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1. Introduction

This document describes a series of kernel benchmarksdd?@A program. Each kernel bench-
mark is an operation of importance to DoD sensor applicatroaking use of a PCA architecture.
Many of these operations are a part of the composite exampleation described elsewhere [11].
The kernel-level benchmarks have been chosen to stressdmoibutation and communication
aspects of the architecture. “Computation” aspects ireflahting-point and integer performance,
as well as the memory hierarchy, while the “communicatiospexts include the network, the
memory hierarchy, and the 1/0O capabilities. The particbkanchmarks chosen are based on the
frequency of their use in current and future applicationseyrare drawn from the areas of signal
processing, communication, and information and knowlqatgeessing. The specification of the

benchmarks in this document is meant to be high-level am@hkaindependent of the implemen-
tation.






2. Metrics

For each benchmark, a set of problem sizes are defined. Thoaughis section, we refer to
the kernel by the index, and refer to particular data sets for a given kernetl,asvhere: =
1,2,..., Ny, and N varies from kernel to kernel. We assume that the data for riblelgm begins
in a “staging area” accessible to the PCA computation ufmtsi(h memory” or “an 1/0O stream”)
and must be moved into local memory. For the initial realcrabf the benchmarks, the staging
area can be main memory. Final measurements in the next phtmePCA program should have
an 1/O stream as the staging area.

There are two major metrics of interest for each problem. siidee first is the total time or
latency,L, (k, d;), to perform kernek for a data set sizé; using asingle PCA prototype integrated
circuit (hereafter, @CA chip. This measurement should include both computation tintethe
time to move the data for the problem from the staging ardalfefPCA chip) to a computation
or operation area (on the PCA chip).

The second major metric of interest is the sustained adblievaroughput?'(k, d;). For each
kernel k and problem sizel;, a measure of thevorkload W (k,d;), is defined in an operation-
dependent and system-independent way. (For floating-poimputation operationd)’ is the
floating-point operation count, while for communicatioreogtions,|V is the number of bytes
transferred.) The sustained achievable throughput is

T(k,d;) = tim ")

n—oo L, (k,d;) ' (1)

where L, (k, d;) is the total time to solve. problems of the given type using the PCA chip. As
above,L, (k, d;) includes the time to move the data from the staging area tgparation area.

There are clear trade-offs between throughput and latdfitye entire PCA chip is being used
to solve kernek for data set;, thenL,, = nl; andT = W/L;. In some cases, however, an
operation will be able to take advantagepgpeliningand perform multiple computations of the
same type at the same time, resulting in higher throughpotidDsly, the extent to which this can
be accomplished will depend on the input bandwidth of the RGiA. To measure the throughput
for our purposes, it is sufficient to measurg for a value ofn that is sufficiently large (at least
n > 10, and preferably, > 100).

For embedded systems we are interested iretheiencyof the operation, that is, the use of
resources relative to the potential of the device. In gértleesefficiencyF (k, d;) is defined as

T(k,d;)
U(k)

E(k,d;) = (2)
whereU (k) is the kernel-dependent upper bound or peak performand¢eaftip. The definition
of U(k) is linked to the definition of the workload. Whéf is in floating-point operationg/ (k)

is the theoretical peak floating-point computation rates@obon the clock rate and the number of
floating-point units). For a communication operation, veheorkload is defined in byte#(k) is
the theoretical peak bandwidth between the communicatiitg.uFor benchmarks other than the
signal processing and communication benchmarks, effigisndifficult to calculate because peak
performance for the corresponding workloads cannot ebsilyefined. For example, the workload



for the database benchmark is in transactions, and theserdmeexist an easily calculable peak
performance for the number of transactions performed. dsdhsituations, efficiency cannot be
calculated.

One of the key metrics for the PCA progransisbility of the performance. Kuck [9, p.168ff]
defines stability as the ratio of the minimum achieved penfoice to the maximum achieved
performance over a set of data set sizes and programs. i§tabiefined in two senses for the
kernel benchmarks, a per-kernel sense and an overall SEms@er-kernel stability is reflected by
a metric calledlata set stabilityS,, defined as the stability for a particular kernel over albdsdts
for that kernel,
ming, 7'(k, d;)
maxg, T'(k,d;)
Stability across all kernels poses a problem, as the wodklaad thus the throughput calcula-

tions are different for different kernels. However, a goodication of the overall stability can be
gleaned from the geometric mean of the kernel stabilities,

Sa(k) = @)

(4)

Finally, for embedded systems, an important metric is théeaed performance per unit power
consumedy the PCA chip
T(k,d;)
Pl d) ®)

where P(k, d;) is the overall power consumed during the operation. Thisnatized quantityC'
gives some indication of the “cost” of executing the benctinaa the given PCA chip. Obviously,
this metric ignores power consumed by other elements ofytsies, but allows comparison with
commercially available processors using the same metadofPnance metrics per unit size and
weight are omitted, as the processing unit is perceived tles® of a driver for either of these
guantities than for power consumed by the system.

