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1. INTRODUCTION

The ability of a monopulse processor to determine the angular direction of

an incident signal is 1imited not only by the inherent front-end receiver noise

but also by the effect of interfering signals. If there are other time coincident

signals present that interfere with the signal whose direction is to be estimated

then McAulay [1] has shown that bias effects occur that can seriously degrade the

quality of the estimate. It becomes important therefore, to know when such interference

is present so that low confidence can be assigned to the associated azimuth estimate.

Sherman [2] has observed that when interfering signals are present the out-

puts of the monopul se sum and difference beams become incoherent. He proposes

to use the quadrature information to resolve the target and interference signals.

Our

one

the

approach is to develop an interference flag that indicates when more than

signal is present in the receiver channels. Depending on the application,

flag would be used to assign a low confidence to the associated angle esti-

mates or to delete the angle

the test for interference as

Ratio test [3] and following

estimate altogether. In Section 11, we formulate

a hypothesis test. Using the General ized Likelihood

the analysis of Hofstetter and DeLong [4], we

obtain the optimum interference detection statistic.

The performance of the detector is analyzed in Section .11I where it is first

shown that the interference statistic has the Rician distribution, Exact evalu-

ation of the false alarm and detection probabilities becomes intractable and

use is made of the Gaussian approximation to the Rician variate. Numerical
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results for some typical cases of interest are given and it is shown that the

results depend strongly on the relative phase between the target and interfering

signals, but that good overal 1 performance can be obtained. Conditions under

which the Gaussian approximation is valid are given and are shown to hold for

the cases studied.

2
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e 11. PROBLEM FORMULATION AND SOLUTION

We shal1 restrict our attention to amplitude-comparison monopul se processing

that is performed on a sampled-data basis. Assuming mixer preamplifiers at the

output of each antenna beam channel, the received signal samples in the absence

of interference are modeled by

jw~
yi=ASe Gi(~S,aS) + ni i=l,2,...,m (1)

where yi refer to the complex output of ith antenna beam channel; AS.qS,~S,CXS are

the amplitude, phase, azimuth, and elevation of the target signal; Gi(o ) is the

.th
antenna patterns of the 1 antenna beam which may be complex in general; ni

represents zero mean Gaussian noise samples due to the mixer preamplifiers whose

real and imaginary parts have variance 02. As shown by Hofstetter and DeLong [4],

this model arises when the received signal is preprocessed by a matched filter.

It can also be used to describe the case in which a simple on-off pulse is trans-

mitted and preprocessed by a filter whose bandwidth is at least equal to the

reciprocal of the rise time,

If interference is present that overlaps the target signs’

received signal samples can be written as

return, the

Ws jq
Y.i =ASe Gi(es,as) + AI e Gi(~l> aI) + ni i=l,2 ,...>m

(2)

I 3



—

where now AI, PI, el, ctlrepresent

angles of the interference signal .

the amplitude, phase, azimuth, and elevation

In addition to describing the effects of

mul tipath in an L-band radar the model also arises in the design of the Discrete

Address Beacon System (DABS) that is to be used to perform the surveil lance
e

function in the next generation Air Traffic Control (ATc) system [5]. nuring the

transition from the present Air Traffic Control Radar Beacon System (ATCRBS) to

a completely DABS operation, ATCRBS wil1 represent a source of interference to

DABS , Since direction finding is performed at L-band using simple on-off pulses,

the received “signal samples will be described by (2), We note that in this case,

however, that the downl ink carrier frequency is known only to within ~ 3 MHz.

Therefore, the preprossing filter cannot be exactly matched to the downl ink

signal and a slight reduction

Using (1) and (2) we can

detection of interference:

HO: interference absent

in signal-to-noise ratio (SNR) must be tolerated,

fotmulate the following hypothesis test for the

jqs
yi=A5e Gi(e5,aS) + ni, i=l,...m (3)

.

