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Multisensor Surveillance for 
Improved Aircraft Tracking 

Cross-range measurements of aircraft travelling at  distances of 50 to 200 miles include 
significant errors. Therefore, heading estimates for medium-to-long-range aircraft are 
not sufficiently accurate to be useful in conflict-detection predictions. Accurate cross- 
range measurements can be made-by using two or more sensors to measure aircraft 
position-but such measurements must compensate for the effects of system biases and 
aircraft turns. A set of algorithms has been developed that are resistant to system biases, 
that detect turns, and that track successfully through both biases and turns. These 
algorithms can be incorporated into a complete multisensor system, with good intersen- 
sor correlation of aircraft tracks and no added delays to the air traffic control processing 
chain. 

Single-Sensor Tracking 

The Mode S sensor has brought major im- 
provements to the accuracy of aircraft surveil- 
lance reports [I]. With this sensor, the expected 
measurement noise has a standard deviation (0) 
value of 25 feet in range by 1 rnilliradian in 
azimuth (if the constant bias offsets are ig- 
nored). However, this high degree of accuracy 
still introduces considerable error in the mea- 
sured cross-range (position component in the 
azimuth direction). The 1-mrad noise in azi- 
muth translates into a cross-range o many 
times larger than the range ofor distant targets. 

For a range measurement with a standard 
deviation of 25', for example, the standard devia- 
tion of the cross-range can be fifty times greater: 

Range of target 1 -o  range 1 - a  cross-range 
10 nmi 25' 60' 
50 nmi 25' 300' 

100 nmi 25' 600' 
200 nmi 25' 1,200' 

Large cross-range errors cause very noisy 
tracker inputs. The sample data of Fig. 1 illus- 
trate the severity of the problem. The data pro- 
duced with the current, single-sensor system 
contain a great deal of noise. To produce stable 
heading estimates, therefore, the data must be 
heavily smoothed by a Kalman filter. But such a 
tracker follows turns very poorly-initial turn 

reports are assumed to be measurement noise 
and, even after a turn has been identified, the 
true turn rate cannot be accurately estimated. 

Figure 2 shows how a typical linear Kalman 
filter handles turning data. Note how severely 
the predicted aircraft heading lags the true 
heading. 

These tracking problems are exacerbated 
when the aircraft enters a sensor diffraction 
zone. In such a zone, the radar signal is dif- 

Fig. I-The current single-sensor sun/eillance system 
produces extremely noisy data. 
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Fig. 2-Kalman filter performance during a turn. The "1 '3 
show the true aircraft position. Performance of the filter is 
poor: the head of each arrow should touch the tail of the 
succeeding one. 

fracted by a narrow object (such as a smoke- 
stack). The resulting beam curvature introduces 
verylarge errors in the azimuth estimates. In the 
worst case, in fact, the azimuth value read by the 
sensor is randomly distributed over the full 
antenna beamwidth. 

In a real-life application, diffraction errors 
can be dangerously misleading. The results of 
the conflict-detection experiment shown in Fig. 
3 clearly demonstrate the hazard of diffi-action 
errors. The measured positions and headings 
look safe; the actual trajectories are heading for 
collision. 

Since aircraft are typically observed by two or 
more sensors, it should be possible to use 

Fig. 3-Surveillance degradation due to diffraction. 
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multisensor measurements to improve surveil- 
lance and tracking. The current air traffic con- 
trol system makes use of multiple-sensor cover- 
age, but only as a backup mode when primary- 
sensor coverage is missing. That is, the current 
mosaicking system switches its data source 
from preferred to supplemental only when re- 
quired; only one sensor's reports are used on 
any given scan, and other available data are 
ignored. 

