variability in the total energy demand reduces because short-term fluctuations are smoothed out.  
Figure 29 shows the energy demand profile for the three locations with a seven day minimum island time.  

 

 

Figure 29. Energy demand profile for seven-day island time. 

Figure 30 shows the CDF of energy demand for MIT LL, Dahlgren, and NBSD with seven days of 
minimum island time. There is a calculated difference of 4% for MIT LL and 6% for Dahlgren and NBSD 
in the total energy required from the 95th to 100th percentile case. This implies that there are not any 
severe outliers and that assuming a worst-case scenario does not necessarily indicate a severely 
overdesigned system. 
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Figure 30. CDF for energy demand for seven-day island time minimum. 

5.3.3 Cost of Electricity 

This initial analysis assumes the base is using the real-time price of electricity from the local ISO, 
as shown in Figure 31. This cost includes the real-time pricing of the California ISO, ISO New England, 
and the PJM interconnection (PJM) for NBSD, MIT LL, and Dahlgren, respectively, and an average 
energy transmission cost of $0.0735/kWh. As discussed in Section 4.2, electricity cost structures can vary 
drastically from one location to another, and therefore using an average transmission cost does not 
necessarily reflect the true cost, but this should serve as a reasonable first order assumption. Not all of 
these installations are currently enrolled in real-time pricing (RTP) programs, but RTP offers more 
flexibility than a flat rate structure and is used in this report to be illustrative.  

Figure 31 shows that the cost of electricity at NBSD fluctuates much more than the other two 
locations, ranging from a negative value to as much as $1.40/kWh. Despite these fluctuations, the CDF 
curves in Figure 32 indicate that the price spikes occur fairly rarely, less than 2% of the time. The CDF 
curve for NSF Dahlgren is similar to that of MIT LL. It should be noted that this only represents one cost 
structure. In many locations, a consumer’s electricity consumption during high demand periods is also 
factored into the total energy cost. 
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Figure 31. Cost of electricity for NBSD, MIT LL, and NSF Dahlgren. 

 

Figure 32. CDF of electricity cost for NBSD, MIT LL, and NSF Dahlgren. 
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5.3.4 Solar Resource 

Figure 33 show the hourly average solar insolation in kWh/m2 for NBSD, NSF Dahlgren, and 
MIT LL, respectively [29]. For all locations, the maximum solar insolation is during the summer months 
and during the middle of the day, as expected.  

 

Figure 33. Average solar radiation for NBSD, NSF Dahlgren, and MIT LL. 

Figure 34 plots the CDF curves for the total solar energy received for seven-day periods starting at 
the beginning of each hour in one year for all three locations. The results presented in Figure 34 highlight 
how the use of minimum island time will discount the benefit of renewable resources to supply increased 
energy security. The accumulated solar radiation over a one-week time period varies by a factor of  
4–5× at each of the three locations. Designing a microgrid that can island during the dead of winter in 
Boston, or during the rainiest week of the year in San Diego, will naturally lessen the energy security 
benefit provided by solar PV. However, as described in the following section, it is also the correlation of 
solar output with peak demand that is critical. During certain times of the year, a PV array may not 
produce much energy. But if an installation’s loads are small, it may not matter in the design of the 
microgrid, which will be designed based on worst-case conditions.  

0.0

0.2

0.4

0.6

0.8

1.0

0 2000 4000 6000 8000

NBSD
Dahlgren
MIT LL

A
ve

ra
ge

 S
ol

ar
 R

ad
ia

tio
n 

(k
W

h/
m

2 )

Time of Year (Hours)



 

 

56 

 

Figure 34. CDF of total solar energy for seven-day islanding time. 

5.4 ANALYSIS RESULTS 

This section summarizes the main analysis results. The cost tradeoffs between stand-alone and grid-
tied generation are presented. A relationship is derived to describe the allowed initial generator 
installation cost increase as a function of payback rate. The analysis of more advanced microgrids, which 
include PV and battery storage, is then discussed. Finally, the NPV results for the four microgrid 
architectures described in Section 5.1 are presented. 

5.4.1 Generators (Type 1a and Type 1b) 

Installations typically have emergency backup generators to supply critical loads. These systems 
can be stand-alone systems that cannot parallel with utility grid or they can operate grid-tied. If the 
generators can operate grid-tied, it is easier to enlist the generation assets in a demand-response program. 
Recent EPA regulations will require generators that participate in demand-response programs to have 
Tier 4 emissions certification. This analysis examines the allotted price increase from Tier 2 to Tier 4 
generators for a range of financial payback from demand-response programs.  

Recall that different tier classifications for generators correspond to emission levels. Assuming that 
the engine efficiency for Tier 4 is the same as that of Tier 2 generators, the relationship for the Tier 4 
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generator’s allowed initial installation price increase (x) and payback rate (PR) from participating in 
demand-response program is 

,
IC
PVF* PRx =  

where IC is the initial cost of Tier 2 generators and PVF is 22.4 for a discount rate of 2%. If Tier 2 
generators in Type 1a microgrid architecture have an initial cost of IC and the annual payback rate is PR 
for Tier 4 generators in Type 2a microgrid architecture, then the maximum initial installation cost for Tier 
4 generators must be (1+x)IC in order for the NPV of the two architectures to be equivalent.  

Figure 35 illustrates this relationship by plotting the allowed increase in cost of Tier 4 generators 
compared to Tier 2 as a function of demand-response payback rate (PR) for Tier 2’s initial cost (IC) of 
$200, $300, and $400/kW. If there is no payback from the demand-response program, then the allowed 
increase is 100%, meaning that a Tier 4 generator must cost the same as Tier 2. The typical upfront cost 
for a Tier 2 generator is $350/kW. Assuming a reasonable demand-response payback rate of 
$3000/MW/month, the Tier 4 generator’s initial cost can be up to 330% the cost of the Tier 2 generator, 
over $1000/kW, and still pay for the difference over the lifetime of the generator. Based on data from the 
generator manufacturers, it appears as though the delta in cost between a Tier 2 and Tier 4 unit is 
approximately 140%. 

 

Figure 35. Allowed initial generator cost increase for a range of demand-response payback rates. 
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5.4.2 Solar PV (Type 2b) 

The costs of solar PV are beginning to approach grid parity prices over much of the country.  
Figure 36 shows the required average electricity cost in three locations in order for solar PV to reach grid-
parity. The required average electricity cost is highest for MIT LL and lowest for NBSD. This is due to 
both the greater resource availability in San Diego and the higher electricity prices. For a solar PV cost of 
$3.43/W, the required average electricity cost is $0.14/kWh, $0.10/kWh, and $0.12/kWh for MIT LL, 
NBSD, and NSF Dahlgren, respectively. The current calculated average electricity cost from the data 
presented in Section 5.3.3 is $0.11/kWh, $0.12/kWh, and $0.12/kWh for MIT LL, NBSD, and NSF 
Dahlgren. From these results, solar PV has reached grid parity for NBSD and NSF Dahlgren, but not for 
MIT LL. This assumes a 30 year project lifetime, a government discount rate of 2%, and no tax 
incentives.  