“1: interference present

@l
yi=ASe ‘Ws Gi(eS,aS) + AI e Gi(el,al) + ni . i=l m$... (4)

The solution to this hypothesis testing problem can

of the Generalized Likelihood Ratio criterion [3].

4
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(5)

●

where we have used the notation x = (Y1,Y2,....Ym) to denote the complex data

vector and L = (A,w,e ,a) to denote the unknown Parameter Vector, and where P(XIHk)

denotes the probabi1ity density function of ~ under either hypothesis HO or H,.

Once A(x) is computed, interference is declared present if and only if A(y) > A‘.

Since the noise components are Gaussian random variables, then under the

nul1 hypothesis, we can write

max P(:(I HO,&S) = max
I
(2Ta2

&s AS,qS,eS,aS

Hofstetter and DeLong [4] have shown the.

m

[>

@S
mf2 exp - ~ Iyi - AS e Gi(eS*aS)12

2a j=l ]1

; if both OS and as

reasonable antenna patterns, Gi(eS,aS), the maximization in

there are 3 1inearly independent antenna beams. If only es

is a fan beam in elevation, then they shown

2 1inearly independent antenna beams. With

m.2 or 3, depending on whether 8S and/or..aS

show that (6)

i=

is maximized at the parameter

m ,.,.
.

4

Gi(13,a) Re(yie-J~)
j=

“m

that (6) can be

(6)

are unknown then for

(6) can be solved if

IS unknown or if Gi(8S)

solved if there are

these restrictions on m, namely

are unknown, Hofstetter and DeLong
AA. .

values A,p,e and/or a where

(7)

>. G:(6,;)

i=l



(8)

(9)

.,. ,,?.
and hence A,p,e,a denote the maximum likelihood estimates of A,P,6,a.

It is also shown that the maximum value of the density function is

2 -m/2
max P(YIHo,~S) = (2T u )

[ (“”

exp - )1~ 5lyi12‘1!Y!l“ (lo)

Es i=l j=l

Under the alternate hypothesis the density function is

[

m .
2 -m/2 exp - ‘ J%

P(YIH1 ~fiS@l) ‘(27Iu ) &>lyi-ASe Gi(oS,cxS)
j=l

When both es and as are unknown, we require III=

measurements and 6 unknown parameters. If only

and then there are 4 measurements and 4 unknown

the maximum value of the density is (21102)-m’2

parameter estimates to solve the equations

J
(11)

3 and note that there are 6

es IS unknown, we require m = 2

parameters. In either case,

and it is achieved by picking the

6



.

A ,,

jw~
ti~e

,. jyj . .
Gj(&,&) + AI e Gi(61, a1) = Yi i=l,2,0r3.

(12)

Using these facts, the General ized Likelihood Ratio, (5), becomes

hence, we declare interference present (hypothesis H,) if and only if

m m

(13)

(14)

In the application to the ATC problem only the aircraft azimuth can be

estimated since elevation fan beams are used to provide surveil lance for high

and low altitude aircraft. In this case, two antenna beams having azimuth

directionality would be used that would take the form of a sum (even) and dif-

ference (odd) monopulse configuration. Letting Y,, Y2 denote the outputs of the

sum and difference beams

present if and only if

respectively, then interference will be declared

IY,12 +

Following [4], we

IY212 -Iy; +y; l>k’ . (15)

is to declarerecognize that an equivalent test to (15

interference absent

-A<IY,

if, and only if,

+jy21-lyl-jy2t<A .

7
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It is interesting to

alone, which was the

note that in the

problem that was

(16) are added rather than subtracted

test for signal plus noise versus noise

considered in [4]. the two quantities in

Furthermore, the maximum 1ikelihood

azimuth estimate is related to the phase difference between the si9nals Y1 : j Y2. .

Since these signals are readily formed at RF, it is possible to obtain the

detection statistic, interference statistic, and azimuth estimate from the same
.

