

ESC-TR-2005-067

Project Report
PCA-KERNEL-1

Revision 1

Polymorphous Computing Architecture
(PCA) Kernel-Level Benchmarks

A

13 J

Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINGTON, MASSACHUSETTS

Prepared for the Defense Advanced Research Projects Agency under
Air Force Contract FA8721-05-C-0002.

Approved for public release; distribution is unlimited.

J. Lebak
. Reuther
E. Wong

une 2005

Massachusetts Institute of Technology
Lincoln Laboratory

Polymorphous Computing Architecture (PCA)
Kernel-Level Benchmarks

J.M. Lebak
A. Reuther
E. Wong

Group 102

Project Report PCA-KERNEL-1, Revision 1

13 June 2005

Approved for public release; distribution is unlimited.

Lexington Massachusetts

Acknowledgments

The authors acknowledge contributions from the MIT LincolnLaboratory PCA team, including
Bill Coate, Janice McMahon, Masahiro Arakawa, Robert Bond,Hector Chan, Ryan Haney, Matt
Alexander, and Jeanette Baran-Gale.

The PCA community suggested some of the additional kernel benchmarks referred to but not
described in this report. Image processing kernel benchmarks were suggested by Mark Richards of
the Georgia Tech Research Institute. The exception is the image compression benchmark, which
is based on work done by Baxter and Seibert [1]. The incomplete gamma function was suggested
as a kernel by James Lyke of the Air Force Research Lab.

Helpful input on the metrics was provided by members of the Morphware Forum, including
Steve Crago, Dennis Cottel, Mark Richards, Randy Judd, and others. In particular, Jinwoo Suh
of the University of Southern California/Information Sciences Institute (USC/ISI) pointed out an
error in the CFAR section of the document.

iii

TABLE OF CONTENTS

 Acknowledgments iii
 List of Illustrations vii
 List of Tables ix

1. Introduction 1

2. Metrics 3

3. Signal Processing Benchmarks 7
 3.1 Finite Impulse Response Filter Bank 7
 3.2 QR Factorization 8
 3.3 Singular Value Decomposition 8
 3.4 Constant False Alarm Rate Detection 10

4. Communication Benchmark 13

5. Information and Knowledge Processing Benchmarks 17
 5.1 Pattern Matching 17
 5.2 Database Operations 17
 5.3 Graph Optimization via Genetic Algorithm 20

6. Further Kernel Benchmarks 25

REFERENCES 27

APPENDIX A – Revisions 29

v

LIST OF ILLUSTRATIONS

Figure
No. Page

1 Sliding window in CFAR detection. 11
2 C corner turn example. 14
3 VSIPL corner turn example. 15
4 Outline of the pattern match kernel. 18
5 Structure of a simple genetic algorithm. 21

vii

LIST OF TABLES

Table
No. Page

1 Benchmark metrics 5
2 FIR filter bank input parameters 7
3 QR input parameters 8
4 SVD input parameters 8
5 Parameter sets for the CFAR Kernel Benchmark 12
6 Corner turn parameters 16
7 Pattern matching parameters 18
8 Tracking parameters 19
9 Parameter sets for the Genetic Algorithm Kernel Benchmark 23

ix

1. Introduction

This document describes a series of kernel benchmarks for the PCA program. Each kernel bench-
mark is an operation of importance to DoD sensor applications making use of a PCA architecture.
Many of these operations are a part of the composite example application described elsewhere [11].

The kernel-level benchmarks have been chosen to stress bothcomputation and communication
aspects of the architecture. “Computation” aspects include floating-point and integer performance,
as well as the memory hierarchy, while the “communication” aspects include the network, the
memory hierarchy, and the I/O capabilities. The particularbenchmarks chosen are based on the
frequency of their use in current and future applications. They are drawn from the areas of signal
processing, communication, and information and knowledgeprocessing. The specification of the
benchmarks in this document is meant to be high-level and largely independent of the implemen-
tation.

1

2. Metrics

For each benchmark, a set of problem sizes are defined. Throughout this section, we refer to
the kernel by the indexk, and refer to particular data sets for a given kernel asdi, wherei =
1, 2, . . . , Nk, andNk varies from kernel to kernel. We assume that the data for the problem begins
in a “staging area” accessible to the PCA computation units (“main memory” or “an I/O stream”)
and must be moved into local memory. For the initial realization of the benchmarks, the staging
area can be main memory. Final measurements in the next phaseof the PCA program should have
an I/O stream as the staging area.

There are two major metrics of interest for each problem size. The first is the total time or
latency,L1(k, di), to perform kernelk for a data set sizedi using asingle PCA prototype integrated
circuit (hereafter, aPCA chip). This measurement should include both computation time and the
time to move the data for the problem from the staging area (off the PCA chip) to a computation
or operation area (on the PCA chip).

The second major metric of interest is the sustained achievable throughput,T (k, di). For each
kernelk and problem sizedi, a measure of theworkload, W (k, di), is defined in an operation-
dependent and system-independent way. (For floating-pointcomputation operations,W is the
floating-point operation count, while for communication operations,W is the number of bytes
transferred.) The sustained achievable throughput is

T (k, di) = lim
n→∞

nW (k, di)

Ln(k, di)
, (1)

whereLn(k, di) is the total time to solven problems of the given type using the PCA chip. As
above,Ln(k, di) includes the time to move the data from the staging area to an operation area.

There are clear trade-offs between throughput and latency.If the entire PCA chip is being used
to solve kernelk for data setdi, thenLn = nL1 andT = W/L1. In some cases, however, an
operation will be able to take advantage ofpipeliningand perform multiple computations of the
same type at the same time, resulting in higher throughput. Obviously, the extent to which this can
be accomplished will depend on the input bandwidth of the PCAchip. To measure the throughput
for our purposes, it is sufficient to measureLn for a value ofn that is sufficiently large (at least
n > 10, and preferablyn > 100).