Along with the specified measurements, developers are askprbvide their implementa-
tion of the algorithm and a description of chip resource asaghe specific implementation of
the benchmark used to achieve the measured latency an@timatis of great interest for several
reasons. One important reason is to compare the through@uaiency achievable by different ap-
proaches. For this comparison, the availability of mudtiphplementations of the same algorithm
on the same architecture using different approaches wauiddal.

Another important reason to examine the implementationdds with the workloadV (k, d;),
which is defined for a particular implementation of the kériiéis standard workload and imple-
mentation allows comparison of different architecturdsanl additional algorithm with a signifi-
cantly different workload is also implemented, the valuéioimust be adjusted or the workload
is invalid. Therefore, developers are asked to provide amate of the workload for implementa-
tions that are substantially different from those desctiinethis report.

In summary, developers are requested to measure the lateraryghput, and power consumed
for each kernel benchmarkand data set;. The theoretical peak floating-point, operation, and



communication rates should be reported for the éniil other metrics (efficiency, stability over
problem size, stability over all kernels, and performanee ymit power) are derived from chip
parameters and the measured quantities. Other statisihsas variance may be appropriate also
and may be calculated from these results. The desired gjeargre summarized in Table 1.

Table 1.
Benchmark metrics.
Parameter Description Calculation
L;(k,d;) | Total latency forj problems measured
W(k,d;) | Workload given
T(k,d;) | Throughput lim,, . ’”‘LV:((Ijﬁi))
U(k) Performance upper bound for operation type:
floating-point clock rate * floating-point units
communication bandwidth between
communicating units
integer clock rate * integer units
E(k,d;) | Efficiency gy
Sa(k) Stability over data sets 2;1(‘;7%
Sq Mean of data set stabilities f/ 15—, Sa(k)
P(k,d;) | Power consumed measured
C(k,d;) | Performance-power efficiency %

1These rates should be specific to an agreed-upon technaatiscussed at the Morphware forum meeting in July
2002.






3. Signal Processing Benchmarks

Four signal processing kernels are included in the bendhs®dr They present a range of a differ-
ent characteristics in terms of operation counts and memnebeyences.

3.1 Finite Impulse Response Filter Bank

The finite impulse response (FIR) filter is one of the basicafpens in signal processing. This
kernel implements a set dff FIR filters. Each FIR filtern, m € {0,1,..., M — 1}, has a set of
impulse response coefficients, [k], £ € {0... K — 1}. If the length of the input vector i%/, the
output of filterm, v,,, is the convolution ofv,, with the inputz,,:

K—

Ymli] =D wpli — KJwy[k] fori =0,1,.. N — 1.

k=0

[y

The filter is often implemented using fast convolution witle fast Fourier transform (FFT).
The most efficient implementation depends on various fadtwluding the size of the filter re-
sponse vector (for more details, see [12]). We define two sets in Table 2, one for a short
filter and one for a long filter. We define the workload for thestkel as the minimum workload
of the time-domain and frequency-domain implementatiofst the long filter, the frequency-
domain implementation operation cout (10N log, N + 8N)) is given. For the short filter, the
time-domain implementation operation cousid{/V K) is given.

Table 2.
FIR filter bank input parameters.
Parameter Values

Name Description Setl| Set2

M Number of filters 64 20

N Length of input and output vectors4096 | 1024

K Number of filter coefficients 128 12
| W | Workload (Mflop) | 34 1.97]

All operation counts for the FIR filter assume complex inpod autput data. In addition,
the frequency-domain operation count assumes that an F&Tinaarse FFT are implemented
using a radix-2 algorithm. Many other implementations & BFT are possible: see Van Loan
for a discussion of algorithms for performing the FFT [16fedAuse such a wide variety of FFT
implementations exist, and the particular algorithm impdated in a given library may not be
known or may change with data size, it is common to use the+2adiperation count to calculate
throughput even when a different algorithm may be in use.



3.2 QR Factorization

The QR factorization is a linear algebra operation thatof@ct matrix into an orthogonal
component, which is a basis for the row space of the matrig, ariangular component. In
adaptive signal processing, the QR is often used in conpmetith a triangular solver.