 

 

Figure 36. Required average cost of electricity for solar PV to reach grid parity. 

A second method to view the cost competiveness of solar PV is to determine what price a PV panel 
needs to be to match the cost of electricity in the local market. Table 2 shows the cost competitiveness of 
solar PV at the different installations and the effect of the real discount rate on the competitiveness of PV. 
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Table 2 

Cost Competitiveness of Solar PV 

 Electricity cost to reach grid parity, 
PV=$3.43/W 

Cost of PV to reach parity given today 
electricity prices 

Location 2% Discount Rate 5% Discount Rate 2% Discount Rate 5% Discount Rate 

MIT LL $0.14/kWh $0.19/kWh $3.18/W $2.33/W 

NBSD $0.10/kWh $0.14/kWh $3.89/W $2.85/W 

NSF Dahlgren $0.12/kWh $0.16/kWh $3.53/W $2.59/W 

 

At higher real discount rates, PV is not yet at grid parity without tax incentives or renewable energy 
certificates. As such, the most likely method for installing large-scale PV on DoD installations would be 
to involve a third-party installer who can benefit from tax incentives and the selling of RECs. Electricity 
would then be sold back to the base through a PPA at below market prices.  

For a microgrid with solar PV, the requirements for conventional generation assets and energy 
storage will be derived based upon the most difficult islanding conditions. Because solar insolation values 
fluctuate considerably, it is possible to find periods during the year when very little energy is available. 
Figure 37 shows the worst case solar insolation that can be expected for all three locations for an 
islanding time between 1 and 30 days. The results show a similar trend for each location. It indicates that 
as island time increases, the worst case solar energy produced reaches an asymptotic value, which 
approaches the average winter-time solar insolation at a given location. These results emphasize the 
benefit of extending island time to remove short-term fluctuations in solar production. 

In sizing a microgrid with solar PV, it is not just the amount of energy that the system supplies that 
is important, but how that generation capability is correlated to the demand profile on base. Figure 38 
shows the potential fuel saved per MW of solar PV as a function of island time.  

Notice that the lines are nearly constant slope, indicating that the amount of solar energy used by 
the microgrid increases linearly with island time. This would appear to contradict the results shown in 
Figure 37. However, because in these examples the solar insolation is very closely correlated with the 
load profile on the installation, the worst time period for solar PV is never factored into the minimum 
islanding time calculation. The microgrid is always sized to meet worst case conditions, which is almost 
always during the hot summer months when both demand and solar insolation is highest.  

There is, however, no guarantee that this will always be true. Certain critical loads may have a 
much more consistent load profile and be less well correlated with intermittent renewable generation. In 
those situations, the real benefit of the renewable generation will only be found in extended duration 
islanding events. 
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Figure 37. Worst case total daily solar energy per m2. 

 

Figure 38. Potential fuel saved per 1MW of solar PV. 
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5.4.3  Battery and High Penetration PV (Type 2b) 

At the current cost of batteries, $500–$700/kWh [30], it is not economically viable to use batteries 
as the main energy storage to provide power during an islanding event. As an example, for a minimum of 
seven-day island time, the total energy storage required, assuming 100% PV penetration, would be close 
to 1 GWh for MIT LL and much higher for NSF Dahlgren and NBSD. Even at $500/kWh, the initial 
battery cost would be several hundred million dollars. A system with solar and batteries will have to be 
supplemented with fuel storage and conventional generation to be cost effective. 

Even though it is not viable to island an entire microgrid system on batteries and intermittent 
renewable generation alone for extended periods of time, in modest quantities there are a number of 
potentially cost effective applications for batteries on a microgrid. These include smoothing short-term 
transients from either generation or demand, supporting a smooth transition from grid-tied operation to 
islanded operation, or allowing generation equipment to run closer to peak power output and thus more 
efficiently. In addition, there are a number of mechanisms that the energy storage device can pay for itself 
during non-islanded operation, particularly through participation in the ancillary services market. 

For the summary analysis presented in Section 5.4.4, batteries are only used as an enabler to 
incorporate higher PV penetrations on a microgrid. The potential cost savings of enlisting batteries in 
ancillary services or using them for peak shaving, as the Ft. Bliss microgrid will demonstrate, were not 
explored during this analysis. 

5.4.4 Results Summary 

NPVs are calculated for the four microgrid architectures described in Section 5.1. The methods 
outlined in Section 5.2, along with the analysis inputs presented in Section 5.3, are employed in this 
analysis.  

Figures 39–41 present the NPV results of the four microgrid architectures for MIT LL, NBSD, and 
NSF Dahlgren, respectively. In all three locations, the NPV values for grid-tied Tier 4 generators 
architecture (Type 2a) are higher than those of non-grid-tied Tier 2 generators architecture (Type 1a). 
This is consistent with the calculation shown in Section 5.4.1. In all three locations, the NPV is positive 
for the more promising architectures with islanding times of fewer than five days.  
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Figure 39. NPV for MIT LL. 

 

Figure 40. NPV for NBSD. 
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Figure 41. NPV for NSF Dahlgren. 

The Type 2a and the two Type 2b architectures had fairly comparable results for short duration 
islanding. For MIT LL, where PV is not yet grid competitive, the generators and demand-response 
solution was preferred for shorter islanding times. At Dahlgren and NBSD, where PV is at or approaching 
grid parity (given the OMB discount rate), the architecture that included the higher PV penetration was 
most cost effective. For longer islanding times, the Type 2b case with high penetrations of PV was most 
cost effective in all three cases. At MIT LL, the crossover point at which the architecture including PV is 
preferred occurred at 15 days of islanding. This crossover point will depend heavily on the cost 
assumptions that were made. 

In all cases, the NPV is a large negative value for longer islanding. This is mainly due to the 
assumption that fuel stored is sized to match the required energy demand during island time. Therefore, 
for a longer island time, the required fuel storage is larger. In this analysis, it is assumed that fuel lasts 
approximately one year without degradation and that, at the end of the year, the generators will run for 
200 hours to recover some savings through electricity generation. Beyond the 200 hours, it is assumed the 
fuel was not used. This approach is conservative as there are fuel reconditioning programs that can help 
alleviate some of this cost. Also, installations with airfields might have significant fuel reserves already 
on hand that could be used for electricity generation in a situation that requires extensive off-grid 
operation.  
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There are several potentially cost-effective options for extended duration islanding that were not 
explored here. These include nonintermittent renewable generation on base, such as geothermal or land 
fill gas systems; natural gas-fired generators and turbines that do not require local fuel storage, although 
the resiliency of the natural gas delivery system would need to be examined; and potentially higher 
intermittent renewable penetration then modeled, combined with large energy storage systems funded 
through ancillary services, with intelligent load shedding to better match demand and supply. 