RF hardware configuration. In the remainder of this paper we shall limit our

attention only to the case of a two beam monopul se radar, hence we assume that

the antenna patterns depend only on one angular variable. For convenience we

shall deal with the estimate of azimuth, but it is obvious that the results

aPPIY directly to a monopulse system that tracks in elevation.

.
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111. DERIVATION OF THE EXACT POF

Since our basic motivation for undertaking this problem 1ies in the ATC

context, we can assume that m = 2 and focus our attention on (16) and attempt to

analyze the performance of the detector by computing the false alarm and detec-

tion probabilities. Therefore, we shal1 all attempt to compute the probability

density function (pdf) of the detection statistic

I= IY, +j Y21...- [y, - jy21

We begin the analysis by defining new random variables

YL = y1ijy2

=As[G,(e~)t j 132(es)]e‘9s+A1[G, (rjl)i j G2(E11)e‘Vi]+n, ~ j n2

(17)

[

Jvs j~l

1[

k’s +91
=ASe G,(es) + AI e G1(el) * j AS e G2(EIS) + AI e 1G2(e1)+C+

(18) -

where we have defined new noise variables

(19)



which we note are zero mean, independent complex Gaussian with variance 4:.

Therefore, y+ are also independent complex Gaussian random variables with

t
variance 40 and means

[

jp~ jpl

1[

jq~ ipl
ui =A~e G,(e~) + AI e G,(131) ij As e I+(e~: +A1e 1I+(B1).

(20)

Therefore the random variables

are independent Rician random variables

density functions (pdf) are therefore

(21)

of order 2, [6], and their probability

where l.(.) is the modified Bessel Function of the

and where

(22)

first kind of order zero,

(23)

Using the definitions in (17), (18), and (21) we see that the detection statistic

is given by

10
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1 = /Y+/ -

=L+ -!,-

hence its pdf is

(24)

\

co

p!(u) = PI+(U - V) l)L (V) dv . (25)
. -m

Then using (22) in (25) it can be shown that the exact form for this pdf is

()

U2 m

‘L(u) = & “p - ~ u,~2uf(x,ul@ dx (26)

where

f(x,y) = (X2 - y?exp[-(xz+~) Io[d+(x + y)] Io[d-(x - y)] .

(27)

Since it is difficult, if not impossible, to evaluate (26) analytically or

numerical ly, we have found it more appropriate to approximate the Rician variate

by the Gaussian density, In Fig. 1 we have shown curves obtained from [7]

that show

figure it

mation is

22
the Rician pdf for several values of the parameter df/20 . From the

aPPears that for values of d+/&o greater than 3 the Gaussian approxi-

quite good. In the Appendix we perform a detailed error analysis

that shows that except for 2.5% of the area under the lower tai1, the Rician

pdf is well approximated by the Gaussian density provided

11
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Fig. 1, Probability density function of a rician variate.
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(./ )““”2210Cd+/ 20

Therefore we can write (22) as

(28)

(29)

From (24) the

but with mean

detection statistic is f.= !,+- k-, so that f,is also Gaussian

d+ - d- and variance 4 02. Therefore

[

[U - (d+ - d.)f
p!(u) = L

v

exp -

8TI02 80 d (30)

where d+ are given by (23) and (20).

In the next section we shall compute the false alarm and detection prob-

abi1ities and hence develop the criteria needed to evaluate the performance of

the detector,

13



Iv. FALSE ALARM AND DETECTION PROBABILITIES

Since the detection statistic can be well approximated by a Gaussian random

variable, it is a straightforward problem to calculate the false alarm and de-

tection probabilities.

a) False Alarm Probability

In this case, the interfering signal is absent hence AI = O.

Furthermore, the target of interest 1ies within the mainbeam of the antenna and

it can therefore be assumed that Gi(e5) is real . Using these facts in (20),

(23) becomes

(31)

Therefore the mean value of the detection statistic is

~.d+ -d=O . (32)

A false alarm is made whenever IP,I > A, hence the false alarm probability is

‘FA=l-&ewi)”u
= 2 erf(&

14
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where

.