A true multisensor system would provide far 
better surveillance and tracking of aircraft than 
the current system. For this reason, an ongoing 
program at Lincoln Laboratory has developed a 
set of algorithms and has implemented them in 
a system that offers multisensor processing of 
aircraft reports. 
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Multiple-sensor tracking can be imple- 
mented in one of two different ways. The sim- 
plest method is to feed unmodified reports from 
the sensors in time order into a common Kalman 
filter. Each report then improves the tracker 
covariance matrix (the matrix of standard devia- 
tions of all pairs of measured variables) along its 
range coordinate. If the sensors are at different 
aspect angles relative to the aircraft, the entire 
covariance matrixwill tighten and good tracking 
will result. 

The second approach is multilateration. In 
this method, illustrated in Fig. 4, range mea- 
surements from the sensors are time aligned to 
a common time, and position is determined by 
the intersection of the range arcs. Assuming dif- 
ferent aspect angles, the measurement error el- 
lipse becomes nearly circular. The improved 
reports are then fed into a Kalman filter. 

Multilateration offers four advantages: 
(1) improved accuracy in measurements 

shown on the controller display, 
(2) quicker detection of aircraft turns, 
(3) no diffraction errors, and 
(4) estimates of aircraft altitudes. 

For these reasons, Lincoln Laboratory has 
pursued most strongly the multilateration 
approach. 
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Fig. 4-Multilateration error ellipse. 

, Worst-Case Interpolation Error 

Worst-Case Extrapolation Error 1 

Speed Int. Error Ext. Error 

ample of an error due to linear extrapolation 
during a turn, an error so large that it nullifies 
the improvements of multilateration. Thus 
turns must be identified prior to time alignment, 
and circular interpolation and extrapolation 
must then be used during turning periods. 

Turn Detection 

Turns are usually detected by observing a 
heading change in the aircraft's trajectory. 
However, the heading measurement depends 
upon the azimuth, and severe noise in the 
measurement of the azimuth is the reason that 
multisensor surveillance is needed. Thus the 
turn-detection technique for multilateration 
must use only measured ranges. The most 
successful such technique uses the second dif- 
ference of successive range measurements, as 
shown in Fig. 6. The actual observed A(Ap) is 

NAP), = (P, - pn-1) - (P,-1 - pn-2) 

where nis current scan. This value is compared 
with the predicted one for a straight trajectory. 
If the difference exceeds a predefined parameter, 
a turn is declared to be in progress. 

This technique was applied to a sample of real 
data; the results are shown in Fig. 7. Note that 
true turns were detected, but a false apparent 

Fig. 5-Interpolation and extrapolation accuracy during 
3"/s turn. 

Time Alignment for Multilateration 

Both interpolation (estimating between two 
data points) and extrapolation (estimating be- 
yond the last data point) are used to time-align 
sensor measurements. Interpolation is always 
more accurate than extrapolation. 

Interpolation and extrapolation are both 
accurate when aircraft are flying straight, but 
linear extrapolation has severe error potential 
during aircraft turns. Figure 5 shows an ex- 

Straight I 

v* 72  
A ( Ap) Expected = Ap2 - Apl = 7 sin (h- 8 )  

A (Ap) Actual = dp2- dpl 

Turn: I A ( Ap) Expected - A (Ap) Actual I >Parameter 

Fig. &Turn-detection algorithm. 
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turn caused by noise did not trigger the detector. 
This technique cannot detect all turns. In 

particular, it can be insensitive to radial turns. 
However, turn detection is needed only to pro- 
duce accurate range extrapolations. The turns 
that this approach misses are just the ones in 
which straight and circular extrapolation pro- 
duce nearly the same result, and thus no harm 
results. 

A =  urn ~etected 
= No Turn Detected I 

e m .  0 .  
I . , .  . A 

A Apparent A 

Turns A 1 

Nautical Miles 

Fig. 7-Single-sensor range-only turn detection. 

Coordinate Transformations 

For two reasons, multisensor processing 
requires very accurate coordinate transforma- 
tions. First, if the preferred-sensor report is 
absent, reports from supplemental sensors 
must be transformed into the primary-sensor 
coordinate system. Second, the distance from 
one sensor to another is the base of the compu- 
tation triangle for multilateration. Figure 8 illus- 
trates these two tasks. 

