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Abstract—In this white paper we propose a new method which
exploits tools from graph signal processing to solve the graph
matching problem, the problem of estimating the correspondence
between the vertex sets of two graphs. We recast the graph match-
ing problem as matching multiple similarity matrices where the
similarities are computed between filtered signals unique to each
node. Using appropriate graph filters, these similarity matrices
can emphasize long or short range behavior and the method
will implicitly search for similarities between the graphs and
at multiple scales. Our method shows substantial improvements
over standard methods which use the raw adjacency matrices,
especially in low-information environments.

I. INTRODUCTION

Many social, economic and biological systems can be better
understood when interpreted as graphs, comprised of indi-
vidual components that interact with each other, resulting in
diverse local and global behaviors. When multiple graphs arise
from overlapping set of nodes, the challenge of associating
nodes across these graphs is a key problem in numerous
application domains. The problem of graph matching was
initially posed in the context of image and shape analysis, as
well as for determining similarities in chemical structures [1],
[2], [3]. With the rapid expansion of social network data [4],
[5], [6], matching entities (represented by nodes in the graph)
across multiple graphs has become a fundamental problem
in social network analysis. For example, the knowledge of
the mapping between nodes across multiple social media sites
provides integration of information to create a more complete
picture of user and community activity and trends.

Given two graphs, as represented by their adjacency matri-
ces A,B ∈ {0, 1}N×N , the graph matching problem is most
commonly formulated as solving or approximating

P = argmin
P∈Π

‖A−PBPT ‖2F = argmin
P∈Π

Tr(APBPT )

where Π denotes the set of N×N permutation matrices. How-
ever, graphs are often constructed from noisy and incomplete
data at different times, and the notion of how edges are formed
or defined might vary in different graphs. Matching graphs
based on the edge discrepancies only considers the immediate
adjacencies, but neglects the longer-range structural properties
which may be better preserved across networks.
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On the other hand, some authors have proposed methods
that embed the nodes as vectors in a low-dimensional space
using the eigenvectors of the graph Laplacian and solve
the matching problem in the embedded space [7], [8]. The
node embedding captures longer-range structures of the nodes
but these approaches only implicitly accounts for immediate
adjacencies. Depending on the topologies of the graphs to be
matched, we hypothesize that graph matching can benefit from
considering both the immediate adjacency structures and the
longer-range structures. The goal of this paper is to design a
general framework that exploits tools and theories in graph
signal processing to capture both the local and long-range
structure properties across graphs, and reformulates the graph
matching problem as one of matching similarities among pulse
response signals to multiple graph filters.

The contribution of this paper is three-fold. First, this
work takes the advantage of graph filtering to obtain multiple
matrix representations of a graph that captures the long-range
structural similarities between nodes at different scales. To
our knowledge, this is the first explicit use of graph signal
processing to solve the graph matching problem. Specifically,
we use a low-pass diffusion filter to generate a diffusion
process around each node. The larger the time scale in the
heat diffusion operator, the larger the heat is to spread to
its neighborhood, capturing long-range structural information.
The proposed approach is also applicable to other types of
filters [9], [10], depending on the topology of the graphs to
be matched. Importantly, the graph filters can be tailored to
emphasize similarities of longer-range connectivity structures
via low-pass filters or to emphasize fined-grain correlations
between edges. Second, the proposed framework generalizes
the existing spectral graph matching methods. We provide
a cohesive interpretation of these spectral methods using
graph filtering. Third, this work provides a novel way of
using multi-objective optimization to perform matching on
multiple pairs of graph representations. The advantage of using
multi-objective optimization is that graph representations at
different scales are treated independently and are all explicitly
accounted for.

II. GRAPH MATCHING VIA MULTI-SCALE DIFFUSION

A. Filtering for Graph Matching

To solve the graph matching problem from the perspective
of graph signal processing, we reformulate the problem as
matching similarity matrices across graphs where the similar-
ities are computed between signals associated with each node.
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The signals are computed as the response of filters applied to
pulse signals at each node in the graph.

Consider a simple graph with N vertices and adjacency
matrix A. The normalized Laplacian is defined as LA = I−
D−1/2AD−1/2, with diagonalization L = UΛU where U
denotes the eigenvector matrix of L and Λ is a diagonal matrix
containing the corresponding eigenvalues 0 = λ0 < λ1 ≤
λ2 ≤ · · · ≤ λN−1. For a frequency response function h :
R+ 7→ R+, the graph filter is given by the matrix Uf(Λ)UT

where h(Λ) denotes applying h to the diagonal elements of Λ
[9], [10].