For a requirement of short-term islanding (on the order of less than a week), conventional assets 
that leverage programs like demand response could be cost effective. For longer duration islanding, a 
more sophisticated system will be required. Through tighter integration with the larger macrogrid, it is 
likely that a substantial amount of the cost of these advanced microgrids could be offset by participation 
in the different ancillary services markets, particularly for those installations that are located in wholesale 
energy markets. In addition, more advanced microgrids will ease the integration of intermittent renewable 
generation, optimize building loads and improve efficiency, and provide a more resilient, flexible, and 
extensible energy system for DoD installations.  
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6. RECOMMENDATIONS 

– The most cost-effective microgrid solutions will likely be those that take into account the needs of the 
local commercial electric grid. In areas where commercial generation resources are stretched thin, or 
with significant congestion on the electric grid, local generation can play an important role. The 
generation resources on an installation would then be at least partially funded by the local utility 
either directly or through demand-response programs or the ancillary services market. These 
approaches should be thoroughly explored. 

– The biggest value in the ancillary services markets are those services that require very fast response 
times and thus tight integration with the larger macrogrid. Technologies that could have significant 
benefit for off-grid operation are the same technologies best suited for these faster responding 
services, including energy storage and automated load management. Additional research will be 
required to better define the microgrid/macrogrid interface including security provisions and control 
mechanisms. 

– Solar PV is approaching grid parity in certain parts of the country. This is particularly true when the 
PV system is not purchased directly by the DoD but is financed through a power purchase agreement 
that allows a third party to retain ownership of the PV system and benefit from various tax incentives. 
DoD fixed installations are particularly promising locations for renewable generation due to the 
availability of high quality land and the location next to a large load center. As such, the DoD has 
begun installing PV systems on a number of bases. The PV should be able to provide added energy 
security benefits assuming the system is designed, and the contractual language is in place, that will 
allow the base to utilize the PV system during a grid outage.  

– For prime PV locations, it is possible that microgrids with very high percentages of PV penetration 
may be a cost-effective solution. These microgrids carry a number of risks. In particular, the low 
inertia on a PV-based power grid means that power quality issues could arise with fast load transients. 
Various technologies, including batteries and flywheels, could help ameliorate this problem, but 
further research will be required. 

– In order to encourage the development of microgrids on DoD installations, it would be useful to place 
a value on energy security. This value would be a cents/kWh premium that the military would pay for 
reliable power. This value would presumably be dependent on the function the installation (or the 
portion of the installation) performs. This model is already in use at Fort Detrick for the microgrid 
that supplies the National Interagency Biodefense Campus. 

– Cyber security concerns are a significant detriment to microgrid development. The DoD should 
develop/certify a set of DIACAP-approved devices that can be used across the services for energy 
management systems. 
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– The requirements for DoD installation microgrids need to be better defined, including requirements 
for islanding time and grid reliability. 

– In developing microgrid architectures, the DoD needs to be cognizant of the legacy infrastructure on 
each installation. This will likely be one of the primary cost determinants for the development of 
energy security microgrids and needs to be considered on an installation-by-installation basis. 
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APPENDIX A 
BRIEF DESCRIPTIONS OF MICROGRID EFFORTS 

Brief descriptions of all microgrid efforts are divided by service and are divided into those under 
the Air Force, Army, Navy, Marines, and those efforts at joint bases. Efforts are listed alphabetically.  

AIR FORCE 

ANG Fargo: Existing 1.825 MW Type 2a microgrid 

ANG Fargo has a whole base generator that was bought because of feasibility studies that were 
done that showed that the positive economics of existing demand-response programs made it cost 
effective to install the generators. If the local utility is at peak, they start their own generator and then they 
are on their own generation. It was unclear as to whether the unit at Fargo can push back into the grid. 
Some have said it can, some not. It was speculated that as the meter does not go backwards, that may be 
the reason people say it cannot operate in parallel with the utility. 

ANG ST. Paul: Existing 2 MW Type 2a microgrid 

ANG St. Paul has a whole base generator that was bought because of feasibility studies that were 
done that showed that the positive economics of existing demand-response programs made it cost 
effective to install the generators. If the local utility is at peak, they start their own generator and then they 
are on their own generation. They operate in a completely isolated, not parallel, mode.  

ANG VOLK Field: Existing 2 MW Type 2a microgrid 

ANG Volk Field has a whole base generator that was bought because of feasibility studies that were 
done that showed that the positive economics of existing demand-response programs made it cost 
effective to install the generators. If the local utility is at peak, they start their own generator and then they 
are on their own generation. Their 2 MW generator is enrolled in the local utility’s demand-response 
program. The generator has a soft transition with the utility system for seamless transfer of power, but 
does not typically operate in parallel with the grid. 

Buckley AFB: Reported 1 MW diesel generator microgrid 

Our contact did not think that the reported generators at Buckley AFB constituted a microgrid. 

Cannon AFB 

Conceptual design study by Sandia National Laboratories. 

Cape Canaveral AFS: Existing 7.5 MW Type 1a microgrid 

Cape Canaveral AFS has diesel generators at substations to supply power in event of a grid outage. 
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Clear AFS: Existing 0.3 MW Type 1a microgrid 

Initial study documents described a microgrid at Clear AFS, but we were unable to determine what 
the configuration is and how it interacts with the coal-powered generation that is there. 

Creech AFB: Reported 1.5 MW temporary tie-in 

Despite repeated attempts, we were unable to make contact with someone with information for 
microgrids at Creech and Offutt AFBs. 

Dyess AFB: Existing 11 MW Type 2a microgrid 

Dyess AFB has five 2.2 MW diesel generators connected at one substation. They operate under a 
real-time pricing schedule within ERCOT and use the diesel generators and an ice storage system for peak 
shaving purposes. The diesel generators can operate in parallel with the utility grid and supply all of the 
base’s power depending on the time of the year (13.5 MW summer peak). Dyess AFB is installing 
advanced controls on their lighting and HVAC systems which will allow them to enlist in the automated 
demand-response ancillary services market. The base has plans to install a waste-to-energy plant (up to 5 
MW in size) via a PPA. A previous plan to install a waste-to-energy plant through an ESPC fell through.  

The information received on Dyess AFB was very late in this study and could not adequately be 
reflected in the main body of this document. 

Eielson AFB: Existing 16 MW Type 1a microgrid 

Eielson AFB is completely powered by a CHP plant on base, except for in July and August when it 
is shut down for maintenance for a month. They operate grid connected during that month, but have 
relatively low demand requirements. The installation maintains a modest contract with the utility in case 
the CHP plant is lost for a short time; the installation would then depend on the utility power to provide 
the signal required to resynchronize and reconnect the CHP plant. The plant cannot back-feed the grid. 
They use coal to run the boiler and a steam turbine for electricity and heat. There is also a 1.5 MW diesel 
generator to black-start the rest of the plant. [It is unclear why, if they have black-start capability with this 
1.5 MW generator, it was mentioned that they needed the grid interconnection to allow the CHP plant to 
restart.] 