The QR factorization of am x n matrix A with m > n is a pair of matrices\ = QR, where
the unitary matrix? is of sizem x m and the upper-triangular matri® is of sizem x n. There
are many ways of calculating the QR factorization, as dsed# Golub and Van Loan, including
the Householder transformation method [7, Algorithm 5,2He Modified Gram-Schmidt algo-
rithm [7, Algorithm 5.2.5], and the Fast Givens method [7g&iithm 5.2.4]. Of these, we chose
to specify the Fast Givens method for this kernel benchmiis was primarily done because the
Fast Givens method consists of a number of fine grain calon&t This structure is very suitable
for implementation as astream algorithnon PCAs such as the MIT RAW machine. For more de-
tails, see Hoffmann [8]. The data matrix sizes that we defin¢his kernel, and the corresponding
workloads for calculating the QR factorization, are giverable 3.

Table 3.
QR input parameters.
Parameter Values
Name | Description Setl| Set2| Set3
m Matrix rows 500 180| 150
n Matrix columns 100 60| 150

| W | Workload (Mflop)| 397 ] 30.5| 45.0]

3.3 Singular Value Decomposition

The singular value decomposition (SVD) is of increasingam@nce in signal processing. It
is an advanced linear algebra operation that produces s foashe row and column space of the
matrix and an indication of the rank of the matrix. In adagpthignal processing, the matrix rank
and the basis are useful for reducing the effects of intenies.

Table 4.
SVD input parameters.
Parameter Values
Name | Description Setl| Set2| Set3
m Matrix rows 500| 180| 150
n Matrix columns 100 60| 150
W1 Fixed workload (Mflop) 101 15 72
Wpo Workload per iteration (Mflop) 0.24| 0.88| 0.54




Given anm x n complex matrixA, the singular value decomposition dfis
A=UxvV, (6)

whereU is a unitary matrix of sizen x m, 3 is anm x n matrix in which the uppen x n portion
is a diagonal matrix with all entries real and sorted in dedogg order, and” is ann x n unitary
matrix. If m > n, then define

U= [U U],
— R
whereU, is sizem x n, Uy is sizem x (m — n), andY, is of sizen x n. ThenA = U, 2,V
is called thereduced SVDof the matrix A. In this context the SVD defined in equation (6) is
sometimes referred to as thdl SVDfor contrast. Notice thal/, is not unitary, but it does have

orthogonal columns. Whem < n, the reduced SVD can be similarly defined by partitioning
instead ofU.

For signal processing applications, we are typically motrested in the reduced decompo-
sition, in the matrixU, and in the singular values (the values on the diagonal)ofWe provide
operation counts for the reduced decomposition, assurhaugall three matrices are produced.
The data matrix sizes of interest and associated operationi€ are given in Table 4.

There are three major steps to the full SVD algorithm, whiahdescribed in more detail in
Golub and Van Loan [7]. First, if the: x n matrix A has many more rows than columns, a QR
factorization is performed. This step is donerif> 5n/3 [7, p. 252], which is typically the case
in signal processing.

Define

Q:[Qa Qb:|> (7)
B

whereQ), is sizem xn, Q) is sizem x (m—n), andR,, is sizen x n. The decompositiod = Q, R,
is referred to as theeduced QRlecomposition ofi. Matrix ), is not unitary, but it has orthogonal
columns. The reduced QR factorization can be obtained bgntigified Gram-Schmidt algorithm
described in Golub and Van Loan [7, Algorithm 5.2.5]. If alf8VD is being performed, the
full QR is computed: if a reduced SVD is being performed, auoedi QR is computed. In the
remainder of this exposition, we describe the reduced S\gorahm for a matrix withm > n.
We assume that in the first step, we perform a reduced QR dexstom via the MGS algorithm
to produce

A =UR,

whereR is ann x n upper-triangular matrix and; is anm x n matrix with orthogonal columns.
(Notice that the QR factorization described in Section 8 2 full QR; hence, a different algorithm
is used here.)

In the next stepR is reduced tdi-diagonalform, to consist of the main diagonal and a single
diagonal of entries above that, with the remainder of theesnin the matrix being zero [7, p. 253].



This is accomplished with Householder transforms, praayici
R = U,BVH,

wherelU, andV; are unitary and of size x n, and then x n matrix B is bi-diagonal. The matrix
B produced at this step is no longer complex, but real, thougtnicesU; andV; are complex.

The final step is an iterative reduction Bfto diagonal form and the ordering of the singular
values. This is accomplished with Givens rotations [7, pi]4A\t the end of this step we have
produced matrices x n orthogonal matrice&; andV; such that

B = UsXVy,
so that the singular value decomposition of the originalrmat can be expressed as
A = U UUsS(VsVp)
= UxvH,

with U = U;U,Us andV = V315,

As the exact number of iterations required to produce the $/ased on the data, an effi-
ciency measurement must take into account the actual nuofilieration steps performed. We
account for this by defining the worklodt as a linear function of two numbe¥g; andV;, given
in Table 4,

W =W, +d+xW2, (9)

whered is the number of iteration steps performed in the reductfaB to diagonal formJV; is an
estimate of the number of floating-point operations peatten step, andl; is an estimate of the
number of floating-point operations in the remainder of tg@@thm. The estimate®’; andV;
for complex matrices are given separately for the full amthoed SVD algorithms in Table 4. The
numberd for a given data set must be “discovered” in the course oftkewion of the benchmark.