Given a pair of frequency response function h, g : R+ 7→
R+ we create pairwise similarity matrices as follows. We
associate unit pulses ei to each node i ∈ V , where eii = 1
and eij = 0 for j 6= i. For graph A, consider the pulse
responses given by the signals x(h)

i = UAh(ΛA)UT
Aei where

LA = UAΛAUT
A. Similarly, for graph B and frequency

response function g, we denote the pulse response signals as
y(g) = UAg(ΛB)UT

Bei, where LB = UBΛBUT
B .

Finally, we compute the similarities

A
(h)
ij =

x
(h)
i (t)Tx

(h)
j (t)

‖x(h)
i (t)T ‖2‖x(h)

j (t)‖2

and similarly, B
(g)
ij =

y
(g)
i (t)Ty

(g)
j (t)

‖y(g)
i (t)T ‖2‖y(g)

j (t)‖2
, so that the entries

of A(h),B(g) ∈ Rn×n correspond to the cosine similarity
between the pulse response signals associated to each node.

We can now reformulate the graph matching problem
as matching these similarity matrices. Given a pair of
graphs, A,B, and frequency response functions, h, g, the
objective function to maximize is given by fh,g(P) =
1
2 trace(A(h)PB(gPT ) which has gradient A(h)PB(g). Note
this is still a quadratic assignment problem and approximate
quadratic assignment solvers can be employed. However, by
selecting appropriate frequency response functions either local
or non-local aspects of the graph structure can be emphasized.

Example 1 (Enron Graph). In Figure 1, we show the resulting
similarity matrices for three different frequency responses
as applied to one of the Enron graphs (see Section III).
The leftmost plot shows the normalized Laplacian and the
remaining three plots, from left to right, show the similarity
matrices associated with the following frequency response
functions: e−4λ for the low-pass filter, λ10e−5λ for the band-
pass filter, and e4λ the highpass filter. Evidently, the lowpass
filter highlights substantial similarities among groups of nodes
where as the bandpass and highpass filters emphasize some
of these same communities but also highlights differences
between and among these groups and emphasizes finer grained
structures. The ordering of the nodes was chosen by clustering
the nodes using the greedy modularity maximization approach
of [11], followed by degree sorting.

B. Multiple Data-Dependent Filters

Choosing appropriate filters can have a substantial impact on
the overall performance of the matching. To allay the impact
of a specific filter choice, we propose using multiple filters

along with a multi-objective matching approach to improve
performance. To motivate the proposed approach, let us first
review the existing spectral graph matching and discuss the
similarities of these methods to the graph filtering approach.

While graph matching typically proceeds by matching the
adjacency matrices, some authors have matched graphs using
the eigenvectors of the Laplacian or adjacency matrices [7],
[8], [12]. Specifically, [7] considers the problem minimizing
the Frobenius norm argminP∈Π ‖LkA−PLkBPT ‖2F where Lk

denotes the truncated eigen-decomposition of the Laplacian
L corresponding to the k smallest eigenvalues. When graphs
are near-isomorphic, the formulation is equivalent to applying
a low-pass filter of a given threshold to the graphs. On the
other hand, [12] proposed a matching algorithm that proceeds
by comparing eigenvectors of the adjacency matrix. Specif-
ically, the proposed algorithm solves the linear assignment
problem for the matrix UVT where U,V ∈ O(n) are
the orthogonal matrices of eigenvectors for the adjacency
matrices. In a recent work, [13] proposed a similar algorithm
but modified the procedure to perform the linear assignment
problem on a different matrix

∑
i,j

1
(λi−µj)2+η2UiU

T
i JVjV

T
j ,

for η > 0, where λi, µj are the non-increasing eigenvalues of
A,B, respectively. [13] provide theoretical justifications that
this computationally efficient algorithm can accurately match
(highly) correlated Erdős-Rényi random graphs. While moti-
vated by very different tools, there are substantial similarities
to graph filtering. In particular, by considering the frequency
response functions hj(λ) = η

(λ−µj)2+η2 and gj(λ) = δλ,µj
,

the approach of [13] can be viewed as matching using N
different bandpass filters selected based on the eigenvalues
of one of the adjacency matrices. Note that as Erdős-Rényi
graphs are nearly regular, the normalized Laplacian has a
very similar spectrum to the adjacency matrix, just shifted and
scaled. Hence, using bandpass filters in our approach will yield
very similar results to their approach. However we consider an
iterative QAP solver whereas their approach uses a one-step
LAP solver, so that the first step of our procedure corresponds
closely to their procedure.

In practice, we adapt the filters to the given graphs based on
the spectral properties of the respective normalized Laplacians.
In the simulations, we use low-pass filters with frequency
response functions of the form ft(λ) = exp(−tλ). After
applying these lowpass filters, the resulting signals correspond
to a heat diffusion along edges of the graph from an initial
point of a unit pulse at a single node. We denote the resulting
similarity graphs as heat graphs, an example of which is
shown in the second panel of Figure 2. For each graph, we
select two or more values of t which are spaced logarithmically
between t1 = min{2, log(10)/λn} and t2 = log(10)/λ2.
These choices were motivated by the recommendations found
in [14] and we found they offer substantial improvements of
using the adjacency matrix alone.