Kirtland AFB 

Conceptual design study by Sandia National Laboratories submitted to ESTCP. 

Kunsan AB, South Korea: Existing 3 MW Type 2a microgrid and 3 MW Type 1a microgrid 

Kunsan AB has eight diesel generators (MEP-12s, 750 kW each). Four of the units are at the 
switching station downstream of the KEPCO (Korean Electric Power Company) substation that serves the 
base. These four units tie to all the feeders at the main switching station and can be used to power the base 
in the event of a grid power outage. The other four are located at two different substations and are tied 
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directly to the feeders as dedicated units; they do not operate in parallel with the utility grid, but are used 
when the loads served by that feeder are isolated from the rest of the grid. Every year, KEPCO requires 
48 hours of downtime for their yearly preventive maintenance at the substation. The generators are only 
used when the base has lost utility power. 

Joint Base San Antonio /Lackland AFB: Study for a 0.5 MW Type 2b microgrid 

A study was done for a system with 500 kW of lead-acid batteries and a PV system. Not funded. 

Maxwell AFB: Underway 1.2 MW Type 2a microgrid 

Maxwell AFB has two existing 600 kW backup generators, a new 100 kW generator, and plans for 
500 kW of PV. The microgrid is being developed on the Sandia/CERTS microgrid model with automated 
transition to islanded mode and distributed controls. 

McConnell AFB: Existing 3 MW Type 1a microgrid 

McConnell AFB has two 1.5 MW diesel generators. The system is there as a backup system and it 
was not known to our contact if they can operate in parallel with the utility system. 

Joint Base McGuire-Dix-Lakehurst AFB: Demo of a 0.08 MW Type 2b microgrid 

An ESTCP building-level demonstration project was done at McGuire AFB to demonstrate peak 
shaving using solar power and batteries. It consisted of 75 kW solar PV, 25 kWh LiI battery, and an 80 
kW power cell. It did not interface with the building loads because of restrictions on network connections 
and was therefore also unable to communicate with an outside power supplier to get real-time pricing 
data. The final report was not completed at the time of contact. 

Offutt AFB: Reported existing 12 MW microgrid and a planned 25 MW microgrid with diesel 
generators 

Despite repeated attempts, we were unable to make contact with someone with information for 
microgrids at Creech and Offutt AFBs. 

Osan AB, South Korea: Existing 4.5 MW Type 1a microgrid 

Osan AB, Korea has six MEP-12s (750 kW) located throughout the base and connected directly to 
several 13.8 kV overhead feeders. All the MEP-12s are paired with step-up transformers 4.16 kV to 13.8 
kV. They are spread onto six different feeders, are localized, and cannot pick up the base load. They can 
provide backup power to the specific feeder that they are connected to. No switches or ability to 
synchronize to the grid. 

Patrick AFB: Existing 6.6 MW Type 1a microgrid 

Patrick AFB has two diesel generators at a substation to supply power in event of a grid outage. 
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Robins AFB: Existing 160 MW Type 2a microgrid 

Tinker AFB and Robins AFB have on-site combustion gas turbines, owned and operated by their 
respective local utility companies, which provide power to the installations in the event of a power 
outage. Each base was approached independently by the utility companies when they were looking for a 
location to site peaking power plants. The generators were installed and paid for by the utility companies, 
with the base providing the land. 

Robins AFB has an on-site combustion gas turbine plant consisting of two 80 MW generators. 
Operated by Georgia Power, the Robins plant is a peaking power plant during normal operation but, like 
the Tinker AFB power plant, can be islanded with the loss of grid power (this capability was tested three 
years ago at Robins). Normally the generators’ gas turbines run on natural gas, but there is a 1.3 million 
gallon diesel tank for backup (corresponding to about 18 days of operational capacity). There is also a 3 
MW generator used to black-start the grid if both larger generators go down. In practice, though, the 
generators would most likely never operate in an islanded mode, as they tie into the Georgia power 115 
kV primary line and feed loads off the installation as well. Restarting the grid and service decisions would 
be made by the utility company, but given the proximity of the base to the generation, Robins AFB is 
likely the first customer restored to power. 

Schriever AFB 

Study of local renewable resources by Sandia National Laboratories. 

Stewart AGS: Study for a 0.3 MW Type 2b microgrid 

The contract has been awarded to do a study to plan how to install and integrate 250–500 kW of PV 
into a base microgrid. They are currently doing an assessment of the environment and use of power on the 
base to understand the requirements. The installation needs 24/7 operation, so it will need to island for 
increased energy security. Stewart is in the New York metropolitan area and does a lot of the supply runs 
over to the European theater. There will be need to be storage of some type on the microgrid, but details 
are still to be determined. 

Tinker AFB: Existing 80 MW Type 2a microgrid 

Tinker AFB and Robins AFB have on-site combustion gas turbines, owned and operated by their 
respective local utility companies, which provide power to the installations in the event of a power 
outage. Each base was approached independently by the utility companies when they were looking for a 
location to site peaking power plants. The generators were installed and paid for by the utility companies, 
with the base providing the land. 

Tinker AFB has two utility owned-and-operated 40 MW generators in one of the substations that 
operate routinely in the summer, but provide backup, islandable power for the base in the event that the 
grid goes down. The base has first rights to the power and, in the event of a grid power blackout, the 
generators can be used to black-start the utility grid. This black-start or islanding operation has yet to be 
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operationally tested at Tinker. Many facilities on base also have backup generators for systems like 
exhaust fans in hazardous locations that Air Force Instructions require redundant diesel backup. The 
40 MW generators have about three days of backup JP-8 fuel for power generation. They began operating 
in 1988 and are on a second 15-year contract period. In addition, the utility at Tinker AFB wants to build 
a 250 kW solar array. The building targeted is on the 15 kV distribution system and would also be 
islandable, with the rest of the 80 MW backup power. 

United States Air Force Academy: Study for a 6 MW Type 2b microgrid 

The U.S. Air Force Academy has 6 MW of existing PV that they get power from through a PPA. It 
is grid-tied and not islandable. They have a study with NREL to look at the feasibility of making a 
microgrid on site. It is unclear whether the existing PV will be part of it or not, as the location of the PV is 
not near the planned microgrid site. 

Vandenberg AFB: Existing 15 MW Type 2a microgrid. A study has also been performed 

Vandenberg AFB has five 3.05 MW generators to provide power to launch operations that need two 
sources of power for contingency operations. The generators can run in parallel with the utility system 
and are tied-in to a substation for automatic transfer in the event of loss of utility power. They have run 
exercises with the utility for peak shaving, and could push power back into the grid, but they don't by 
policy. A conceptual design study for wind power by Sandia National Laboratories was also performed. 