For embedded systems we are interested in theefficiencyof the operation, that is, the use of
resources relative to the potential of the device. In general the efficiencyE(k, di) is defined as

E(k, di) =
T (k, di)

U(k)
(2)

whereU(k) is the kernel-dependent upper bound or peak performance of the chip. The definition
of U(k) is linked to the definition of the workload. WhenW is in floating-point operations,U(k)
is the theoretical peak floating-point computation rate (based on the clock rate and the number of
floating-point units). For a communication operation, where workload is defined in bytes,U(k) is
the theoretical peak bandwidth between the communicating units. For benchmarks other than the
signal processing and communication benchmarks, efficiency is difficult to calculate because peak
performance for the corresponding workloads cannot easilybe defined. For example, the workload

3

for the database benchmark is in transactions, and there does not exist an easily calculable peak
performance for the number of transactions performed. In these situations, efficiency cannot be
calculated.

One of the key metrics for the PCA program isstabilityof the performance. Kuck [9, p.168ff]
defines stability as the ratio of the minimum achieved performance to the maximum achieved
performance over a set of data set sizes and programs. Stability is defined in two senses for the
kernel benchmarks, a per-kernel sense and an overall sense.The per-kernel stability is reflected by
a metric calleddata set stability, Sd, defined as the stability for a particular kernel over all data sets
for that kernel,

Sd(k) =
mindi

T (k, di)

maxdi
T (k, di)

. (3)

Stability across all kernels poses a problem, as the workloads and thus the throughput calcula-
tions are different for different kernels. However, a good indication of the overall stability can be
gleaned from the geometric mean of the kernel stabilities,

S̄d = 8

√

√

√

√

8
∏

k=1

Sd(k). (4)

Finally, for embedded systems, an important metric is the achieved performance per unit power
consumedby the PCA chip,

C(k, di) =
T (k, di)

P (k, di)
, (5)

whereP (k, di) is the overall power consumed during the operation. This normalized quantityC
gives some indication of the “cost” of executing the benchmark on the given PCA chip. Obviously,
this metric ignores power consumed by other elements of the system, but allows comparison with
commercially available processors using the same metric. Performance metrics per unit size and
weight are omitted, as the processing unit is perceived to beless of a driver for either of these
quantities than for power consumed by the system.

Along with the specified measurements, developers are askedto provide their implementa-
tion of the algorithm and a description of chip resource usage. The specific implementation of
the benchmark used to achieve the measured latency and throughput is of great interest for several
reasons. One important reason is to compare the throughput and latency achievable by different ap-
proaches. For this comparison, the availability of multiple implementations of the same algorithm
on the same architecture using different approaches would be ideal.

Another important reason to examine the implementation hasto do with the workload,W (k, di),
which is defined for a particular implementation of the kernel. This standard workload and imple-
mentation allows comparison of different architectures. If an additional algorithm with a signifi-
cantly different workload is also implemented, the value ofW must be adjusted or the workload
is invalid. Therefore, developers are asked to provide an estimate of the workload for implementa-
tions that are substantially different from those described in this report.

In summary, developers are requested to measure the latency, throughput, and power consumed
for each kernel benchmarkk and data setdi. The theoretical peak floating-point, operation, and

4

communication rates should be reported for the chip.1 All other metrics (efficiency, stability over
problem size, stability over all kernels, and performance per unit power) are derived from chip
parameters and the measured quantities. Other statistics such as variance may be appropriate also
and may be calculated from these results. The desired quantities are summarized in Table 1.

Table 1.

Benchmark metrics.
Parameter Description Calculation
Lj(k, di) Total latency forj problems measured
W (k, di) Workload given
T (k, di) Throughput limn→∞

nW (k,di)
Ln(k,di)

U(k) Performance upper bound for operation type:
floating-point clock rate * floating-point units
communication bandwidth between

communicating units
integer clock rate * integer units

E(k, di) Efficiency T (k,di)
U(k)

Sd(k) Stability over data sets
mindi

T (k,di)

maxdi
T (k,di)

S̄d Mean of data set stabilities 8

√

∏8
k=1 Sd(k)

P (k, di) Power consumed measured
C(k, di) Performance-power efficiency T (k,di)

P (k,di)

1These rates should be specific to an agreed-upon technology as discussed at the Morphware forum meeting in July
2002.

5

3. Signal Processing Benchmarks

Four signal processing kernels are included in the benchmark set. They present a range of a differ-
ent characteristics in terms of operation counts and memoryreferences.

3.1 Finite Impulse Response Filter Bank

The finite impulse response (FIR) filter is one of the basic operations in signal processing. This
kernel implements a set ofM FIR filters. Each FIR filterm, m ∈ {0, 1, . . . , M − 1}, has a set of
impulse response coefficientswm[k], k ∈ {0 . . .K − 1}. If the length of the input vector isN , the
output of filterm, ym, is the convolution ofwm with the inputxm:

ym[i] =

K−1
∑

k=0

xm[i − k]wm[k], for i = 0, 1, . . .N − 1.

The filter is often implemented using fast convolution with the fast Fourier transform (FFT).
The most efficient implementation depends on various factors including the size of the filter re-
sponse vector (for more details, see [12]). We define two datasets in Table 2, one for a short
filter and one for a long filter. We define the workload for this kernel as the minimum workload
of the time-domain and frequency-domain implementations.For the long filter, the frequency-
domain implementation operation count (M(10N log2 N + 8N)) is given. For the short filter, the
time-domain implementation operation count (8MNK) is given.

Table 2.

FIR filter bank input parameters.
Parameter Values

Name Description Set 1 Set 2
M Number of filters 64 20
N Length of input and output vectors4096 1024
K Number of filter coefficients 128 12

W Workload (Mflop) 34 1.97

All operation counts for the FIR filter assume complex input and output data. In addition,
the frequency-domain operation count assumes that an FFT and inverse FFT are implemented
using a radix-2 algorithm. Many other implementations of the FFT are possible: see Van Loan
for a discussion of algorithms for performing the FFT [16]. Because such a wide variety of FFT
implementations exist, and the particular algorithm implemented in a given library may not be
known or may change with data size, it is common to use the radix-2 operation count to calculate
throughput even when a different algorithm may be in use.

7

3.2 QR Factorization

The QR factorization is a linear algebra operation that factors a matrix into an orthogonal
component, which is a basis for the row space of the matrix, and a triangular component. In
adaptive signal processing, the QR is often used in conjunction with a triangular solver.