There are many implementation details associated witlesicty high performance in the sin-
gular value decomposition. Examples of such details irelhé use of block Householder trans-
forms [7, p. 213] and the storage of the Householder transf@nd Givens rotations that produce
U andV rather than the matrices themselves [3].

3.4 Constant False Alarm Rate Detection

The constant false-alarm rate (CFAR) detection benchnsaadniexample of data-dependent
processing designed to find targets in an environment ofvguyackground noise. The benchmark
subjects a subset of a radar data cube to this algorithm.

Assume a data cube consisting of real (as opposed to comgdex)whose dimensions are
beams, range, and dopplers. During CFAR detection, a lazsérestimate is computed from the
2N.sqr range gates near the célli, j, k) under test. A number of guard gat€smmediately next
to the cell under test will not be included in the local noist@reate (this number does not affect
the throughput). For each céll(z, j, k), the value of the noise estimdi#:, j, k) is calculated as

G+cha'r
1
T(i, 5, k) = NEINIIE 7 — 1L k)2 10
(2,7, k) Noper l—zG—:i-l 1O, + L k)P +|C3, 5 — 1K) (10)

10



The range cells involved in calculating the noise estimateaf particular vector are shown in
Figure 1. For each cell'(s, 7, k), the quantityC (4, j, k)|?/T (i, j, k) is calculated: this represents
the normalized power in the cell under test. If this normedipower exceeds a thresholdthe
cell is considered to contain a target.

Cell Under Test
C@ij,k)

G|G
N, cfar N cfar

C(i,:,k) ELLTI [ L1

TG) L

Figure 1. Sliding window in CFAR detection. The example shibv number of guard
cellsG = 1 and the number of cells used in computing the estimatg, = 3.

An efficient implementation of the CFAR algorithm makes ugthe redundancy in the com-
putation of7" according to the formula given in (10). Note that the relastoip betweefT'(i, j, k)
andT(i,j+ 1,k) is

T(i,j+1,k)=T(,j.k) + (IC(3,j + 1+ G + Nepar, k)|

2char
— |C(i,j = G = Negar, k)|

Using this relationship, the value @f for a particular set ofV,, range gates can be calculated in
O(N,,) time, that is, independent of the valuestofind N4, Note that some variations of this
formula and equation (10) occur at the boundary areas. leomtbst part, these are handled in a
straightforward fashion: if a computed index would cauderence to a cell outside the cube’s
boundaries, we ignore that term in the computation.

The parameter sets for the CFAR benchmark are shown in Table 5

11



Table 5.

Parameter sets for the CFAR Kernel Benchmark.

Name | Description SetO| Set1| Set 2| Set 3| Units
Nbm | Number of beams 16 48 48 16 | beams
Nrg Number of range gates 64 | 3500| 1909 | 9900 | range gates
Ndop | Number of doppler bins 24 | 128 | 64 16 | doppler bins
Ntgts | Number of targets that will b¢ 30 30 30 30 | targets
pseudo-randomly distributed
in Radar data cube
Ncfar | Number of CFAR range gates 5 10 10 20 | range gates
G CFAR guard cells 4 8 8 16 | range gates
mu Detection sensitivity factor 100 | 100 | 100 | 100
| W | Workload [ 0.17] 150 | 41 | 18 | Mflop

12




4. Communication Benchmark

Many signal and image processing applications operate dti-dimnensional data in multiple
stages, with operations focusing on a different dimensmeach subsequent stage. If the host
platform is a parallel processor, the data are usuallyibiged across the nodes to exploit data
parallelism, so that each node can operate in parallel gmoitison of the data as the algorithm
transitions from one stage to the next. For efficiency ressibims desirable to perform eorner-
turn of the data. A corner turn operation is defined as a copy of bpecowith a change in the
storage order of the underlying data. This may or may notyrtrainsposition of the computation
object, depending on the implementation. In this sectioa,d&scribe this operation in more
detail and describe in general terms an abstracted, higth-dg@plication that requires a corner-
turn operation (already presented in an earlier docum@jt §bme of which is repeated here for
completeness).