Since the transformation procedure requires 
knowledge of the earth's radius, it must be 
known exactly. The earth is not a true sphere; its 
radius varies with latitude. Most coordinate- 
transformation procedures apply the spherical- 

Fig. 8-Coordinate-transformation cases: (1 )  Conversion 
from 6 , 4  top2, 8 ; (2) Determination of d for mulfilateration. 

earth transformation formulas, using the aver- 
age earth's radius over the region of interest. 
Our studies, shown in Table 1, have shown that 
this approach is incorrect. The proper radius to 
use in the spherical equations is the local radius 
of curvature of the earth. This quantity matches 
the earth surface shape rather than its distance 
to the true earth center and is largest at the 
poles. By contrast, the local earth radius is 
largest at the equator. 

Accuracy can be further increased by per- 
forming multiple transformations. In Fig. 9 the 
measurement from a distant sensor is trans- 
formed step by step at a constant longitude 
(variable latitude) to the latitude of the near 
sensor, and then transformed in one longitude 
step over to the near sensor location. Each step 
uses the local radius of curvature applicable to 
the latitude at the center of the step. 

Mathematically, the multiple steps are a 
multiple convolution of the transformation 
equations. Thus a single transformation matrix 
can be defined for each sensor pair that de- 
scribes the overall result in one step, as illus- 
trated by the equation in Fig. 9. In actual appli- 
cation, run-time conversions are always single 
operations, independent of the number of steps 
employed. The 1 1 -step transformation shown in 
Table 1 demonstrates the success of this ap- 

7he Lincoln Laboratory Journal, Volume 2, Number 3 (1 989) 
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Fig. 9-Three-step coordinate transformation. 

proach in reducing the coordinate-transfonna- 
tion error to essentially zero. 

System Biases 

An accurate cross-range measurement sys- 
tem must compensate for the effects of both 
turns and biases. Now that we have addressed 
the problem of turn recognition, we must take a 

look at  the built-in biases of the system. 
All sensors have intrinsic sources of mea- 

surement bias. The measured aircraft range 
depends on delays in the sensor's electronics, in 
clock errors, in signal refraction, and by the 
transponder turnaround delay error. The air- 
craft azimuth can be corrupted by north-mark 
error, antenna tilting, or signal diffraction. In a 
single-sensor system, only the transponder 
delay causes a relative error between two air- 
craft positions; the rest of the errors simply shift 
the positions of all aircraft equally and therefore 
do not affect separation monitoring. Since the 
transponder bias only affects range and is al- 
ways small, system biases are of no conse- 
quence in a single-sensor system. 

The situation changes markedly when 
multisensor data are used. First, a new class of 
biases appear: sensor-location errors and other 
errors that directly produce intersensor regis- 
tration errors. Second, the biases of different 
sensors will produce different results, so that 
when different sources supply data for two air- 
craft, the relative aircraft separation is compro- 
mised. Finally, the transponder-delay bias has a 
greater effect when multilateration is used. 
Range errors are now transformed directly into 
azimuth errors, as shown in Fig. 10. 

The graph in Fig. 11 illustrates the effect of 
these biases. These measurements were taken 
from the current ATC mosaicking system-the 
hops due to changes in the data source are so 
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Table 1. Location after Transformation from Site A 
to Site B Coordinates 
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Radius 
Method 

Radius-of- 
Curvature 
Method 

11 Steps 

A = -3993 nmi 

A = .0002 nmi 

1 Step 

A = .3993 nmi 

A = .I823 nmi 
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Sensor Measurements 
Do Not Meet 

Adjust by Changing 
the Target Azimuth 

Fig. 10-Multilateration resolution of range biases. 

large that aircraft tracking has become nearly 
impossible. 