C. Multi-objective Matching

The original graph matching problem has a single objec-
tive, to maximize the number of common edges f(P) =
Tr(APBP)T between A and PBPT , where P denotes a
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Figure 1: Examples of similarity functions for different filters for a graph based on the Enron dataset.

permutation matrix. Our proposal can incorporate objectives
for each filter, as well as the original adjacency matrix, and
we use a multi-objective matching approach to search for a
Pareto optimal solution.

Let h1, . . . , hM and g1, . . . , gM denote the chosen fre-
quency response functions. Let us index the heat graphs as
Am = A(hm) and Bm = B(gm) for m = 1, · · · ,M where tm
and t̄m denote the time scales used to generate the diffusion
signatures on GA and GB , respectively. Let A0 = A and
B0 = B0 be the original adjacency matrices. Leveraging
both the adjacency matrices and the heat graphs to find the
latent node alignment can be achieved by the following multi-
objective optimization [15] :

max
P∈D

(f0(P), f1(P), · · · , fM (P)) (1)

where fm(P) := Tr(AT
mPBmPT ) denotes the objective

function that measures the edge agreement between graphs
represented by the corresponding matrices Am and Bm [16].

To search for the latent alignment that maximizes the
M objective functions simultaneously, we use the multiple-
gradient descent algorithm [15]. This algorithm generalizes the
classical steepest-descent method to multi-objective problems.
At each iteration, it computes the gradients of the individual
objectives and combines the ascent directions to minimize the
combined norm of the gradients. The initial ascent directions
are found using the Hungarian algorithm, yielding M permu-
tation matrices. Finding the final ascent direction and step size
involves standard optimization techniques.

III. EXPERIMENTAL RESULTS

To illustrate the efficacy of the proposed multi-objective
graph matching approach, we compare the matching results
found by the proposed method and the method based on min-
imizing edge discrepancy on a set of real-world graphs. The
performance comparison is performed by repeating the process
of selecting randomly S number of seeds (known matches)
and using each algorithm to match graphs. The performance
is measured by the average match ratio, which is defined as
the number of correctly matched nodes divided by the number
unknown matches N −S. For all graphs, we use only M = 2
similarities matrices generated by the diffusion low-pass filter
in addition to the normalized adjacency matrices.

The graphs include Enron email graphs, two sets of brain
graphs and wikipedia graphs. The Enron email dataset [17]
consists of N = 184 employees of the Enron Corporation.
The graphs are unweighted. Edges represent a vertex sending
at least one email to another vertex. The Enron email graphs
used in this paper are graphs of the consecutive weeks t =
130 and t = 131 [18]. For the brain graphs, we consider a
pair of brain networks derived from diffusion MRI data [19].
The datasets consists of test-retest pairs. The raw image data
is converted into a connectome with N regions of interest
(ROI) as vertices. The two sets of graphs correspond to two
different brain atlases [20]: the Desikan atlas with N = 70 and
the Talairach atlas with N = 1105. The edges are weighted
by the estimated number of neural fiber bundle connecting
the regions. The Wikipedia graphs consist of articles in both
English and French [18]. There are N = 1382 English articles
and edges represent the intra-language links from one article
to another. The corresponding French articles were collected
through the inter-language links.

Figures 2-5 show the mean and the standard deviation of the
matching accuracy for the 4 sets of real-world graphs. Each
dot in the plots represents the average matching accuracy av-
eraged with 100 trials using randomly selected seeds. Observe
that the proposed graph matching using multi-scale diffusion
features improves the matching performance, especially when
the number of seeds is small. In addition, the proposed method
is overall less sensitive to the number of seeds.

We also examined the effect of the number of graph filters
used to generate the similarity matrices in the multi-objective
optimization. We observe that when the percent of seeds is low,
increasing the number of graph filters has the greatest impact
on the performance improvement. As the number of seeds
increases, the effect of the additional heat kernel graphs on
improving the matching performance decreases. For the Enron
dataset, M = 2 seems to be the optimal number, beyond which
the matching accuracy does not increase as much. Results on
the effects of using other filters on different graphs will be
reported in the full paper.

IV. CONCLUSION

We propose a novel graph matching approach that exploits
tools from graph signal processing to capture multiple scales
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Figure 2: Matching Enron email graphs t = 130, 131, plotting
average match ratio against the percentage of seeds

Figure 3: Matching Desikan brain graphs plotting average
match ratio against the percentage of seeds

of graph structure and uses multi-objective optimization ap-
proaches to find accurate matchings. Our approach demon-
strates substantial improvements over approaches where only
the adjacency matrix is used. This improvement is especially
high when little or none of the true correspondence is known
a priori.
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