An application that requires a corner turn works first onrthes of an input matrix, and then
on thecolumnsof the intermediate result matrix. Mathematically, onela most basic examples
of such an operation is a multiplication of three matrices,

7 =BHXA, (11)

where B and A are application-dependent matrices,is the matrix of input data, and is the
matrix of output data. An example situation where this migddur would be a filtering operation
followed by a beamforming operatidn.Suppose, as in the previous description [10], that we
perform the operations of Equation (11) into two stages,fitisé producing” = X A and the
second producing = BY. Then the first stage is an operation in which an entire roi o§
desired, and the second is an operation in which an entiterocobfY” is desired. Thus, the two
stages suggest different optimal data layouts.

The idea behind the corner-turn operation is to presen ldatlity in the dimension being
operated on. Whether or not a mathematical transpose isrped is implementation-dependent.
In multi-dimensional arrays in the C programming languale,last array index is continuous in
memory. In order to perform a corner turn of a C language agdsanspose is required; that is,
the order of some of the dimensions must be reversed (seesRju

Now consider an implementation with the property that gerarder is independent of the
order of the indexes. In such an implementation, it would @ssble to do a corner turn without
requiring a transpose of the computation object. The vesignal, and image processing library
(VSIPL, [13]) is an example of a library where this is possilthe stride parameters of a VSIPL
view allow the VSIPL copy operation to re-arrange the undeg data without changing the math-
ematical properties (see Figure?3)Vhen using objects with this property, storage order may be
considered to be a mapping issue, whereas when using sta@dard C++ arrays, storage order
is explicitly embedded in the application program.

The discussion above does not consider the distributiorataf dver processors. Distribution
effectively adds a level of memory hierarchy to the perfano®gof a corner turn: data must be

1A filtering operation can be represented as a matrix-matrikiply, but would usually not be implemented in
such a fashion. Thus, the use of matrix multiplication heran additional level of abstraction about the application.

2]t would also be possible to implement standard C/C++ datecstres with this property: use of VSIPL here is
purely a matter of convenience.

13



The C code to perform a corner turn of two-dimensional arfaynto two-
dimensional arra is

/I Notice dimensions of B are the reverse of those of A
int A[NX][NY], BINY][NX];
for (i = 0; i < NX; i++)
for j = 0; j < NY; j++)
BOIIl = ALILI;
If NXandNYwere defined at compile time to be 4 and 3, respectively, and

)

1 2
4 5
7 8

O O W O
—_
)

11
then the memory area underlyigs
A={01234567 8910 11}

Mathematically

and after execution of the above code the memory area umnugByis

B={036914710258 11}

Figure 2. C corner turn example. In matri¥, the data are stored in corner-turned
fashion compared to matrid, and B is the transpose ofl.

14



The C code to perform a corner turn from VSIPL matrix viéwnto VSIPL matrix
view B is

/I Notice dimensions of B are the same as those of A:
/I storage order is different
vsip_mview_i *A = vsip_mcreate_i(NX,
NY,
VSIP_ROW,
VSIP_MEM_NONE);
vsip_mview_i *B = vsip_mcreate_i(NX,
NY,
VSIP_COL,
VSIP_MEM_NONE);

vsip_mcopy_i_i(A, B);
If NXandNYwere defined at compile time to be 4 and 3, respectively, and

1
4
7

N
I
© O w o
—_
o
—_
—ooo ot

then the block underlying\ is
A={012345678910 11 }.

After execution of the above codé; is mathematically the same as and the
block area underlyin® is

B={03691471025811}

Figure 3. VSIPL corner turn example. Matrix viewdlsand B are mathematically the
same even though the underlying datadrare stored in corner-turn fashion compared to
matrix A.

15



copied to a new processor as well as re-arranged on the neggs@. Frequently, an all-to-all
communication operation, in which every processor comgatas with every other processor, is
required as part of a distributed corner turn.

Parameters for two corner turn sizes are given in Table 6 sdkerner turn sizes are based
on current applications: they assume 32-bit data, eitltegars or single-precision floating-point
data. The workload is twice the overall matrix size sinceddi@ is being copied and must therefore

pass into and out of the processor.

Table 6.

Corner turn parameters.
Parameter Values
Name Description Setl| Set2
M Matrix rows 50| 750
N Matrix columns | 5000 | 5000
k Element size (bytes 4 4

Matrix size (Mbyte) 1 15
w Workload (Mbyte) 2 30

For this particular kernel benchmark, the idea of timingtighput and latency based on a
single processor is acceptable, but it would be preferablget a sense of the throughput and
latency possible for a multi-processor corner turn of thia.dim the most frequent occurrences of a
distributed corner turn in signal processing, the sourcedastination processor groups are either
identical or are completely disjoint. The derived statstof most interest for multi-processor
transfers are the stability of the throughput over the nuroberocessors used, and the efficiency

of the transfer versus the theoretical peak bandwidth.
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5. Information and Knowledge Processing Benchmarks

5.1 Pattern Matching

The pattern matching kernel is extracted from the featideehtracking portion of the inte-
grated radar-tracker application [2]. Fundamentallyg #tep entails overlaying two lengf¥i-vec-
torsa andt and computing a metric that quantifies the degree to whicketh®o vectors match.
In general, the vectaris chosen from a set of reference vectors referred to agthplate library
The metric used for matching is the weighted MSE (mean SRIaoe) e,

Z (wy, * (ar, — te)?)