The QR factorization of anm × n matrixA with m ≥ n is a pair of matricesA = QR, where
the unitary matrixQ is of sizem × m and the upper-triangular matrixR is of sizem × n. There
are many ways of calculating the QR factorization, as discussed in Golub and Van Loan, including
the Householder transformation method [7, Algorithm 5.2.1], the Modified Gram-Schmidt algo-
rithm [7, Algorithm 5.2.5], and the Fast Givens method [7, Algorithm 5.2.4]. Of these, we chose
to specify the Fast Givens method for this kernel benchmark.This was primarily done because the
Fast Givens method consists of a number of fine grain calculations. This structure is very suitable
for implementation as astream algorithmon PCAs such as the MIT RAW machine. For more de-
tails, see Hoffmann [8]. The data matrix sizes that we define for this kernel, and the corresponding
workloads for calculating the QR factorization, are given in Table 3.

Table 3.

QR input parameters.
Parameter Values

Name Description Set 1 Set 2 Set 3
m Matrix rows 500 180 150
n Matrix columns 100 60 150

W Workload (Mflop) 397 30.5 45.0

3.3 Singular Value Decomposition

The singular value decomposition (SVD) is of increasing importance in signal processing. It
is an advanced linear algebra operation that produces a basis for the row and column space of the
matrix and an indication of the rank of the matrix. In adaptive signal processing, the matrix rank
and the basis are useful for reducing the effects of interference.

Table 4.

SVD input parameters.
Parameter Values

Name Description Set 1 Set 2 Set 3
m Matrix rows 500 180 150
n Matrix columns 100 60 150

Wr1 Fixed workload (Mflop) 101 15 72
Wr2 Workload per iteration (Mflop) 0.24 0.88 0.54

8

Given anm × n complex matrixA, the singular value decomposition ofA is

A = UΣV H , (6)

whereU is a unitary matrix of sizem×m, Σ is anm×n matrix in which the uppern×n portion
is a diagonal matrix with all entries real and sorted in descending order, andV is ann × n unitary
matrix. If m > n, then define

U =
[

Ua Ub

]

,

Σ =

[

Σa

0

]

,

whereUa is sizem × n, Ub is sizem × (m − n), andΣa is of sizen × n. ThenA = UaΣaV
H

is called thereduced SVDof the matrixA. In this context the SVD defined in equation (6) is
sometimes referred to as thefull SVD for contrast. Notice thatUa is not unitary, but it does have
orthogonal columns. Whenm < n, the reduced SVD can be similarly defined by partitioningV
instead ofU .

For signal processing applications, we are typically most interested in the reduced decompo-
sition, in the matrixU , and in the singular values (the values on the diagonal ofΣ). We provide
operation counts for the reduced decomposition, assuming that all three matrices are produced.
The data matrix sizes of interest and associated operation counts are given in Table 4.

There are three major steps to the full SVD algorithm, which are described in more detail in
Golub and Van Loan [7]. First, if them × n matrix A has many more rows than columns, a QR
factorization is performed. This step is done ifm > 5n/3 [7, p. 252], which is typically the case
in signal processing.

Define

Q =
[

Qa Qb

]

, (7)

R =

[

Ra

0

]

, (8)

whereQa is sizem×n, Qb is sizem×(m−n), andRa is sizen×n. The decompositionA = QaRa

is referred to as thereduced QRdecomposition ofA. Matrix Qa is not unitary, but it has orthogonal
columns. The reduced QR factorization can be obtained by themodified Gram-Schmidt algorithm
described in Golub and Van Loan [7, Algorithm 5.2.5]. If a full SVD is being performed, the
full QR is computed: if a reduced SVD is being performed, a reduced QR is computed. In the
remainder of this exposition, we describe the reduced SVD algorithm for a matrix withm ≥ n.
We assume that in the first step, we perform a reduced QR decomposition via the MGS algorithm
to produce

A = U1R,

whereR is ann × n upper-triangular matrix andU1 is anm × n matrix with orthogonal columns.
(Notice that the QR factorization described in Section 3.2 is a full QR; hence, a different algorithm
is used here.)

In the next step,R is reduced tobi-diagonalform, to consist of the main diagonal and a single
diagonal of entries above that, with the remainder of the entries in the matrix being zero [7, p. 253].

9

This is accomplished with Householder transforms, producing

R = U2BV H
2 ,

whereU2 andV2 are unitary and of sizen × n, and then × n matrixB is bi-diagonal. The matrix
B produced at this step is no longer complex, but real, though matricesU2 andV2 are complex.

The final step is an iterative reduction ofB to diagonal form and the ordering of the singular
values. This is accomplished with Givens rotations [7, p. 454]. At the end of this step we have
produced matricesn × n orthogonal matricesU3 andV3 such that

B = U3ΣV H
3 ,

so that the singular value decomposition of the original matrix A can be expressed as

A = U1U2U3Σ(V3V2)
H

= UΣV H ,

with U = U1U2U3 andV = V3V2.
As the exact number of iterations required to produce the SVDis based on the data, an effi-

ciency measurement must take into account the actual numberof iteration steps performed. We
account for this by defining the workloadW as a linear function of two numbersW1 andW2 given
in Table 4,

W = W1 + d ∗ W2, (9)

whered is the number of iteration steps performed in the reduction of B to diagonal form,W2 is an
estimate of the number of floating-point operations per iteration step, andW1 is an estimate of the
number of floating-point operations in the remainder of the algorithm. The estimatesW1 andW2

for complex matrices are given separately for the full and reduced SVD algorithms in Table 4. The
numberd for a given data set must be “discovered” in the course of the execution of the benchmark.

There are many implementation details associated with achieving high performance in the sin-
gular value decomposition. Examples of such details include the use of block Householder trans-
forms [7, p. 213] and the storage of the Householder transforms and Givens rotations that produce
U andV rather than the matrices themselves [3].

3.4 Constant False Alarm Rate Detection

The constant false-alarm rate (CFAR) detection benchmark is an example of data-dependent
processing designed to find targets in an environment of varying background noise. The benchmark
subjects a subset of a radar data cube to this algorithm.