Procedures to remove registration biases by 
fitting large quantities of aircraft data to bias 
models have been developed. However, no such 
procedure can remove all bias effects, because 
not all biases can be modeled. Figure 12 pres- 
ents data from one system after bias removal. 
The three sensors clearly give different results 
for the single aircraft. 

Biases in a multilateration system can easily 
produce aircraft azimuths less accurate than 
those of the original single-sensor system. 
Thus a multilateration algorithm must be bias 
resistant. 

126 I I I I I 
380 400 420 440 460 480 

Nautical Miles 

Fig. 1 I-Mosaic-system registration errors. 

Incremental Bilateration 

The standard scenario for a two-sensor sys- 
tem with biases is illustrated in Fig. 13(a). Each 
sensor is located at a known fixed position, and 
it can specifjr the location of the aircraft. The 
difference in the two aircraft locations results 
from the biases of the sensors. When bilatera- 
tion is used, the calculated aircraft position 
(where the range arcs intersect) will be at yet a 
third location. Thus, whenever the measure- 
ment source changes from one scan to the next 
(sensor 1 only, sensor 2 only, or bilateration), 
the aircraft position will hop. 

An alternate view of this scenario is presented 
in Fig. 13(b). In this method, called incremental 
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Fig. 12-Raw sensor reports. 
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bilateration, sensor 1 is the master sensor. Its 
location is fixed as before, and its aircraft mea- 
surement location is taken to be the true loca- 
tion. Sensor 2's measurements are used to 
locate sensor 2; that is, they are reversed, start- 
ing at the aircraft location and going back to 
earth. The resulting apparent position for sen- 
sor 2 differs fi-om the real one by an amount that 
compensates for the system biases. 

Incremental bilateration offers data consis- 
tency-as long a s  sensor 2 is assumed to be at  
its apparent location, sensor 1 measurements, 
sensor 2 measurements, and bilateration will all 
agree on the aircraft location, and data switch- 
ing will not produce hops. The aircraft location 
may, in fact, be in error because of sensor 1 
biases, but all aircraft that have sensor 1 as 
the master sensor will be in relative agree- 
ment. Thus this method removes all system 
bias effects. 

Incremental bilateration is bias resistant. 
That is, 
(1) the measurement positional bias is iden- 

tical to that seen by using the master 
sensor as a single sensor, independent of 
any intersensor registration errors; and 

(2) the azimuthal measurement noise with 
incremental bilateration is less than that 
seen with single-sensor surveillance. 

The major problem with incremental bilatera- 
tion is the requirement that the secondary- 
sensor position be calculated for each scan and 
for each aircraft fi-om the reverse sensor mea- 
surements. Because the earth is a sphere, the 
computations are very complex and require an 
iterative solution. The next section resolves this 
problem. 

Also, since the apparent location is a function 
of system biases, which are themselves hnc-  
tions of geometry, the apparent position will 
slowly move during any aircraft flight. A time- 
smoothing procedure, called outlier desensiti- 
zation, therefore must be used. Figure 14 shows 
the raw and the smoothed data for the change in 
apparent distance between two sensors over 
time for a sample flight. As shown in Fig. 15, 
outlier desensitization weighs outliers (bad data 
points) less heavily than expected points and 

Fig. 13-Bilateration scenarios. (a) Standard. (b) lncre- 
mental. S1 represents the location of sensor I and S2 the 
location of sensor 2. 
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Fig. 14-Incremental bilateration smoothing. 

1 

thus produces smoother results. Outliers can- 
not be ignored; if they were, and if the smoothed 
position drifted far fi-om the true position, all 
h ture  good points would be rejected. But the 
desensitization approach always returns to the 
true position after an error. 