.

\

‘“ -t212
erf(x) = -&

J2T. X e ‘t “

This shows that the detection threshold can be

background noise is known,

To verify that the Gaussian approximation

see from (28) that it is sufficient to have

(34)

set once the level of the

is indeed valid in this case, we

(35)

The detection signal-to-noise ratio is A: Gf’(oS)/202 and since this quantity is

at least 20 d8 in the ATC context we see that (35) will easily be satisfied.

b) Oetection Probability

In this case, we detect interference when III > A, hence if the

Gaussian approximation is valid

[U - (d+ - d-)]2 du

8 02

[

A- (d+- d-)l

1[

A + (d+ - d-)
= erf

2a
+ erf

2a 1
If we desire a false alarm probability PFA, then we solve

‘FA
= 2 erf(kFA)

(36)

(37)

15



for AFA. Then setting the threshold according to

A = 20 aFA (38)

,

we see that the detection probabil ity is

( d+ - d-

)(

d+-d
-—

‘D ‘ ‘rf ‘FA 2U
-)

‘erf AFA+~ “

●

(39)

We have yet to verify the validity of the Gaussian approximation in this

case, but this requires the evaluation of (23). We shall consider this point

in detail in the next section. At that time, we shall consider specific inter-

ference cases of interest and carry out the evaluation of the receiver performance

in detail.

,
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v. RECEIVER PERFORMANCE

In many cases of practical interest the antenna patterns wi11 be complex at

least in a region beyond the near-in sidelobes. Since the interference can

originate from any azimuth, we make the complex dependence clear by writing

Substituting (4o) into (2o) and using the fact that Gi(eS) is real we can shown

after tedious but straightforward manipulations that

d2
t=

Gf(eS) + Gj(eS) + p2 A: ~ 2 Al A2 sin(qj - $2) + A;
<

1/2 p p 1/2

+ 2P Gf(eS) + Gf(es) Al i 2 .A, A2 sin($, - $2) + A2

cos(q71 0. + $+)

where
*

~ = tan-1[G2(6S)/G1 (8S)] ,

(41)

(42a)

(42b)

(42c)

17



Unfortunately, there are too many parameters involved in these equations to

obtain any physical insight into the performance of the detector in the general

case. We have had to resort to using a simulation to evaluate this general case.

We can obtain some useful analytical results by limiting our interest to real

antenna patterns. This wil1 be valid for mainbeam interference and also for

interference located at the near-in sidelobes. Therefore, we assume that Gi (El~)

are real . In this case, (41) becomes

d2

#= ‘~(es) + G;(es) + ~2 G:(el) +
s

+ 2p Gf(eS) + G~(eS)1“21+(%)

where

[)1
G,(es) G,(61)

GJ-Q--q’lp~ = tan-l
G, (es G,(el) “

‘+qipm

G;(EI1

+G:( (43)

(44)

It will be useful to use the notion of the monopulse function which is defined

as

In mos

*

(45)
G2(0)

E(e) = ~ .

practical monopul se systems, the monopul se function is 1inear over the

extent of the main beam. Since the target of interest will always be within

the mainbeam then

18



(46)

where OB is the 3 dB beamwidth and k is a standard parameter that arises in the

analysis of monopulse systems. Typically, 1 $ k $ 2 with k --1.5 being a reason.

able value [8]. Whereas, the target can always be assumed to 1ie within the

main beam, the interference signal can originate from the mainbeam or from a side-

lobe. However, it IS convenient to define an equivalent interference azimuth,

el as

~ = E(61)/k .
08

(47)

We note that ~ = 81 when G1 is within the mainbeam of the antenna. In Fig. 2a

we have plotted ~1 vs 81 using a typical monopulse function derived for a 4°

beamwidth antenna with -20 dB sidelobes, where errors in the amplitude and Dha<P

tapers render the antenna pattern complex. Therefore, the results can be expected

to give some indication of performance even in the more general case. Assuming

81 is uniformly distributed in (-m,n), Fig. 2b gives the probability distribution

function of 61. This shows that ~1 will lie within i 2 beamwidths MOst Of the

time and hence the cases of sidelobe and mainbeam

simultaneously.