Assume a data cube consisting of real (as opposed to complex)data whose dimensions are
beams, range, and dopplers. During CFAR detection, a local noise estimate is computed from the
2Ncfar range gates near the cellC(i, j, k) under test. A number of guard gatesG immediately next
to the cell under test will not be included in the local noise estimate (this number does not affect
the throughput). For each cellC(i, j, k), the value of the noise estimateT (i, j, k) is calculated as

T (i, j, k) =
1

2Ncfar

G+Ncfar
∑

l=G+1

|C(i, j + l, k)|2 + |C(i, j − l, k)|2. (10)

10

The range cells involved in calculating the noise estimate for a particular vector are shown in
Figure 1. For each cellC(i, j, k), the quantity|C(i, j, k)|2/T (i, j, k) is calculated: this represents
the normalized power in the cell under test. If this normalized power exceeds a thresholdµ, the
cell is considered to contain a target.

Ncfar

C(i,:,k)

T(j)

Ncfar

G G

Cell Under Test

C(i,j,k)

Figure 1. Sliding window in CFAR detection. The example shows the number of guard
cellsG = 1 and the number of cells used in computing the estimateNcfar = 3.

An efficient implementation of the CFAR algorithm makes use of the redundancy in the com-
putation ofT according to the formula given in (10). Note that the relationship betweenT (i, j, k)
andT (i, j + 1, k) is

T (i, j + 1, k) = T (i, j, k) +
1

2Ncfar

(|C(i, j + 1 + G + Ncfar, k)|2

+ |C(i, j − G, k)|2

− |C(i, j − G − Ncfar, k)|2

− |C(i, j + G + 1, k)|2).

Using this relationship, the value ofT for a particular set ofNrg range gates can be calculated in
O(Nrg) time, that is, independent of the values ofG andNcfar. Note that some variations of this
formula and equation (10) occur at the boundary areas. For the most part, these are handled in a
straightforward fashion: if a computed index would cause reference to a cell outside the cube’s
boundaries, we ignore that term in the computation.

The parameter sets for the CFAR benchmark are shown in Table 5.

11

Table 5.

Parameter sets for the CFAR Kernel Benchmark.
Name Description Set 0 Set 1 Set 2 Set 3 Units
Nbm Number of beams 16 48 48 16 beams
Nrg Number of range gates 64 3500 1909 9900 range gates
Ndop Number of doppler bins 24 128 64 16 doppler bins
Ntgts Number of targets that will be

pseudo-randomly distributed
in Radar data cube

30 30 30 30 targets

Ncfar Number of CFAR range gates 5 10 10 20 range gates
G CFAR guard cells 4 8 8 16 range gates
mu Detection sensitivity factor 100 100 100 100

W Workload 0.17 150 41 18 Mflop

12

4. Communication Benchmark

Many signal and image processing applications operate on multi-dimensional data in multiple
stages, with operations focusing on a different dimension in each subsequent stage. If the host
platform is a parallel processor, the data are usually distributed across the nodes to exploit data
parallelism, so that each node can operate in parallel on itsportion of the data as the algorithm
transitions from one stage to the next. For efficiency reasons, it is desirable to perform acorner-
turn of the data. A corner turn operation is defined as a copy of the object with a change in the
storage order of the underlying data. This may or may not imply transposition of the computation
object, depending on the implementation. In this section, we describe this operation in more
detail and describe in general terms an abstracted, high-level application that requires a corner-
turn operation (already presented in an earlier document [10], some of which is repeated here for
completeness).

An application that requires a corner turn works first on therowsof an input matrix, and then
on thecolumnsof the intermediate result matrix. Mathematically, one of the most basic examples
of such an operation is a multiplication of three matrices,

Z = BHXA, (11)

whereB andA are application-dependent matrices,X is the matrix of input data, andZ is the
matrix of output data. An example situation where this mightoccur would be a filtering operation
followed by a beamforming operation.1 Suppose, as in the previous description [10], that we
perform the operations of Equation (11) into two stages, thefirst producingY = XA and the
second producingZ = BHY . Then the first stage is an operation in which an entire row ofX is
desired, and the second is an operation in which an entire column ofY is desired. Thus, the two
stages suggest different optimal data layouts.

The idea behind the corner-turn operation is to preserve data locality in the dimension being
operated on. Whether or not a mathematical transpose is performed is implementation-dependent.
In multi-dimensional arrays in the C programming language,the last array index is continuous in
memory. In order to perform a corner turn of a C language array, a transpose is required; that is,
the order of some of the dimensions must be reversed (see Figure 2).

Now consider an implementation with the property that storage order is independent of the
order of the indexes. In such an implementation, it would be possible to do a corner turn without
requiring a transpose of the computation object. The vector, signal, and image processing library
(VSIPL, [13]) is an example of a library where this is possible: the stride parameters of a VSIPL
view allow the VSIPL copy operation to re-arrange the underlying data without changing the math-
ematical properties (see Figure 3).2 When using objects with this property, storage order may be
considered to be a mapping issue, whereas when using standard C and C++ arrays, storage order
is explicitly embedded in the application program.

The discussion above does not consider the distribution of data over processors. Distribution
effectively adds a level of memory hierarchy to the performance of a corner turn: data must be

1A filtering operation can be represented as a matrix-matrix multiply, but would usually not be implemented in
such a fashion. Thus, the use of matrix multiplication here is an additional level of abstraction about the application.

2It would also be possible to implement standard C/C++ data structures with this property: use of VSIPL here is
purely a matter of convenience.

13

The C code to perform a corner turn of two-dimensional arrayA into two-
dimensional arrayB is

// Notice dimensions of B are the reverse of those of A
int A[NX][NY], B[NY][NX];

for (i = 0; i < NX; i++)
for (j = 0; j < NY; j++)

B[j][i] = A[i][j];

If NXandNYwere defined at compile time to be 4 and 3, respectively, and

A =

0 1 2

3 4 5

6 7 8

9 10 11

,

then the memory area underlyingA is

A = { 0 1 2 3 4 5 6 7 8 9 10 11 }.

Mathematically

B =

0 3 6 9

1 4 7 10

2 5 8 11

 = AT ,

and after execution of the above code the memory area underlying B is

B = { 0 3 6 9 1 4 7 10 2 5 8 11 }.