=22 , (12)

N
k=

WE

Wy
k=1

wherewy, £ = 1,2,..., N is the vector of weights. The optimal weights for the feataiced
tracker have been computed empirically. In the kernel bevack, we provide a generic weighting
vector.

The calculation done in equation (12) is performed on datalths been converted to decibels
(the “dB domain™). This is done because the raw power outjoumfa signal processing system can
vary by many orders of magnitude. However, conversion diepas between the power domain
and the dB domain is performed during the course of the beadtinthis requires the use of
a number of logarithm and exponentiation functions. Thera@ipen count for these functions is
implementation-dependent, and so the workload we give livae tcomponents: a count of the
number of calls to the exponent function, a count of the nurobealls to the logarithm function,
and a count of the operations in the rest of the benchmark.

Before the two profiles can be overlaid, they may need to bteghin range to the left or right,
and the magnitude of the profiles may need to be scaled to mBteloptimal shift and gain values
can be found through brute force by computing the MSE for eachbination of shift and gain
values, then taking the minimum MSE. However, by noting thatMSE is a parabolic function
of the shift and gain, we can find the optimum shift and gairugslat the global minimum by
first finding the optimal shift, then finding the optimal gamwe. A summary of this procedure is
shown in Figure 4.

The parameters of interest for the pattern matching bendhara the length of the pattern
vectors, the size of the template pattern library, and theber of shift and scale operations per-
formed. These parameters are given for two data set sizexbie 7.

5.2 Database Operations

We consider measuring the performance of database opesatiche context of a tracking
application that stores track information in a databaseacks are indexed using their location
(spatial coordinates). The tracker operates in discrate tntervals callectycles During each
cycle, the tracker receives a set of target reports from arrddasks the database to search for all
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for each of K patterns
for each of S, shift values
calculate MSE value with shifted pattern
Choose shift value with smallest MSE
for each of S, magnitude values
calculate MSE value with scaled pattern
Choose gain value with the smallest MSE

Figure 4. Outline of the pattern match kernel.

Table 7.
Pattern matching parameters.

Parameter Values

Name Description Setl Set 2
N Pattern length 64 128
K Number of patterns 72 256
S, Number of shifts 21 43
Sm Number of magnitude scalings 21 21
Wi Workload:log,, function calls 4.61 x 10° | 32.8 x 10°
W, Workload: 10* function calls 4.61 x 10° | 32.8 x 10°
W Workload: Other floating-point ops (flop$)1.20 x 10° | 13.6 x 10°

tracks that could be associated with each target reporedbas location. The tracker may direct
the database to insert new tracks based on target repottaréhaot associated with any tracks,
and to delete specific tracks.

The database interface receives a stream of instructians fhe tracker consisting of the
search, insert, and delete operations to be performedutpgibis a set of record identifiers which
are presumably used to look up the actual records in memosythd actual database does not
exist, the numbers are essentially random 32-bit integewus.goal is to measure the performance
of the search, insert, and delete operatiamshout ever altering the contents of any particular
record. The major motivation for this is to avoid generating the éaggnount of data necessary for
the database. A typical record from a feature-aided trapkiagiion is on the order of 650 bytes
per record (see document PCA-IRT-4, [2]), and test casestefdst may require up to 100,000
such records. Thus, in the benchmark, we do not actuallyrgemnand maintain the contents of the
database itself, only the indexing structures. Therefibre structures used only store the values
we needx andy coordinates, and a record identifier, which is an 32-bitgatendex of or pointer

to a data record.
For an application of this type, the three database op@satieeded are:

search Look up and retrieve all items whose characteristics fab & given range. In this case,
a search is done for all targets within a specified range oftecptar (z, y) coordinate pair,
wherer andy are floating-point numbers. Given a set of sector boynds,., ©arae, Yarin, Yntaz b
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Table 8.

Tracking parameters.

Parameter Values

Description Setl Set 2
Cycles to run 100 100
Total existing targetsit + U) 500 | 102,400
Number of placed target$) 450 | 92,160
X total area M (km) 5 32
Y total area, N (km) 5 32
X search area)z (km) 2 2
Y search area)y (km) 2 2
Overall target density] (targets/km) 20 100
Search operations per cycles 400 100
Matches found per searéh 80 400
Insert operations per cycle; 20 300
Delete operations per cyclel 20 300
Workload per cycle (transactions) 440 700

this search can be expressed in a fashion approximatingrtietiged query language (SQL)
as

select * from TrackDatabase
where @ > zp7i AND 2 < 270, AND v > yarin AND ¥ < Yasaz)-

insert Add a new item to the database. This can be expressed in ari€¥ashion as
insert into TrackDatabase valué§(z,, v.).

delete Remove an item from the database, expressed in an SQL-8kefaas
delete from TrackDatabase where=£ =, AND y = ).