Whiteman AFB: Reported 1 MW generator with step-up transformer to distribution voltage 

Despite repeated attempts, we were unable to make contact with someone with information for the 
reported microgrid at Whiteman AFB. 

ARMY 

Fort Belvoir: Study for a 1.8 MW Type 2a microgrid 

A proposal based on a design by Sandia National Laboratories that will include a CHP component: 
1 MW trigeneration with 800 kW backup diesel generators was submitted to ESTCP. 

Fort Bliss: Underway 1 MW Type 2b microgrid. A study has also been performed. 

The Fort Bliss microgrid development is in process as of March 2012. The project aims to construct 
a microgrid that will be integrated into the dining facility of the Battalion Combat Team-1 (BCT-1) 
complex at Ft. Bliss, Texas. The total peak power of the microgrid will be approximately 600 kW, with 
the expectation that it will be a scalable solution. 

The goals of the Ft. Bliss microgrid are to reduce green house gas emissions, lower operating costs, 
and enhance the energy security of the installation. The microgrid consists of existing diesel backup 
generators (250 kW), an existing PV array (100 kW), and a new lead-acid battery (300 kW/60 kWh). 
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Advanced controls will be integrated into both the existing PV inverter and the diesel generator to allow 
for islanded operation and advanced performance optimization. 

The architecture of the Ft. Bliss microgrid is designed to be flexible with distributed control at each 
distributed energy resource (DER) interfacing onto a common integration bus. The distributed controllers 
interface with a centralized microgrid controller that optimizes the dispatching of DER resources, 
aggregates and displays system performance, and could act as a single gateway to the utility EMS.  

The utility rate structure at Ft. Bliss includes both a significant demand charge based on the peak 
demand (kW) during each monthly period and very different on- and off-peak energy charges during the 
summer months. By shaving peak demand and shifting demand to off-peak time periods, the Ft. Bliss 
microgrid will aim to reduce overall operational costs of the system. Both the battery and the diesel 
generator will participate in the peak shaving activity, although the generator will be limited due to 
emissions requirements. 

Peak shaving requires knowledge of the installations energy demand, but does not necessarily 
require a direct tie to the utility EMS. Still, this is an important initial demonstration of the dual usage of 
energy storage devices, both to provide additional energy security while off-grid and cost savings during 
grid-tied operation.  

The installation is also looking at an ESPC project (112 kW at a range facility, 112 kW at another 
range, 1 MW on post).  

Fort Bragg: Existing ~5 MW Type 2a microgrid. A study has also been performed. 

At Ft. Bragg, there were Encorp virtual power plant systems installed at three locations to do peak 
shaving. One location paralleled three 850 kW gensets, a second location had a 1.5 MW genset, and the 
last location had fifteen gensets that ranged from 400 to 800 kW. The system has been abandoned at the 
first two locations. The last location has eleven generators still being controlled by the Encorp system. 
Our contact at Ft. Bragg said that they believed the systems were abandoned due to poor support from 
Encorp.  

There was also a microgrid study done at Ft. Bragg where the goal was to come up with a 
methodology to plan for an island. 

Fort Carson: Planned 7 MW Type 2b microgrid 

The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) 
JCTD is a multiphased joint effort to develop microgrids in a cyber-secure manner. SPIDERS is a 
collaboration between several of the DOE Laboratories with several organizations within the DoD, and is 
led by the U.S. Army Corps of Engineers. The effort is subdivided into three phases, with build-out 
efforts at Joint Base Pearl Harbor Hickam (JBPHH) (Phase 1), Fort Carson (Phase 2), and Camp Smith 
(Phase 3). The goal is to deploy or apply technology over legacy systems, looking at the technical 
feasibility as well as the business case and value proposition. Phases 2 and 3 are adding element of cyber 



 

 

73 

security to allow situational awareness and the ability to coordinate power demands with the utility 
provider. 

The Request for Proposals (RFP) for the second phase at Fort Carson was released in January 2012 
as a two-stage RFP, with first-phase responders down-selected to submit full proposals in the second 
phase. The Fort Carson microgrid will incorporate existing generation resources with large-scale 
renewable (solar) resources and battery backup (supplied in electric vehicles). The load that will be 
targeted for the Fort Carson demonstration will be a 2–3 MW critical load. The solar PV available on-
base is approximately 2 MW. Key components of this phase are to include cyber-security considerations 
(a major stumbling block for other implemented microgrid efforts) and the design of a microgrid with 
very high penetration of renewable generation. Another key aspect is using vehicles as storage to 
accommodate the ramp-rate of the 2 MW PV array (which is technically owned by Morgan Stanley). The 
plan is to have base islandable. There is an effort to make charging stations for vehicles agree with SAE 
standards. It is a custom design for bidirectional charging that comes from TARDEC vehicles produced 
by Smith Electric. The installation also has 8–10 diesel generators of sizes 25 kW to 1.25 MW. 

Fort Detrick: Existing 8 MW and 6.5 MW Type 2a microgrids. Study for a 10.3 MW Type 2a 
microgrid 

There are two existing microgrids at Fort Detrick: at the signal corps area and at the central utility 
plant. The signal corps microgrid has existed since 1975 and is dedicated to and collocated with the 
mission, which is in a fenced area. Even though this is mission-dedicated capacity, Fort Detrick has 
started operating in a demand-response program through a third party, using a quarter of their 8 MW 
generation capacity (the peak mission load is around 2.5 MW), while still allowing n–1 redundancy with 
Fort Detrick’s generator sets. In the summer, the base frequently operates the microgrid in an islanded 
configuration. The mission requirements specify a 30-day supply of diesel fuel.  

The second microgrid is also mission-specific. Privately owned-and-operated through an enhanced 
use lease, it provides steam, chilled water, and conditioned electric power to medical and research 
missions at the National Interagency Biodefense Campus. This microgrid is set up to provide 99.999% 
electrical reliability so that its normal operation can transition seamlessly to backup generation. The 
capacity is being expanded from 6–7 MW up to 16–17 MW, but due to the mission criticality, it is not 
available for backup power for the rest of the base or for cost-saving measures through demand-response 
or ancillary service markets. The base pays 21¢/kWh for electricity from this microgrid, as compared to 
8¢/kWh for electricity from the utility. 

Fort Detrick has also commissioned a study to look at a wider microgrid deployment on the 
installation, including the ability to link backup generator requirements in a way that is more reliable and 
cost-effective. The study recommended a 10.3 MW diesel-powered generator microgrid design which 
would allow long-term backup capability, whereas the individual building generators are designed for 
short-term operation. (Refueling trips for the 50+ building generators becomes an issue with tanks that 
have limited individual capacity.)  
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Fort Detrick also has ESTCP funding for an energy storage installation by SATCON and is 
investigating the possibility of a 10 MW solar PPA. Fort Detrick is an Army Net Zero installation. 