Figure 2. C corner turn example. In matrixB, the data are stored in corner-turned
fashion compared to matrixA, andB is the transpose ofA.

14

The C code to perform a corner turn from VSIPL matrix viewA into VSIPL matrix
view B is

// Notice dimensions of B are the same as those of A:
// storage order is different
vsip_mview_i *A = vsip_mcreate_i(NX,

NY,
VSIP_ROW,
VSIP_MEM_NONE);

vsip_mview_i *B = vsip_mcreate_i(NX,
NY,
VSIP_COL,
VSIP_MEM_NONE);

vsip_mcopy_i_i(A, B);

If NXandNYwere defined at compile time to be 4 and 3, respectively, and

A =

0 1 2

3 4 5

6 7 8

9 10 11

,

then the block underlyingA is

A = { 0 1 2 3 4 5 6 7 8 9 10 11 }.

After execution of the above code,B is mathematically the same asA, and the
block area underlyingB is

B = { 0 3 6 9 1 4 7 10 2 5 8 11 }.

Figure 3. VSIPL corner turn example. Matrix viewsA andB are mathematically the
same even though the underlying data inB are stored in corner-turn fashion compared to
matrixA.

15

copied to a new processor as well as re-arranged on the new processor. Frequently, an all-to-all
communication operation, in which every processor communicates with every other processor, is
required as part of a distributed corner turn.

Parameters for two corner turn sizes are given in Table 6. These corner turn sizes are based
on current applications: they assume 32-bit data, either integers or single-precision floating-point
data. The workload is twice the overall matrix size since thedata is being copied and must therefore
pass into and out of the processor.

Table 6.

Corner turn parameters.
Parameter Values
Name Description Set 1 Set 2
M Matrix rows 50 750
N Matrix columns 5000 5000
k Element size (bytes) 4 4

Matrix size (Mbyte) 1 15
W Workload (Mbyte) 2 30

For this particular kernel benchmark, the idea of timing throughput and latency based on a
single processor is acceptable, but it would be preferable to get a sense of the throughput and
latency possible for a multi-processor corner turn of the data. In the most frequent occurrences of a
distributed corner turn in signal processing, the source and destination processor groups are either
identical or are completely disjoint. The derived statistics of most interest for multi-processor
transfers are the stability of the throughput over the number of processors used, and the efficiency
of the transfer versus the theoretical peak bandwidth.

16

5. Information and Knowledge Processing Benchmarks

5.1 Pattern Matching

The pattern matching kernel is extracted from the feature-aided tracking portion of the inte-
grated radar-tracker application [2]. Fundamentally, this step entails overlaying two length-N vec-
torsa andt and computing a metric that quantifies the degree to which these two vectors match.
In general, the vectort is chosen from a set of reference vectors referred to as thetemplate library.
The metric used for matching is the weighted MSE (mean squareerror)ǫ,

ǫ =

N
∑

k=1

(

wk ∗ (ak − tk)
2
)

N
∑

k=1

wk

, (12)

wherewk, k = 1, 2, . . . , N is the vector of weights. The optimal weights for the feature-aided
tracker have been computed empirically. In the kernel benchmark, we provide a generic weighting
vector.

The calculation done in equation (12) is performed on data that has been converted to decibels
(the “dB domain”). This is done because the raw power output from a signal processing system can
vary by many orders of magnitude. However, conversion of patterns between the power domain
and the dB domain is performed during the course of the benchmark: this requires the use of
a number of logarithm and exponentiation functions. The operation count for these functions is
implementation-dependent, and so the workload we give has three components: a count of the
number of calls to the exponent function, a count of the number of calls to the logarithm function,
and a count of the operations in the rest of the benchmark.

Before the two profiles can be overlaid, they may need to be shifted in range to the left or right,
and the magnitude of the profiles may need to be scaled to match. The optimal shift and gain values
can be found through brute force by computing the MSE for eachcombination of shift and gain
values, then taking the minimum MSE. However, by noting thatthe MSE is a parabolic function
of the shift and gain, we can find the optimum shift and gain values at the global minimum by
first finding the optimal shift, then finding the optimal gain value. A summary of this procedure is
shown in Figure 4.

The parameters of interest for the pattern matching benchmark are the length of the pattern
vectors, the size of the template pattern library, and the number of shift and scale operations per-
formed. These parameters are given for two data set sizes in Table 7.

5.2 Database Operations

We consider measuring the performance of database operations in the context of a tracking
application that stores track information in a database. Tracks are indexed using their location
(spatial coordinates). The tracker operates in discrete time intervals calledcycles. During each
cycle, the tracker receives a set of target reports from a radar. It asks the database to search for all

17

for each of K patterns
for each of Sr shift values

calculate MSE value with shifted pattern
Choose shift value with smallest MSE
for each of Sm magnitude values

calculate MSE value with scaled pattern
Choose gain value with the smallest MSE

Figure 4. Outline of the pattern match kernel.

Table 7.

Pattern matching parameters.
Parameter Values
Name Description Set 1 Set 2
N Pattern length 64 128
K Number of patterns 72 256
Sr Number of shifts 21 43
Sm Number of magnitude scalings 21 21

W1 Workload:log10 function calls 4.61 × 103 32.8 × 103

W2 Workload:10x function calls 4.61 × 103 32.8 × 103

W3 Workload: Other floating-point ops (flops)1.20 × 106 13.6 × 106

tracks that could be associated with each target report, based on location. The tracker may direct
the database to insert new tracks based on target reports that are not associated with any tracks,
and to delete specific tracks.

The database interface receives a stream of instructions from the tracker consisting of the
search, insert, and delete operations to be performed. Its output is a set of record identifiers which
are presumably used to look up the actual records in memory. As the actual database does not
exist, the numbers are essentially random 32-bit integers.Our goal is to measure the performance
of the search, insert, and delete operations,without ever altering the contents of any particular
record.The major motivation for this is to avoid generating the large amount of data necessary for
the database. A typical record from a feature-aided track application is on the order of 650 bytes
per record (see document PCA-IRT-4, [2]), and test cases of interest may require up to 100,000
such records. Thus, in the benchmark, we do not actually generate and maintain the contents of the
database itself, only the indexing structures. Therefore,the structures used only store the values
we need:x andy coordinates, and a record identifier, which is an 32-bit integer index of or pointer
to a data record.