Database workloads are provided based on two scenariosemétic tracking scenario similar
to the parameters proposed for the integrated radar-trdmechmark, and a multi-hypothesis
tracking scenario in which the database is allowed to beaooneh larger. For each scenario, the
frequency of each operation (search, insert, delete) isifgee The parameters that define these
two scenarios are given in Table 8.

5.2.1 TestData

Test data for the database is drawn from a tracker scenaitostétionary targets which will
appear and disappear from the database. The targets forehar® will be distributed roughly
evenly on a grid of sizé/ x N km?. These targets will be divided into a set of placed targets,
and a set of unplaced targets, Targets in seP will have corresponding records in the database
(they have previously “appeared”) and targets in_setill not (they have “disappeared”). The size
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of setP is defined to be sufficient that searches in an area of&Sizex Ay will expect to findk
targets on average; that is, the target density is k/(AzAy) targets/km. The size of sel is
chosen to allow sufficient insertions and deletions withitoithl targets remaining to allow some
measure of differences between searches. We have chosekéd’®0% of the total targets and
U the remaining 10%.

The database generator creates a sequence of commands fiatéiibase. To do this, the
generator must keep track of the sétsandU. For each cycle, the generator must chogse
uniformly random(x, y) pairs,nd targets fromP, andni targets fromUU. Thens pairs will be
passed to the database, which will search the records amuh thibse withinAz and Ay of the
random pairs. Thed targets fromP will be passed to the database to have their records deleted
(they will “disappear”). Theni targets fromU will be passed to the database and corresponding
records will be inserted into the database (thus will “apf)ed@he time reported for each cycle is
the total time to execute the search, insert, and delete @nmdsa The command generation occurs
before any of the actual benchmarking and therefore is nmadi

5.2.2 Workload

For a workload value for each scenario, we count each trinegsearch, insert, delete) as an
operation to be performed. This workload value, given ind&p can be used to compute through-
put for the database kernel (in transactions per second)@ngare among different architectures.
However, an efficiency for the database kernel benchmarbtidefined. Peak performance for the
database kernel benchmark would be calculated from thetatbich the PCA chip can perform
each database operation, which in turn is related to the mehierarchy of the entire system.

5.3 Graph Optimization via Genetic Algorithm

Genetic algorithms [4, 6, 14] have become a viable solutiosttategically perform a global
search by means of many local searches. The basis of thagalugtrithm methods is derived
from the mechanisms of evolution and natural genetics. Bmetc algorithm that is being used
as one of these kernel benchmarks is a fairly simple versitamy modifications are possible that
can enhance the performance for a given application, ane sonall enhancements have been
made to enhance the performance of this benchmark.

A genetic algorithm works by building a population of chrasnmes which is a set of possible
solutions to the optimization problem. Within a generatadra population, the chromosomes
are randomly altered in hopes of creating new chromosoneshtive better evaluation scores.
The next generation population of chromosomes is randoelgcted from the current generation
with selection probability based on the evaluation scoreaah chromosome. The simple genetic
algorithm follows the structure depicted in Figure 5. Eatthese operations will be described in
the following subsections.

5.3.1 Initialization

Initialization involves setting the parameters for theoaithm, creating the scores for the sim-
ulation, and creating the first generation of chromosonmethi$ benchmark, seven parameters are
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Simple Genetic Algorithm ()

{

Initialization;

Evaluation;

while termination criterion has not been reached
{
Selection _and _Reproduction;
Crossover;
Mutation;
Evaluation;
}

}

Figure 5. Structure of a simple genetic algorithm.

set:
¢ the genes valug3enes) is the number of variable slots on a chromosome;
e the codes valueJodes) is the number of possible values for each gene;
e the population sizeRopSize ) is the number of chromosomes in each generation;

e crossover probabilityGrossoverProb ) is the probability that a pair of chromosomes will
be crossed;

e mutation probability futationProb ) is the probability that a gene on a chromosome will
be mutated randomly;

e the maximum number of generatiomMdgdxGenerations ) is a termination criterion which
sets the maximum number of chromosome populations thabe/igjenerated before the top
scoring chromosome will be returned as the search answer; an

e the generations with no change in highest-scoring (eliedmosomeGensNoChange) is
the second termination criterion which is the number of gatens that may pass with no
change in the elite chromosome before that elite chromosuthiee returned as the search
answer.