Fort Devens: Study 

A proposal based on a design by Sandia National Laboratories that will leverage an existing hydro 
plant was submitted to ESTCP. 

Fort Sill: Underway 0.4 MW Type 1b microgrid 

The 400 kW microgrid that is underway at Ft. Sill consists of two 210 kW diesel generators, 20 kW 
PV, 2.4 kW wind, and a 500 kVA battery bank. The goal is to island a cooling loop. Both generators are 
required to run this chiller loop; the loop is off in the winter (which makes meeting their testing 
milestones problematic). This project was funded out of recovery act funds. 

Fort Wainwright: Existing 20 MW Type 1a microgrid 

Ft. Wainwright in Alaska is an example of a Tinker AFB or Robins AFB-like energy agreement 
with the utility. The plant is a 20 MWe CHP plant that has recently been privatized. 

Wheeler Army Airfield: Existing 0.225 MW Type 1b microgrid, a planned 2 MW Type 2b 
microgrid, and a planned 52 MW Type 2a microgrid 

The existing microgrid at Wheeler Army Airfield (WAAF) is a microgrid put in by TARDEC as a 
prototype for a forward operating base and comprises three buildings, PV, along with vehicles for storage. 
The planned 2 MW effort would be with the local utility. They would control the generating source (2 
MW) and some of the load (also 2 MW). There are plans for including 150 kW PV as well, but it was not 
clear if it will be able to operate in an islanded mode or not. The 2 MW generating source is for a water 
plant, and the source can connect with the microgrid and with the utility provider. The 52 MW microgrid 
would be similar to the Tinker AFB and Robins AFB agreements with WAAF and Schofield Barracks 
providing land so that the utility company could build a 52 MW generation unit. All current utility 
generation sources are steam units near the ocean, so diversity of sources would be increased with a 
generator away from the ocean. The local utility needs to go out with an RFP for building the generation 
units. If installed, the units will be bio-fuel compatible reciprocating diesels. The schedule is 2015–2016, 
but they are at the mercy of the public utility system for approval. WAAF consulted the legal agreements 
at Tinker and Robins to see what advice they can use regarding the land use agreement, but the 
installation will need approval from within the Army to proceed further. 

NAVY 

NSF Dahlgren: Existing 14 MW Type 2a microgrid 

Naval Support Facility (NSF) Dahlgren, part of Naval Support Activity (NSA) South Potomac, is 
an installation within the Naval District Washington (NDW). NDW is developing a phased approach to 
increase their energy efficiency and energy security capabilities. Their plan is to increase energy security, 
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but to do so in a way that makes the most business sense. In implementing this plan, the first phase was to 
install and network together meters for electricity, natural gas, and hot water. The work started about two 
years ago with now approximately 200–300 devices at NSF Dahlgren, NSF Indian Head, and Washington 
Navy Yard. They are in the process of finishing the other 18 fencelines in NDW.  

The second phase is to develop CONOPS so that energy management can be automated and scaled 
where it makes sense. There will be a tremendous increase in sensor data, but human operators will still 
play a critical role, making clear and consistent CONOPS an important aspect.  

The third phase will be to allow the selective demand-response, load-shedding, or islanding of areas 
of an installation. NAVFAC (Naval Facilities Engineering Command) Washington has procedures that 
govern how transfer switches operate for switching between generation sources at a substation, so 
challenges may occur. At the moment, some switching at substations requires people to be on-site, but 
since the procedures are there to increase safety, it may be possible to implement this system with 
cameras instead. 

To implement this three-phased approach, NDW has started by taking existing systems and 
networking them together in a cyber-secure manner. This has taken not just software, but hardware, too. 
This has been made easier by the fact that after September 2001 the Navy created a Public Safety 
Network (PSNet) that is used for Navy Public Safety operations in the CONUS area. The existence of this 
system meant that the smart meters can be integrated into an existing infrastructure.  

At NSF Dahlgren, there has been a microgrid system for many years. Originally, the microgrid was 
implemented because of service reliability problems with the commercial utility (Dominion Virginia 
Power [DVP]). A cost analysis a decade ago showed that the lost revenue from power outages more than 
paid for the lease of generators from the NAVFAC Mobile Utilities Support Equipment program. The 
generators installed were in addition to the critical load generators that were required for specific Navy 
working capital programs. In implementing the microgrid, NSF Dahlgren has put in a Supervisory 
Control and Data Acquisition (SCADA) system as well as switching systems at substations, which are 
collocated with the generators. The generators are at the substations, not at individual buildings, allowing 
power to be used throughout the base, depending on the configuration of the substations. The microgrid is 
operated in two modes: to provide backup power to the facility if the utility grid goes down, and to 
operate in parallel with the utility grid to reduce load on the utility grid. The generators cannot back-feed 
power into the utility grid (in addition to the financial and safety complexities that this would introduce, 
there are technical aspects that would need to be solved). 

Currently, all of their backup generation capacity is diesel-powered because, at the time of 
implementation, that was the option that made the most financial sense. As renewable energy and energy 
storage come down in price, NAVFAC and NDW would consider adding these to the microgrid since the 
infrastructure already exists. NAVFAC and NDW are interested in both the financial and energy security 
aspects and stated that one has to complement the other. 

The cost calculations for the microgrid have also included different ways to interact with the utility 
market. The rate structure that the base formerly operated on made it economically attractive to use their 



 

 

76 

generation capacity in an active effort to reduce peaks in energy usage through peak-shaving. This rate 
structure has since changed, and they are currently enrolled in a demand-response program, where they 
can, and do, curtail power usage or start their own generators to reduce apparent demand. NSF Dahlgren 
currently has 14 MW of generation capacity enrolled in the demand-response program though a third-
party, and they were called on several times last year to perform (which they did). The payments from the 
demand-response program cover the costs of the generator leases, showing that energy security can be 
enhanced in a cost-neutral way (dependent on which part of the country the installation is located).  

One important aspect about cost, though, is that the cost equation could change, as Dominion 
Virginia Power is currently upgrading the single 34.5 kV feeder to the base so that there will be an 
additional 115 kV feeder line. If the base no longer loses power regularly and the availability of the 
demand-response program changes, the lease economics for the generators could change.  

PMRF Barking Sands: Existing 1.5 MW Type 1a microgrid 

1.5 MW of diesel generators run during critical operations to isolate the load from the utility 
service. The generators can connect and follow the utility signal before load is transferred for a seamless 
transition, but the length of time that parallel operation is allowed is limited by the utility. 

Philadelphia Navy Yard: Study 

A study was done by Sandia National Laboratories to come up with a design to combine the 
commercial, industrial, and residential demands at Philadelphia Navy Yard. 