Using (46) we can write E(el) = k ~1/6B, and

interference can be treated

then absorb OB into our

definition of e so that all of the azimuth variables can be expressed in

beamwidths. Using these relations (42) and (43) can be written as

3 dB

(48)

19
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Fig. 2 (a) Equivalent azimuth using the monopulse function
(b) Probability distribution function of equivalent azimuth.
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where

[

- Cl*)~ = tan-l k%
l+k2ese1

(49)

(50)

The quantity PO represents the interference-to-signal ratio as measured at the

output of the antenna terminals. We note that by using (47) we are able to

der+ve an expression which describes the case of mainbeam and sidelobe inter-

ference simultaneously.

a) Basic Properties of the Detector

Using the above

of the interference detector.

the two signals, g, is O or n,

expression we can obtain some interesting properties

First we note that if the relative phase between

then d+ = d- and from (39) we see that the detec-

tion probability reduces to the false alarm probability. This is an unfortunate

property since McAulay [1] has shown that interference causes the worst azimuth

errors at the out-of-phase condition. Secondly, we note that if 8S = 61 = t31then

D= Oandd+=d Again, the detection probability is negligible. This is a-.

reasonable behavior for the detector to exhibit since if targets are at the

same azimuth, they will not cause any azimuthal error except that due to fading [1].

Another interesting analytical result can be obtained in those cases where

the interference has been completely overpowered by the target. In this case,

p. << 1 and we can neglect the second term in (48) and use the Binomial Expansion

to take the square root. This gives

21



d+ = As

Using (49) it can

d+ - d-

20

G,(t3~:(1 +k2($1/2

then be shown that

tha’ when the target completely overpowers the interferer, theThis result shows

ability of the receiver to detect interference depends on the interference-to-

noise ratio (INR). At first glance this is a somewhat puzzling result since

McAulay [1] has shown that the azimuth accuracy depends on the signal-to-inter-

ference ratio (SIR) such that if the SIR is large,

affected by interference. Equation (52) indicates

then the interference detector would ring. From a

the azimuth estimate is un-

that if the INR is also large

data editing point of view

this would not be a desirable property. However, the detector is not really

testing for the presence of interference since there is no inherent distinction

between interference and target. Rather it is testing for the presence of more

than one signal, If the SIR is very small, then (48) reduces to

d+-d A5 G,(e5) k(;l - e5)
— .

2~ o
sin~

(1 +k2Ef)’fl
(53)

In this case, a large azimuth error would result since the azimuth of the strong

interferer would be estimated. However, this situation would be flagged by the

detector provided the target SNR were large enough. Therefore the detector

22
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performance in these extreme cases is intuitively satisfying, although the

results indicate that some provision may have to be made for reducing the de-

tections due to low level interference. We will discuss this point further

a later section,

To obtain a more complete understanding of the detector performance we

in

need to evaluate (48) and

detect ion”and false alarm

Gaussian approximation to

(49) and use these with (39) and (37) to obtain the

probabilities. The results we obtain are based on the

the Rician densities. From (28) we see that this will

be a reasonable assumption provided d~/2u2 ~ 10. From (48) we see that the

smallest value of d: occurs when p ~ B = m. Then

8y requiring that the second inequality hold, we have a conservative but suf” icient

condition to guarantee that (28) will hold. Therefore, for a post-detection SNR

greater than 20 dB, this inequality will be satisfied for all signal-to-inter-

ference ratios except those in the region from -3 dB to + 3 dB. Since this is

a conservative assumption and since we would not expect the detection probability

to depend on the tails of the pdf, it is reasonable to expect that the Gaussian

approximation will adequately describe

range of SIR values.