I I I I - 8 - 
8 

Spherical-Equivalent Flat Earth 

The key to the use of incremental bilateration 
is the development of a flat-earth model that is 
exactly equivalent mathematically to the spheri- 
cal-earth model. No approximation is possible, 
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Fig. 15-Outlier-desensitization smoothing algorithm. The 
red curve is the function, f ,  described in the equation: new 
estimate - old estimate = f (data value - old estimate). 
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because errors from the approximation would 
compromise the accuracy of the bilateration. In 
addition, the model must allow the use of planar 
mathematics directly on the p, 8 sensor mea- 
surements; a model requiring measurement 
transformations would add time-consuming 
calculations to the approach. In particular, the 
model must permit the use of the representation 
shown in Fig. 16, where 

Scan 0 50 100 150 200 

Outlier-Desensitization 
Estimates 

pl , 81 = sensor 1 measurements 
p2, O2 = sensor 2 measurements 

p, = ground range = dm 
zi = height above sensor i (computed 

from altimeter reading) 
d = apparent distance between the sensors 
yo = apparent azimuth of sensor j from sensor i. 

Using this model, we can easily compute the 
apparent secondary sensor location from the 
raw sensor measurements: 

d = I,/(& sin 4 - p2 sin o2l2 + (, cos O1 - p2 cos e2I2 

where the correct sign is a function of the actual 
sensor geometry. In actual use, one sign will give 
a physically plausible result and the other will 
be implausible, but the choice of the correct sign 
can not be predetermined. 

Conversely, once the apparent secondary- 

'Ihe Lincoln Laborato y Journal, Volume 2, Number 3 11 989) 



Gertz - Multisensor Surveillance for Improved Aircraft 7Yacking 

sensor location is known via the smoothing 
process, the true aircraft azimuth can be deter- 
mined by bilateration: 

The property of a planar system that permits 
the use of these simple equations is the align- 
ment of the x- and y-coordinate systems of the 
two sensors. This alignment can be expressed 
for any aircraft location as 

Ixl - x2 1 = Ifi sin Ol - p2 sin O2 1 = x component of d 

lYl - y2 1 = Ipl cos el - p2 cos O2 1 = y component of d. 

By studying the spherical coordinate-trans- 
formation equations, and seeking to match the 
alignment of the x- and y-coordinates, the 
Spherical-Equivalent Flat-Earth Theorem (see 
the box) can be proved [2]. 

This theorem applies even if the aircraft 
altitude his unknown. For any estimate of h, the 
spherical and spherical-equivalent flat-earth 
models produce identical results. 

One apparent problem with the theorem is 
the need to determine po. A precise calculation of 
p, requires spherical-earth mathematics, which 
we are trying to avoid, and knowledge of O,, 
which we are trying to calculate. Fortunately, po 
needs only be known approximately to intro-, 
duce no altitude error: 

Aircraft Tracking 

To generate expected aircraft trajectories, the 
surveillance reports generated by the multisen- 
sor-processing algorithms are entered into a 
smoothing filter, or tracker. Since the predic- 
tions are used for conflict detection, a good 
tracker is essential. 

Most current FAA multisensor tracking 
employs a Kalman filter and assumes straight 
flight dynamics. Tight filter gains are used to 
prevent bias effects from causing heading vari- 
ations. Thus external turn detectors must deter- 

mine the occurrence of turns; after a turn is 
detected, the Kalman filter is restarted or 
adjusted. 

An improved tracker has been developed as 
part of the multisensor project. This tracker 
assumes that aircraft flight can be modeled as 
having a constant turn rate. (Straight flight is 
modeled as a constant turn rate of zero.) The 
advantage of the constant turn rate is that the 
filter successfully tracks aircraft through turns 
without the need for external turn detectors or 
filter adjustments. The constant-turn-rate Kal- 
man filter has five state variables: 

x = x position 
y = y position 
h = heading 

h = turn rate 
u = velocity. 

The equations of motion that define the filter 
can be specified in derivative form: 

x = u s in(h)  
y = ucos (h)  

F; = F; 
i ;=o 
v = 0. 