For an application of this type, the three database operations needed are:

search Look up and retrieve all items whose characteristics fall into a given range. In this case,
a search is done for all targets within a specified range of a particular (x, y) coordinate pair,
wherex andy are floating-point numbers. Given a set of sector bounds{xMin, xMax, yMin, yMax},

18

Table 8.

Tracking parameters.
Parameter Values
Description Set 1 Set 2
Cycles to run 100 100
Total existing targets (P + U) 500 102,400
Number of placed targets (P) 450 92,160
X total area,M (km) 5 32
Y total area,N (km) 5 32
X search area,∆x (km) 2 2
Y search area,∆y (km) 2 2
Overall target density,d (targets/km2) 20 100
Search operations per cycle,ns 400 100
Matches found per searchk 80 400
Insert operations per cycle,ni 20 300
Delete operations per cyclend 20 300
Workload per cycle (transactions) 440 700

this search can be expressed in a fashion approximating the structured query language (SQL)
as

select * from TrackDatabase
where (x > xMin AND x < xMax AND y > yMin AND y < yMax).

insert Add a new item to the database. This can be expressed in an SQL-like fashion as
insert into TrackDatabase values(id, xu, yu).

delete Remove an item from the database, expressed in an SQL-like fashion as
delete from TrackDatabase where (x = xu AND y = yu).

Database workloads are provided based on two scenarios: a kinematic tracking scenario similar
to the parameters proposed for the integrated radar-tracker benchmark, and a multi-hypothesis
tracking scenario in which the database is allowed to becomemuch larger. For each scenario, the
frequency of each operation (search, insert, delete) is specified. The parameters that define these
two scenarios are given in Table 8.

5.2.1 Test Data

Test data for the database is drawn from a tracker scenario with stationary targets which will
appear and disappear from the database. The targets for the scenario will be distributed roughly
evenly on a grid of sizeM × N km2. These targets will be divided into a set of placed targets,P ,
and a set of unplaced targets,U . Targets in setP will have corresponding records in the database
(they have previously “appeared”) and targets in setU will not (they have “disappeared”). The size

19

of setP is defined to be sufficient that searches in an area of size∆x × ∆y will expect to findk
targets on average; that is, the target density isd = k/(∆x∆y) targets/km2. The size of setU is
chosen to allow sufficient insertions and deletions with additional targets remaining to allow some
measure of differences between searches. We have chosen to makeP 90% of the total targets and
U the remaining 10%.

The database generator creates a sequence of commands for the database. To do this, the
generator must keep track of the setsP andU . For each cycle, the generator must choosens
uniformly random(x, y) pairs,nd targets fromP , andni targets fromU . Thens pairs will be
passed to the database, which will search the records and return those within∆x and∆y of the
random pairs. Thend targets fromP will be passed to the database to have their records deleted
(they will “disappear”). Theni targets fromU will be passed to the database and corresponding
records will be inserted into the database (thus will “appear”). The time reported for each cycle is
the total time to execute the search, insert, and delete commands. The command generation occurs
before any of the actual benchmarking and therefore is not timed.

5.2.2 Workload

For a workload value for each scenario, we count each transaction (search, insert, delete) as an
operation to be performed. This workload value, given in Table 8, can be used to compute through-
put for the database kernel (in transactions per second) andcompare among different architectures.
However, an efficiency for the database kernel benchmark is not defined. Peak performance for the
database kernel benchmark would be calculated from the rateat which the PCA chip can perform
each database operation, which in turn is related to the memory hierarchy of the entire system.

5.3 Graph Optimization via Genetic Algorithm

Genetic algorithms [4, 6, 14] have become a viable solution to strategically perform a global
search by means of many local searches. The basis of the genetic algorithm methods is derived
from the mechanisms of evolution and natural genetics. The genetic algorithm that is being used
as one of these kernel benchmarks is a fairly simple version.Many modifications are possible that
can enhance the performance for a given application, and some small enhancements have been
made to enhance the performance of this benchmark.

A genetic algorithm works by building a population of chromosomes which is a set of possible
solutions to the optimization problem. Within a generationof a population, the chromosomes
are randomly altered in hopes of creating new chromosomes that have better evaluation scores.
The next generation population of chromosomes is randomly selected from the current generation
with selection probability based on the evaluation score ofeach chromosome. The simple genetic
algorithm follows the structure depicted in Figure 5. Each of these operations will be described in
the following subsections.

5.3.1 Initialization

Initialization involves setting the parameters for the algorithm, creating the scores for the sim-
ulation, and creating the first generation of chromosomes. In this benchmark, seven parameters are

20

Simple Genetic Algorithm ()
{
Initialization;
Evaluation;
while termination criterion has not been reached

{
Selection and Reproduction;
Crossover;
Mutation;
Evaluation;
}

}

Figure 5. Structure of a simple genetic algorithm.

set:

• the genes value (Genes) is the number of variable slots on a chromosome;

• the codes value (Codes) is the number of possible values for each gene;

• the population size (PopSize) is the number of chromosomes in each generation;

• crossover probability (CrossoverProb) is the probability that a pair of chromosomes will
be crossed;

• mutation probability (MutationProb) is the probability that a gene on a chromosome will
be mutated randomly;

• the maximum number of generations (MaxGenerations) is a termination criterion which
sets the maximum number of chromosome populations that willbe generated before the top
scoring chromosome will be returned as the search answer; and

• the generations with no change in highest-scoring (elite) chromosome (GensNoChange) is
the second termination criterion which is the number of generations that may pass with no
change in the elite chromosome before that elite chromosomewill be returned as the search
answer.

The scores matrix for the simulation, which is generated in theGenAlgGen script, is the set
of scores for which the best solution is to be found. The attempted optimization is to find the code
for each gene in the solution chromosome that maximizes the average score for the chromosome.
Finally, the first generation of chromosomes are generated randomly.

5.3.2 Evaluation

Each of the chromosomes in a generation must be evaluated forthe selection process. This is
accomplished by looking up the score of each gene in the chromosome, adding the scores up, and

21

averaging the score for the chromosome. As part of the evaluation process, the elite chromosome
of the generation is determined.