Over the duration of any one DABS

fixed. For mainbeam multi path, @ will

the case of ATCRBS interference @will

the performance over an even smaller

reply, the parameters As, AI, 0S, ol are

also be constant from chip to chip. For

change randomly from chip to chip, and

in fact may also change between samples within a chip due to the frequency offset

23
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that can be expected between the DABS and ATCRBS transponders, In addition, we

have found that the dependence on P is crucial to the understanding of the data

editing concept, Therefore, we have chosen to evaluate the detection probability

as a function of ~.

b) Performance Based

We

of interest. Our

es =

SNR =

61 =

k=

G,(o) =

have evaluated

on a Single Sample

the performance of

basic parameter values were

O (target on boresight) ,

taken

0.5 (interference at 3 dB point)

1.5 ,

1 -1,17$ .

the receiver for some cases

to be the following:

, (55)

All we need do now is specify a false alarm probability, comPute XFA from (37)>

compute d+/20 from (48), (29) and use this to compute the detection probability

in (39). In Figure 3 we have plotted the normalized mean value of the detection

statistic (d+ - d-)/2u for several values of the ISR.

Since in the DABS direction finding (DF) problem there will be many bits

available for generating the azimuth estimate, a higher false alarm rate can be

tolerated in order to correctly detect interference samples. Therefore, we

allowed a false alarm rate of 2 samples in 100, pFA = 0.02! and then computed

detection probability for various values of the ISR.

the

24
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In

of

Figure 4 we have plotted the miss probability PM(P) = 1 - PD(~) as a function

the relative phase. As we expected, the detector misses interference with

probability one when the in-phase and out-of-phase conditions exist. In the case

of ATCRBS interference the relative phase is independent and uniformly distributed
.

from bit to bit. Then a measure of performance of the detector is the average

miss probability

(56)

In Figure 4 we have indicated the average miss probability as a function of ISR

for the 0.02 false alarm probability case.

c) The Effect of

The preceding

decision must be made on the

Frequency Offset

results give the detection performance when a

basis of a single sample. In the DABS context,

there will be several samples available per chip for interference detection and

direction finding. Unfortunately, if the interference is multipath, the phase

will not change significantly from sample to sample, or even from reply to reply,

hence the detector’s

in the last section.

will be present, but

performance will be essentially the same as that described

Hence there may be situations when azimuthal multi path

wil1 not be detected by the interference flag.

In the case of ATCRBS interference, however, there wi11 be a frequency ,

offset between the OABS and ATCRBS transponders that can cause the instantaneous

phase to change from sample to sample. For example, if ~f denotes the frequency

difference between the two

the DABS waveform is to be

transponders and if fs represents the rate at which

sampled, then from sample to sample the phase increases

26
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by 211 Mtf~. Since the sampling is to be done at a 10 MHz rate, then a 0.5 MHz

frequency offset* would lead to a 0.31 radian phase shift. From Figure 4 we see

that the detector misses the interference when the phase is within a 1 radian

interval about O or n. Therefore, with two or three additional samples we can

expect the detector’s performance to improve significantly. We can make these

statements quantitative by considering the detection of interference using N

samples per chip. Our strategy is to declare interference present if the detection

threshold is crossed for at least one of the N samples. Then to yield a miss, the

detector must fail

at the time of the

single sample miss

the miss

to detect on every sample. If v denotes the

first sample, then at the nth sample it is w

probability at this phase is denoted PM [q +
1

probabi.1ity after N samples is

relative phase

+ (n-1) A@. The

(n-1) AP]. Then

(57)

The product rule applies because the noise samples are independent from sample

to sample. If we let T denote the chip width and fs the sampling rate, then the

number of samples per chip is N = fsT, and the phase shift is Ap = 2m Lf/fs. For

the OABS application we could expect T = 0.483 usec and fs = 10 MHz. Therefore

3 samples per chip represents a conservative evaluation. Using this value for

N, we plot ~,t as a function of frequency offset for several
N

and an 0.02 false alarm rate. This is shown in Figure 5 and

significant improvement in detection performance that can be

values of the ISR

demonstrates the

expected as a result

*A distribution of frequency offset has been measured by G. Colby and E. Crocker
and is documented in reference [9].
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Fig. 5. Effect of frequency offset.
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of the instantaneous phase change from sample to sample that results from the

frequency offsets between a DABS and an ATCRBS transponder.