The derivative definition leads directly to a 
nonlinear extended Kalman filter form of solu- 
tion. Unfortunately, this approach is very com- 

North 

s2 

Fig. 16-Flat-earth sensor location. 
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Spherical-Equivalent 
Flat-Earth Theorem 

Given. a two-sensor system defined by 

(a) A spherical-earth model 
(b) Sensor 1 located at latitude A,. 

longitude y,, and height h,, 
(c) Sensor 1 reading measurements 

p l .  8,. and 

(d Sensor 2 located at latitude A2, 
longitude y2. and height h,. pro- 
ducing a sensor position at range 
d, and azimuth ty12 relative to 
sensor 1 

(e) Sensor 2 reading measurements 
p2. 8,. and 

Then= an equivaknt two-sensor system 
canbe defined by 

@ Aflat-earthmodel 
@) Sesmt 1 located at x,, - us, = z,, 

= 0 
(h) Sensor 1 reading the same 

measurements p,, 8,. m d  a, as 
(9 

(0 Sensor 2 located at xe9 ~IQ, and 
9, SO, wit.hx,andgsthedues 
that locate sensor 2 relative to 
sensor 1 at the wane m u t h  yr,, 
as in (4, and at the adjusted 
-'= 

and p, is the slant range of the 
target measured from the laca- 
tion given by latitude (A1 +-Q/2, 
longitude ( y, + y2)/2. and height 
h = 0 of the ofigiml spherical 
earth model 

b9 Seneor 2 reading the same 
measurements p2, 0,. and 3 as 
in (4 

where 

Fig. A-(a) Spherical earth. (b) Sphen'cal-equivalent flat 
earth. 
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plex and time consuming, and can lead to un- 
stable and divergent results. A linear Kalman 
filter is needed. 

Fortunately, the derivatives expressed above 
are all integrable. For example, the x update 
equation can be expressed as 

x ( t  + T )  - x ( t )  = 

= joT u sin ( h  + &)da 

= joTv[ sin ( h )  cos (&) 

+ sin ( h a )  cos ( h )  Ida 

v 
= - {sin ( h )  sin ( h T )  

h 
- cos (h)[cos  (hT)  - 11) 

The update equations can be expressed as 

sin ( F;T ) cos ( h ~ )  - 1 
sin(h)-  - c o s ( h )  

hT hT I 

For a linear Kalman filter the update equa- 
tions must be expressed in matrix form as 

X ( t  + T )  = t) ( t )  X ( t ) .  

Clearly the preceding equations cannot be ex- 
pressed in this form-x and y are not linear 
functions of t. However, by using partial deriva- 
tives, an approximate form of the $ matrix can be 
built: 

where each partial derivative is computed from 
the corresponding update equation. For ex- 
ample, using Eq. 1, we find that 

sin ( hT ) 
= vT[cos(h) - + s in(h)  cos(hT) - 1 

6h h~ hT 1 
and so on. 

The $ matrix can then be used by the linear 
Kalman filter to calculate the covariance matrix 
for one-step prediction. In the absence of noise, 
the covariance update becomes 

where Pis the state-variable covariance matrix, 

The steps in the recursive Kalman filter 
method are then the same for the turn-rate 
Kalman filter as  for the standard linear Kalman 
filter [3]. That is, starting with an estimate X and 
its covariance matrix P, and after receiving a 
new report Ymeas, a new estimate Xsm (smoothed 
values of X) and its covariance matrix Psm are 
obtained, which are then used for the starting 
values of the next scan. 

To cover aircraft deviation from the assumed 
constant-turn-rate flight, noise components 
still must be added to the turn-rate Kalman 
filter. The independent noise variables chosen to 
represent the accelerations are 

h = change in  turn rate 
v = change in velocity. 

These variables modify the update equation by 
increasing the prediction uncertainty. 

.lhe Lincoln Laboratory Journal, Volume 2, Number 3 (1 989) 
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Fig. I 7-Multisensor-processing system. The system is divided into three parts: intrasensorprocess- 
ing, intersensor correlation, and multisensor processing. 