5.3.3 Selection and Reproduction

Chromosomes for the next generation are selected using the roulette wheel selection scheme [14]
to implement proportionate random selection. Each chromosome has a probability of being cho-
sen equal to its score divided by the sum of the scores of all ofthe generation’s chromosomes.
In order to avoid losing ground in finding the highest-scoring chromosome, elitism [14] has been
implemented in this benchmark. Elitism reserves two slots in the next generation for the highest
scoring chromosome of the current generation, without allowing that chromosome to be crossed
over in the next generation. In one of those slots, the elite chromosome will also not be subject to
mutation in the next generation.

5.3.4 Crossover

In the crossover phase, all of the chromosomes (except for the elite chromosome) are paired up,
and with a probabilityCrossoverProb , they are crossed over. The crossover is accomplished
by randomly choosing a site along the length of the chromosome, and exchanging the genes of the
two chromosomes for each gene past this crossover site.

5.3.5 Mutation

After the crossover, for each of the genes of the chromosomes(except for the elite chromo-
some), the gene will be mutated to any one of the codes with a probability of MutationProb .
With the crossover and mutations completed, the chromosomes are once again evaluated for an-
other round of selection and reproduction.

5.3.6 Termination

The loop of chromosome generations is terminated when certain conditions are met. When the
termination criteria are met, the elite chromosome is returned as the best solution found so far. For
this benchmark, there are two criteria: if the number of generation has reached a maximum number,
MaxGenerations , or if the elite solution has not changed for a certain numberof generations,
GensNoChange.

5.3.7 Implementation Notes

Genetic algorithms are being used around the world for an enormous variety of applications.
However, this benchmark of genetic algorithms has been designed with two specific purposes in
mind: matching computational tasks with processing units in a general independent task envi-
ronment and in signal processing pipeline tasks. For the general independent task environment,
the genes of the chromosomes are the computational tasks which have arrived in the order of their
gene’s number, and the codes are the possible processing units upon which the computational tasks

22

Table 9.

Parameter sets for the Genetic Algorithm Kernel Benchmark.

Name Description Set 1 Set 2 Set 3 Set 4 Units
Codes Number of code types for a

gene
4 8 100 1000 codes

Genes Number of genes on a chro-
mosome

8 96 5 10 genes

PopSize Number of chromosomes in a
generation

50 200 100 400 chromosomes

CrossoverProb Probability of crossing over a
pair of chromosomes

0.01 0.002 0.02 0.03

MutationProb Probability of mutating a
chromosome

0.60 0.60 0.60 0.30

MaxGenerations Maximum number of genera-
tions

500 2000 500 5000 generations

GensNoChange Maximum number of genera-
tion with no change in elite
chromosome

50 150 50 500 generations

Ops per generation 1750 77400 2300 17200 operations
Random numbers per genera-
tion

898 38798 1198 8798 numbers

Ops for random number gen. 9878 426778 13178 96778 operations
Total Ops 11628 504178 15478 113978 operations

can be executed. Similarly, for the signal processing pipeline tasks, the genes of the chromosomes
are the pipelined tasks that constitute a signal processingchain, and the codes are the computa-
tional unit mappings upon which the pipeline stage tasks canbe run. The scores for each code in
a given gene position represents a goodness factor (for computational efficiency, execution time,
or some other measure) ranging from zero to one (one being best). The goal then is to find the
mapping of tasks onto processors that yields the best score,in this case a perfect score of one.

The random number generator for the genetic algorithm is assumed to be the one defined in
VSIPL [13, p.245]. This generator is used because the implementation is available and the work-
load is easily calculable (based on the discussion in the standard, we assume 11 ops per random
number generated). Use of this random number generator is not required. However, if a different
random number generator is used, the workload given in Table9 should be altered accordingly.

For this kernel benchmark, four parameter sets have been included. These sets are shown in
Table 9. Sets 1 and 2 are sample parameters for the general independent task scenario while sets
3 and 4 are sample parameters for the digital signal processing pipeline task scenario. For this
kernel, we define the workload in operations (rather than floating-point operations) per generation.
The workload is related to the number of genes and the population size per generation.

Parts of the genetic algorithm code are embarrassingly parallel, including the crossover and

23

 Parts of the genetic algorithm code are embarrassingly parallel, including the crossover and
mutation sections. Most of the evaluation section is also embarrassingly parallel, except for the
elite chromosome determination portion. However, the selection and reproduction section can-
not be conducted in a parallel manner since a view of the entire population is necessary. More
discussion on parallelizing and distributing genetic algorithms can be found in [5].

24

6. Further Kernel Benchmarks

These are benchmarks that might be considered for a second set of kernel benchmarks, but are not
included with this first set.
Image encoding.Compress a synthetic aperture radar (SAR) image for storageor transmission.
The dynamic range of SAR imagery is such that it is not well represented using conventional
image processing standards such as that defined by the joint photographic experts group (JPEG)
for image compression. The JPEG 2000 standard addresses theproblems that JPEG presents for
SAR images. For more details on JPEG 2000, see Taubman and Marcellin [15]. Baxter and Seibert
have performed an analysis of the desirable features of an encoding algorithm for SAR images [1].
The major features of the encoding algorithm as they describe it are:

• wavelet packet transforms with a Gabor-like tree structureand smooth biorthogonal wavelet
filters,

• trellis-coded quantization, and

• a bit-allocation procedure based on minimizing distortion(perceptual distortion, based on
the human visual system) and rate.

Some of these features (particularly trellis-coded quantization) are in “part 2” of the JPEG 2000
standard, and are therefore not yet present in most publiclyavailable implementations of the stan-
dard.
Secure network protocol.Transmit a message of a given size with authentication and encryption,
based on IPSec or a similar protocol.
Synchronization. Mark a value on a different processor or in a remote memory for exclusive
access (lock/unlock operations).
Image processing: morphological operations.Take an image and perform an “opening” or
“closing” operation on it. These are integer convolution operations.
Image processing: edge detection.Perform edge detection in both thex andy dimensions of a
two-dimensional image.
Giga-updates per second.Read, then write a sequence of random memory locations in a large
memory space. A description of the benchmark is at
<http://iram.cs.berkeley.edu/˜brg/dis/gups/> .
Incomplete Gamma function.Calculate values of the incomplete gamma function.