.

.

>
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VI. CONCLUSIONS

The analysis of the performance of the maximum ikelihood interference

detector was greatly simplified by recognizing that the interference statistic

could be well-approximated by a Gaussian random variable. A conservative condition

on when the approximation was valid was found. For example, at a 20 dB SNR, the

SIR would have to be within ~ 2 dB for the approximation not to be valid.

False alarm and detection probabilities were calculated in detail for the

cases in which the antenna patterns were real. Although formulae for the complex

antenna

tically

of real

pattern case were derived, it

useful results from them. We

antenna patterns and obtained

draw some useful conclusions. It was

was not possible to obtain simple analy-

then restricted our attention to the case

expressions from which it was possible to

found that when the relative phase was O

or m, the receiver would fail to detect the interference with probability one.

It was also noted that the detectability improved as the azimuthal separation of

the two signal sources increased. Furthermore, it was found that detectabi 1ity

depended on the signal-to-noise ratio of the weaker of the two signals. If this

SNR was large enough, good detection was obtained no matter how large the other

signal became.

Specific results for a mainbeam

if only a single sample were used for

nterferer were given and it was found that

detection that the average detection prob-

ability was approximately 0.8 for an 0.02 false alarm rate. This poor perform-

ance was due to the fact that misses were guaranteed when the phase differences

were O or m.
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In practice there will be several samples per chip available for inter-

ference detection which can result in meaningful improvements in performance

provided there is an instantaneous phase change. from sample to sample. Un-

fortunately, if the interference is due to multi path, there will be no signifi-
,

cant change in phase for several seconds duration, hence multiple samples cannot

be expected to improve the performance in this case, When the interference is

due to ATCRBS, however, the probable frequency offset between the DABS and ATCRBS

transponders wil1 cause the phase to change from sample to sample. We have ex-

amined this case in detail and found that significant improvements in target

detection performance can be expected.

.

,
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DER1VATION

Let us focus our attention on the

APPENDIX

OF THE APPROXIMATE PDF

Rician pdf

(A-1)p(u) = ~ exp
o

(- ~) 10(%) “

The well-known asymptotic approximation for the l.(.) Bessel Function is

‘o(~)- ~(?~’” ‘Xp(ti) ) % ‘>1 ~
(A-2)

This is quite an accurate approximation for ud/u2 ~ 3. Then the pdf be~mes

We are most interested in the values of u about d. Let us write

u=d+6u

then

1/2 ,
p(u) - (1 +$) —exp-~

()
V%l “U* 2 “

“2
=(1+}++...)+

~$
(~)

exp -

*n 2“
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(A-4)

(A-5)
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Therefore, u is wel1 approximated by a Gaussian random variable with mean d and

variance 2 U* provided ud/o 1 M<< 1.2~3and7 d When the Gaussian approxi-

mation is valid,

we require that

9577o“

-.?$21

2d
<1,

the pdf 1ies between the 2-sigma 1imits. Therefore, if

(A-6)

then ~ ~ << 1 llmost, of the time,‘l As a practical matter we take

(A-7)

as the criterion for which we can neglect first and higher order terms of &u

that appear in (A-5). We must yet determine whether or not (A-7) is sufficient

to validate the 10(0) approximation that led to (A.-5)in the first place.

However, u ~ d - 20 at least 97.5% of the time, hence

Therefore, the condition

‘&lo
u2

is sufficient to guarantee that the Rician pdf for u will be wel’

by the Gaussian dens

(A-8)

.

(A-9) ‘

approximated

ty of mean d and variance u’.
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