MARINES 

Camp Smith: Study for a 15 MW Type 2b microgrid 

The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) 
JCTD is a multiphased joint effort to develop microgrids in a cyber-secure manner. SPIDERS is a 
collaboration between several of the DOE Laboratories with several organizations within the DoD, and is 
led by the U.S. Army Corps of Engineers. The effort is subdivided into three phases, with build-out 
efforts at Joint Base Pearl Harbor Hickam (JBPHH) (Phase 1), Fort Carson (Phase 2), and Camp Smith 
(Phase 3). The goal is to deploy or apply technology over legacy systems, looking at the technical 
feasibility as well as the business case and value proposition. Phases 2 and 3 are adding an element of 
cyber security to allow situational awareness and the ability to coordinate power demands with the utility 
provider. 

The third phase of the SPIDERS program will be a microgrid at Camp Smith, Hawaii that is 
capable of operating the entire installation independently from the local utility in a cyber-secure manner. 
The precise details for this phase are still being formulated, but the current plan is to do a microgrid for 
the entire campus (~15 MW) with diesel generators, solar PV, and energy storage. The plan is dependent 
on FY 2013 funds, so it is not yet formalized. There have been serious power quality and power outage 
issues over the last six months. 
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MCAGCC Twentynine Palms: Existing 8.9 MW Type 2a microgrid. Underway 14.7 MW Type 2b 
microgrid 

Marine Corps Air Ground Combat Center (MCAGCC) Twentynine Palms has an existing microgrid 
that operates daily, powered by a 7.2 MW CHP plant fueled by natural gas with diesel backup. It 
normally operates 24 hours a day/7 days a week, generating power in parallel with the local utility, 
Southern California Edison (SCE), to provide electricity and heat to the main power loop of the 
installation. It is directly tied in to one of the substations and has the ability to operate in an islanded 
mode, should the main feed for the installation go down. There is a requirement for seven days of backup 
diesel fuel, with diesel storage at the cogeneration plant and elsewhere on the base. During the course of 
this study, many changes to the MCAGCC Twentynine Palms microgrid have been in process. The 
description provided here was current as of February 2012, but the situation is still changing. 

Switchover to islanded operation is currently performed manually at the control room of the CHP 
plant, but in the next couple of months (as of February 2012) it will transition to automatic switching at 
the substation. While operating in islanded mode, switches and breakers allow the main power loop to 
shed loads if demand exceeds generation, with additional switches currently being added. 

There is also 3.2 MW of solar PV generation capacity operational on the base, distributed among 
approximately 30 individual building-level arrays, as well as with a 1.2 MW field that ties directly into 
the CHP plant substation. Additional PV of 1.3 MW is installed and awaiting SCE interconnection 
approval. The PV arrays can feed the CHP plant in the event of power loss from SCE and has been 
operationally tested in early 2012 with load-shedding plans implemented. There are more than 60 new 
switches to change power flows through the base and more than 140 buildings with Energy Management 
and Control System (EMCS) power management systems. Future plans call for more buildings with 
EMCS and tighter integration of those systems with the controls at the CHP plant. MCAGCC Twentynine 
Palms currently has about 80% of their buildings metered, which gives them insight into more than 75% 
of all electricity use. They are also adding natural gas, MBTU meters for hot water, and MBTU meters for 
cooling. Those meters will then tie back into the EMCS and the base-wide public works network. 

The main feed from SCE is a single 34.5 kV line, but the installation is outgrowing the ability of 
that line to provide power, especially in the summer and with the significant expansion of the installation 
that is underway. SCE is installing redundant feeder lines to Twentynine Palms, with dual 115 kV lines, 
which will improve electrical service in the whole area, but that is still underway (with planned finish date 
of January 2013), with some permitting issues that have extended the timeline repeatedly. Upon 
completion, the installation will own the infrastructure at the substation. 

In addition to the solar PV upgrade, the plan calls for installation of a second CHP plant (it will be a 
dual 4.6 MW turbine for a final output of 9.2 MW powered by natural gas with propane backup so that 
there will be more diversity of backup fuel), more PV (5.5 MW), the ability to control the power factor of 
the generation resources with a capacitor bank, and a large-scale battery back-up. There has been a 
0.5 MW fuel cell in progress for several years, but it is not yet operational. 
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Also, GE is conducting a smart grid demonstration at four buildings to show controllability of five 
generators (range 20–150 kW) as part of a multiphase effort. Unfortunately, due to permitting problems, 
they cannot currently be used in load-shedding applications, but only in an emergency if the installation 
needs to operate in an islanded mode. Other efforts include improving the power factor control with 
capacitor banks; better control of supplies, loads, and load-shedding; and installation of a battery backup 
system. 

The entire installation of Twentynine Palms consists of over 900 square miles of land area located 
in the high Mojave Desert of California. As such, the base is an attractive location for the large-scale 
implementation of renewable resources and is exploring the possibility of exporting excess power. This 
excess power would be provided through a power purchase agreement (PPA) to other Navy and Marine 
Corps facilities in southern California. It will take several years to work out but, if successful, will help to 
meet Federal and Navy renewable mandates.  

MCAS Miramar: Planned 5.2 MW Type 2b microgrid 

There is a planned microgrid at MCAS Miramar that will use available distributed energy 
resources. 3.2 MW landfill gas: the PPA needs to be set up in the correct way to allow the landfill gas 
system to participate in a microgrid operating in islanded mode. In addition to the landfill gas system, 
they are planning Cogen (1 MW) and solar PV (1 MW). In the event that the landfill gas approval does 
not go through, their campaign plan is to be net-zero by 2017. They were initially looking at 1 MW of 
battery storage as well, but this is just on paper at the moment. In the event of a power failure, everything 
starts as grid-tied, then all power would stop and disconnect from the utility grid, then black-start the 
islanded grid with the landfill gas system and distributed spot generators, then put power back to Miramar 
and start the Cogen system up, then add back the PV (California Rule 21 requires that PV systems stay 
disconnected from the grid until voltage and frequency are back within limits [106–127 V for 120 V basis 
and 59.3–60.5 Hz (inclusive)] and stable for a minute, then shut down generators. For the Cogen system, 
they are looking at natural gas and other fuels. They would like to be able to use the flight fuel as a 
secondary power generation source, as they have large quantities. If they have diesel as a backup, they are 
limited by emissions controls as to how many hours it could run in a year (although that limitation may 
not apply in the event of a grid failure – this was not completely clear to our contact). They don’t really 
have a need for much more than 1 MW of Cogen, as there are only two places where they can use the 
heat: hot water for about 70 barracks and the absorption chillers. 