25

REFERENCES

1. Robert Baxter and Michael Seibert. Synthetic aperature radar image coding.MIT Lincoln
Laboratory Journal, 11(2):121–158, 1998.

2. W. Coate and M. Arakawa. Preliminary design review: Feature-aided tracking for the PCA
integrated radar-tracker application. Project Report PCA-IRT-5, MIT Lincoln Laboratory,
Lexington, MA, October 2004.

3. J. J. M. Cuppen. The singular value decomposition in product form. SIAM J. Sci. Stat.
Comput., 4(2):216–222, June 1983.

4. Lawrence Davis, editor.Handbook of Genetic Algorithms. Van Nostrand Reinhold, New
York, 1991.

5. José L. Ribeiro Filho, Philip C. Treleaven, and Cesare Alippi. Genetic-algorithm program-
ming environments.IEEE Computer, 27(6):28–43, June 1994.

6. David E. Goldberg, editor.Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Van Nostrand Reinhold, New York, 1991.

7. Gene H. Golub and Charles F. Van Loan.Matrix Computations. Johns Hopkins University
Press, 3rd edition, 1996.

8. Henry Hoffmann. Stream Algorithms and Architecture. Master’s thesis, Massachusetts In-
stitute of Technology, Cambridge, MA, 2003.

9. David J. Kuck. High Performance Computing: Challenges for Future Systems. Oxford
University Press, New York, NY, 1996.

10. James M. Lebak. Polymorphous computing architectures (PCA) example application 4:
Corner-turn. External report, MIT Lincoln Laboratory, Lexington, MA, October 2001.

11. James M. Lebak. Preliminary design review: PCA integrated radar-tracker application.
Project Report PCA-IRT-1, MIT Lincoln Laboratory, Lexington, MA, April 2002.

12. Alan V. Oppenheim and Ronald W. Schafer.Discrete-time signal processing. Prentice-Hall,
Inc., 1989.

13. David A. Schwartz, Randall R. Judd, William J. Harrod, and Dwight P. Manley. Vector, sig-
nal, and image processing library (VSIPL) 1.0 application programmer’s interface. Technical
report, Georgia Tech Research Corporation, 2000. http://www.vsipl.org.

14. M. Srinivas and Lalit M. Patnaik. Genetic algorithms: A survey. IEEE Computer, 27(6):17–
26, June 1994.

15. David S. Taubman and Michael W. Marcellin.JPEG 2000: Image Compression Fundamen-
tals, Standards, and Practice. Kluwer Academic Publishers, 2002.

27

16. Charles F. Van Loan.Computational Frameworks for the Fast Fourier Transform. Society
for Industrial and Applied Mathematics, 1992.

28

APPENDIX A
Revisions

This is the first public revision of the document, dated 13 June 2005. It introduces the following
changes from the original public version:

• references to kernel benchmark code and its availability dates were deleted;

• the database kernel benchmark description was revised to remove implementation details;

• the CFAR workload and description were revised to reflectreal (as opposed to complex)
data;

• an outline of the calculations performed in the pattern match kernel was added, and some
errors in the operation count were corrected;

• the QR factorization section was added;

• the SVD section was revised to reflect a reduced SVD;

• the corner turn workload was revised to clarify the data sizeand why the workload is twice
the matrix data size;

• the FIR workload was slightly changed and some notes on the operation counts were added;
and

• the “Revisions” chapter that you are reading now was re-ordered so that the most recent
changes were at the start.

The first public version of the document was issued 23 January2004. It introduced the follow-
ing changes from the program-private version:

• an error in the CFAR workload table (Table 5) was corrected;

• a description of the reduced SVD algorithm, including workload estimates, was added;

• the description of the database kernel benchmark was heavily revised and the workload was
changed;

• a description of the random number generator used for the genetic algorithm was added and
its workload was updated in a corresponding way;

• the pattern match benchmark description and workload were updated to reflect a more effi-
cient implementation and to introduce a second data set; and

• the discussion of metrics (in particular, of efficiency and program stability) was updated to
reflect that efficiency is not always easily calculable for the different kernels.

The original version of this document was distributed to PCAprogram participants (only) at
sponsor direction, July 31, 2002.

29

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD-MM-YYYY)

13 June 2005
2. REPORT TYPE

Project Report
3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE

5a. CONTRACT NUMBER
FA8721-05-C-0002

Polymorphous Computing Architecture (PCA) Kernel-Level Benchmarks 5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

5d. PROJECT NUMBER
1084

J. Lebak, A. Reuther, E. Wong

5e. TASK NUMBER
0

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION REPORT
 NUMBER

MIT Lincoln Laboratory
244 Wood Street
Lexington, MA 02420-9108

PCA-KERNEL-1, Revision 1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

 11. SPONSOR/MONITOR’S REPORT

DARPA/ITO
3701 Fairfax Drive
Arlington, VA 22203-1714 NUMBER(S)

 ESC-TR-2005-067
12. DISTRIBUTION / AVAILABILITY STATEMENT

 Approved for public release; distribution is unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This document describes a series of kernel benchmarks for the PCA program. Each kernel benchmark is an operation of importance
to DoD sensor applications making use of a PCA architecture. Many of these operations are a part of the composite example
application described elsewhere.

The kernel-level benchmarks have been chosen to stress both computation and communication aspects of the architecture.
“Computation” aspects include floating-point and integer performance, as well as the memory hierarchy, while the “communication”
aspects include the network, the memory hierarchy, and the I/O capabilities. The particular benchmarks chosen are based on the
frequency of their use in current and future applications. They are drawn from the areas of signal processing, communication, and
information knowledge processing. The specification of the benchmarks in this document is meant to be high-level and largely
independent of the implementation.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

17. LIMITATION
OF ABSTRACT

18. NUMBER
OF PAGES

19a. NAME OF RESPONSIBLE PERSON

a. REPORT
Unclassified

b. ABSTRACT
Same as Report

c. THIS PAGE
Same as Report

Same as Report 39

19b. TELEPHONE NUMBER (include area
code)

 Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