For the linear filter, the new equation be- 
comes 

where Q is the noise covariance matrix: 

and r is analogous to $in the way it relates noise 
values to state variable updates. A linearized 
noise model of I' has been developed. 

Multisensor-Processing System 

The algorithms presented in this article have 
been implemented in a multisensor-processing 
system. As shown in Fig. 17, the system is 
divided into three segments: intrasensor pro- 
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cessing, intersensor correlation, and multisen- 
sor processing. 

Intrasensor processing correlates and tracks 
the reports from one sensor. If the sensor is 
Mode S, this function has already been per- 
formed. Other sensors, such as the existing FAA 
radar and beacon sensors, provide no such 
service or only partial service. 

Intrasensor processing must also time-con- 
trol the output of reports to intersensor correla- 
tion. Therefore, it holds its reports until a fixed 
delay has been reached; this delay is the same as 
the delay that would be experienced by reports 
from a Mode S sensor, because it has the great- 
est internal delay. The delay function thus 
guarantees that the stream of reports from the 
various sensors entering intersensor correlation 
is in correct time sequence. 

Intersensor correlation has the task of 
matching the tracks from different sensors that 

supplemental sensor with a higher rotation rate 
may produce two or more reports during this 
period.) 

To meet the delay constraint imposed on the 
multisensor system, the release of the report 
packet when the preferred sensor sees the air- 
craft is critical: the multisensor system must not 
delay the output of surveillance reports. Since a 
single-sensor system would obviously send its 
report when it sees an aircraft, the rule for the 
multisensor system insures that the output 
times of the reports match those of current 
systems, and add no delay. 

The multisensor-processing subsystem de- 
termines multilateration positions by operating 
on the reports in each packet. The subsystem 
then tracks and filters the data, and supplies 
accurate position and heading estimates to the 
air traffic controllers. 

correspond to the same aircraft. It also creates Intersensor Correlation 
packets of reports for each aircraft and passes 
them to the multisensor-processing functions. 
The packets contain all reports from all sensors 
received during a scan of the preferred sensor. (A 

The heart of the intersensor processing sys- 
tem is the intersensor track correlator, the rou- 
tine that determines which tracks from the 

Local 
Tracked 
Report 

Use Positions and 
Velocities to Find 
Potential Matches 

Select , Yes Best Match 
No 

7 
Update Initialize 
Track 

Fig. 1 &Intersensor track correlation. 
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Fig. 19--Kalman position test. (a) Usual correlation. (b) Kal- 
man correlation. 

different sensors correspond to the same air- 
craft. The key to the routine (outlined in the 
flowchart of Fig. 18) is establishing and main- 
taining a cross-reference array that translates 
local sensor tracks into global system tracks. 

Whenever a new local sensor track is encoun- 
tered, the intersensor processor selects the 
proper global track (unless it is the first sighting 
of the aircraft) with which to assign it. The first 
step in the process is to apply a coarse screen 
that filters out noncandidate global tracks. To 
qualify as the global track to which the local 
track should be assigned, the global track must 
(a) not already contain a track component 

from the sensor, 
(b) be reasonably close in position to the local 

track, 

(c) agree in code (beacon tracks only) with the 
local track, and 

(4 agree in altitude (if known). 
All qualifying tracks are then put through 

position and velocity matching tests. The posi- 
tion test for radar systems has traditionally used 
a rectangular p, 8 box.-However, a multisensor 
track's error ellipse has a completely different 
shape and orientation than a single-sensor 
track. Thus this usual test is a very poor selec- 
tion discriminant. Instead, a Kalman position 
test has been developed. 

The Kalman position test is illustrated by Fig. 
19. By implementing the standard Kalman filter 
formulas and the known error ellipses of the 
global and local tracks, the system can use the 
local track position to update the global track 
position. The new position is then scored by its 
o-distance from the two tracks, as shown in the 
figure. If the score is less than a preset thresh- 
old, a position match is declared. 