JOINT BASES 

Joint Base Lewis-McChord: Study 

The goal of this study was to come up with a methodology to plan for an island. Islanding plan at 
JBLM was handed off to Pacific Northwest National Laboratory for a small demo. There is biomass 
potential at JBLM. 
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Joint Base Pearl Harbor-Hickam: Underway 2 MW Type 2b microgrid 

The Smart Power Infrastructure Demonstration for Energy Reliability and Security (SPIDERS) 
JCTD is a multiphased joint effort to develop microgrids in a cyber-secure manner. SPIDERS is a 
collaboration between several of the DOE Laboratories with several organizations within the DoD, and is 
led by the U.S. Army Corps of Engineers. The effort is subdivided into three phases, with build-out 
efforts at Joint Base Pearl Harbor Hickam (JBPHH) (Phase 1), Fort Carson (Phase 2), and Camp Smith 
(Phase 3). The goal is to deploy or apply technology over legacy systems, looking at the technical 
feasibility as well as the business case and value proposition. Phases 2 and 3 are adding an element of 
cyber security to allow situational awareness and the ability to coordinate power demands with the utility 
provider. 

JBPHH is the SPIDERS phase 1 location. This phase includes traditional generation coupled with 
small-scale renewable generation (solar and wind) to island a water treatment plant at JBPHH. The 
preliminary design for the microgrid includes two diesel generators supplying a maximum of 2.4 MW, 
50 kW of vertical-axis wind turbine generation, and the potential to incorporate a hydrogen storage 
system and small-scale solar PV. The total critical load that is being serviced is approximately 650 kW. 
The initial microgrid had hydrogen as an energy storage mechanism, but that has had push-back. The 
recommended design for hydrogen was 65 kg H2/day from an electrolyzer with about 100 kW from an H2 

fuel cell. A key component of this phase is to work with the Navy accreditation process, the DoD 
Information Assurance Certification and Accreditation Process (DIACAP) [31], and platform IT to ensure 
that equipment developed for the microgrid architecture is able to be used with all network 
infrastructures. If desired, all services have the opportunity to implement the same architecture by 
leveraging the Navy’s accreditation approvals for the SmartGrid networks and system through the DoD’s 
reciprocity memo [32]. The contract for Phase 1 was awarded in November 2011 to Burns & McDonnell 
Engineering Company.  

Pohakuloa Training Area: Study 

The Pohakuloa Training Area was the Army NetZero pilot project, but it is not one of the bases that 
was followed up with, as the proposal did not get funded. Also, in Hawaii, the interconnection of the 
renewables is challenging. The power company has limits on the system – only 10% of the peak feeder 
load can be renewable. The Army site is on their own feeder, so they are limited to 40 kW renewable (the 
peak at Pohakuloa is small, only 400 kW).  
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APPENDIX B 
FY 2012 ESTCP INSTALLATION ENERGY DEMONSTRATIONS: 

MICROGRIDS [33] 

EATON CORPORATION: DISTRIBUTED STORAGE INVERTER AND LEGACY 
GENERATOR INTEGRATION PLUS RENEWABLES SOLUTION FOR MICROGRIDS 

Partners: U.S. Army ERDC-CERL; Electricore, Inc. 

Demonstration Site: Fort Sill, Oklahoma 

Description: This project will demonstrate the ability to operate a secure microgrid with natural gas 
generators and renewable energy sources without long-term battery energy storage. This microgrid 
solution will provide DoD with higher reliability and energy surety and minimize the needs for load 
dedicated costly storage. 

PDE TOTAL ENERGY SOLUTIONS: SODIUM-METAL-HALIDE BATTERY ENERGY 
STORAGE FOR DOD INSTALLATIONS 

Partners: GE Global Research/GE Energy Storage; Dynapower Corporation 

Demonstration Site: Twentynine Palms, California 

Description: This project is testing a Battery Energy Storage System (BESS) that incorporates 
utility grade power electronics, a step-up cast coil transformer, AC and DC switchgear, and sodium-
metal-halide battery energy storage and is designed to integrate seamlessly to an existing microgrid. The 
project will demonstrate how a robust BESS will alleviate renewable energy intermittency, improve 
island-mode operations, and reduce demand charges and peak load stress on the main transformers and 
other grid equipment. 

RAYTHEON-INTEGRATED DEFENSE SYSTEMS: ZINC BROMIDE FLOW BATTERY 
INSTALLATION FOR ISLANDING AND BACKUP POWER 

Partners: Premium Power Corporation; NREL; NEI Contracting and Engineering, Inc. 

Demonstration Site: Marine Corps Air Station Miramar, California 

Description: This project integrates an innovative Zn/Br flow battery with a patented intelligent 
energy command and control technology to provide energy security, islanding capability, and reduced 
energy use. The demonstration will assess the operational life cycle cost of this technology to provide 
energy security. 
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SATCON TECHNOLOGY CORPORATION: GRID-INTERACTIVE RENEWABLE ENERGY 
GENERATION SYSTEM WITH DC-LINK BATTERY STORAGE INTEGRATION CAPABLE 
OF HYBRID MICROGRID OPERATION TO INCREASE ENERGY SECURITY ON DOD 
INSTALLATIONS 

Partners: A123 Systems 

Demonstration Sites: Fort Detrick, Maryland 

Description: This project will demonstrate a hybrid electricity generation system that integrates DC-
connected bulk energy storage with PV power sources to mitigate the inherent intermittency of the PV. 
The leveled AC power output will enhance installation energy security, reduce dependence on grid-
supplied power, and reduce overall energy costs. 

SIEMENS CORPORATION: INTEGRATED CONTROL FOR BUILDING ENERGY 
MANAGEMENT 

Partners: Boeing Energy; KEMA Services, Inc.; University of California at Berkeley 

Demonstration Sites: Naval Base Ventura County, California 

Description: This project will demonstrate the functionality of an intelligent Building Energy 
Management System (iBEMS) for providing advanced, integrated control of building systems, dynamic 
demand response, and compatibility with microgrid central energy management. Key elements of iBEMS 
include Siemens Smart Energy Box, Local Energy Gateway, and advanced building control and energy 
management algorithms. 
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APPENDIX C  
EPA DIESEL EMISSIONS STANDARDS 

The Environmental Protection Agency (EPA)’s New Source Performance Standards (NSPS) 
specified emission requirements for stationary diesel engines [34]. Figure 42 lists the emissions 
regulations schedule.  

 

 

Figure 42. EPA’s emissions regulations schedule from NSPS [35].  

Most commercially available generators on the market to date have Tier 2 emission levels. In the 
future, large stationary emergency generators (greater than 1 MW) can remain at Tier 2 emission levels. 
However, if the generators are to be used for non-emergency functions (such as peak shaving), these 
generators must satisfy Tier 4 emission regulations, which require 90% reduction in NOx, HC, and PM.  

In addition to the federal regulations from the EPA, state and local authorities can impose even 
more restrictive standards based on local air quality. Therefore, as we consider enrolling generators on 
demand-response programs, we must take into account the requirements of federal, state, and local 
authorities. As an example, in the state of Massachusetts, Tier 2 emergency generators are allowed to run 
300 hours per year, which include monthly capacity tests, service to connected loads during utility 
outages, and voluntary peak shaving [36]. However, at the federal level, voluntary peak shaving is not 
considered emergency. In the future, generators enrolled in demand-response programs, including peak 
shaving, must be Tier 4 generators.  
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