The velocity match test does not compare 
speeds and headings, as in the usual procedure. 
Instead, both tracks are predicted ahead T sec- 
onds by using their own velocity vectors, and the 
resultant positions compared by using the 
above position test. This form of the velocity test 
is simpler than the usual method, adds no new 
parameters, and better accounts for measure- 
ment errors. 

If the position and velocity tests are both 
passed, a match is declared. If only the position 
test is passed, a potential match is recorded. 
Such a match is retested on subsequent scans. 
If the velocity test is later passed, or if the 
position test is passed for M scans, a match is 
declared. The latter type of success acknowl- 
edges that successive position matches verify a 
velocity match, even if fishtailing causes each 
velocity test to fail. 

If one or more matches are found for a new 
local track, the best match is selected as  the 
global track for it to join. If no matches occur, a 
new global track is initiated. 

Since intersensor matching errors can occur, 
either by failing to find a proper match or by 
choosing the wrong one, subsequent scans are 
checked. Failure to find a proper match is recti- 
fied by reattempting during each scan to join any 
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Fig. 20-Test of multilateration in Great Britain data 

single-sensor global track to other global 
tracks. Choosing the wrong track is fixed by 
performing a reasonableness check during each 
scan on the position differences among the 
various components of a global track. If diver- 
gence is detected, the divergent component is 
stripped from the global track and the matching 
process is repeated for it. 

Real-Data Results 

Testing of the multisensor-processing system 
to date has consisted of analyzing its perform- 
ance on data collected in Great Britain, where 
seven sensors provide overlapping coverage of 
the country's airspace. Figure 20 shows the lo- 
cation of the three sensors selected for pro- 
cessing, and the trajectories of 20 aircraft 
studied. 

The key test was an evaluation of the accu- 
racy of the cross-range measurement obtained 
through multilateration. Figure 2 1 presents the 
results as  a firnction of range and of algorithm. 
To have more meaning in this application, the 
mean (p) and standard deviation (0) were rede- 
fined: 

0 = PI(e i ,  meas - ei, true - (6i-1, meas - ei-1, true 11 
i 

Thus p measures the average cross-range 

I Mean 
itandard Deviation 

Single Standard 
Sensor Bilateration 

Incremental 
Bilateration 

50 100 200 50 100 200 50 100 200 

Range Band (nmi) 

Fig. 2 1-Multisensor measurement of aircraft cross-range 

position error; o measures the average noise in 
the cross-range position error and hence is a 
measure of heading consistency. 

As expected, single-sensor measurements 
grew linearly less accurate with range, but 
multilateration performance remained good for 
all ranges. This result confinns the tracking 
improvement of multilateration. Also, as pre- 
dicted, incremental bilateration had a smaller 
mean error than standard bilateration. This 
result confirms the expectation that the algo- 
rithm is bias insensitive and is unaffected by 
registration errors. 

The turning Kalman filter performance was 

Fig. 22-Performance of turning Kalman filter during air- 
craft turn. 
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also tested with these data. Figure 22 presents 
filter outputs from the new turning Kalman 
filter, which are far  superior to the results re- 
ported in Fig. 2. The new filter quickly matches 
the turn rate of the aircraft at turn onset (note 
the curved prediction arrows) and just as 
quickly returns to straight smoothing at turn 
end. 

Conclusions 

The work to date on multisensor data pro- 
cessing has provided a significant performance 

JEFFREY L. G E m i s  a staff - - member in the System De- 
sign and Evaluation Group. 
He received bachelor's, 
master's, and Ph.D. degrees 

in electrical engineering from MIT in 1965, 1966, and 1970, 
respectively. Jeff came to Lincoln Laboratory from Bell 
Telephone Laboratories in 1973. His work is now focused on 
surveillance and tracking of aircraft for the FAA. 

8 

improvement in aircraft surveillance and track- 
ing. Future work should extend the performance 
benefits to false alarm rejection, especially for 
primary skin radar systems. 
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