The scores matrix for the simulation, which is generatedh@GenAlgGen script, is the set
of scores for which the best solution is to be found. The gitechoptimization is to find the code
for each gene in the solution chromosome that maximizesvbage score for the chromosome.
Finally, the first generation of chromosomes are generatediamly.

5.3.2 Evaluation

Each of the chromosomes in a generation must be evaluatéidefeelection process. This is
accomplished by looking up the score of each gene in the absome, adding the scores up, and
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averaging the score for the chromosome. As part of the etvatuprocess, the elite chromosome
of the generation is determined.

5.3.3 Selection and Reproduction

Chromosomes for the next generation are selected usingulette wheel selection scheme [14]
to implement proportionate random selection. Each chremeshas a probability of being cho-
sen equal to its score divided by the sum of the scores of ali@fyeneration’s chromosomes.
In order to avoid losing ground in finding the highest-scgrimromosome, elitism [14] has been
implemented in this benchmark. Elitism reserves two slothe next generation for the highest
scoring chromosome of the current generation, withouinaiig that chromosome to be crossed
over in the next generation. In one of those slots, the eliteraosome will also not be subject to
mutation in the next generation.

5.3.4 Crossover

In the crossover phase, all of the chromosomes (exceptdalite chromosome) are paired up,
and with a probabilityCrossoverProb , they are crossed over. The crossover is accomplished
by randomly choosing a site along the length of the chromes@amd exchanging the genes of the
two chromosomes for each gene past this crossover site.

5.3.5 Mutation

After the crossover, for each of the genes of the chromosdexept for the elite chromo-
some), the gene will be mutated to any one of the codes witlolagbility of MutationProb
With the crossover and mutations completed, the chromos@reonce again evaluated for an-
other round of selection and reproduction.

5.3.6 Termination

The loop of chromosome generations is terminated whenigataditions are met. When the
termination criteria are met, the elite chromosome is retdras the best solution found so far. For
this benchmark, there are two criteria: if the number of gatien has reached a maximum number,
MaxGenerations , or if the elite solution has not changed for a certain nunabgenerations,
GensNoChange.

5.3.7 Implementation Notes

Genetic algorithms are being used around the world for amneowas variety of applications.
However, this benchmark of genetic algorithms has beergdediwith two specific purposes in
mind: matching computational tasks with processing umita igeneral independent task envi-
ronment and in signal processing pipeline tasks. For thergéimdependent task environment,
the genes of the chromosomes are the computational taskb Wéwe arrived in the order of their
gene’s number, and the codes are the possible processisgipon which the computational tasks
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Table 9.

Parameter sets for the Genetic Algorithm Kernel Benchmark.

Name Description Setl| Set2 | Set3| Set4 | Units

Codes Number of code types for a 4 8 100 1000 | codes
gene

Genes Number of genes on a chro- 8 96 5 10 genes
mosome

PopSize Number of chromosomes inja 50 200 100 400 | chromosomes
generation

D

CrossoverProb | Probability of crossing over a 0.01 | 0.002 | 0.02 0.03
pair of chromosomes

MutationProb Probability of mutating g 0.60 0.60 0.60 0.30
chromosome

MaxGenerations Maximum number of generg- 500 2000 500 5000 | generations
tions

GensNoChange Maximum number of genera- 50 150 50 500 | generations

tion with no change in elite

chromosome

Ops per generation 1750 | 77400 | 2300 | 17200 | operations
Random numbers per genena-898 | 38798 | 1198 | 8798 | numbers
tion

Ops for random number gen| 9878 | 426778| 13178| 96778 | operations
Total Ops 11628| 504178| 15478 | 113978| operations

can be executed. Similarly, for the signal processing pipghsks, the genes of the chromosomes
are the pipelined tasks that constitute a signal processiag, and the codes are the computa-
tional unit mappings upon which the pipeline stage tasksbearun. The scores for each code in
a given gene position represents a goodness factor (for wiatngnal efficiency, execution time,
or some other measure) ranging from zero to one (one beirtyy BHse goal then is to find the
mapping of tasks onto processors that yields the best Sodies case a perfect score of one.

The random number generator for the genetic algorithm igmasd to be the one defined in
VSIPL [13, p.245]. This generator is used because the imgheation is available and the work-
load is easily calculable (based on the discussion in thedatd, we assume 11 ops per random
number generated). Use of this random number generatot reqoired. However, if a different
random number generator is used, the workload given in Tableuld be altered accordingly.

For this kernel benchmark, four parameter sets have betrded. These sets are shown in
Table 9. Sets 1 and 2 are sample parameters for the geneepleindent task scenario while sets
3 and 4 are sample parameters for the digital signal prauggspeline task scenario. For this
kernel, we define the workload in operations (rather thartifiggpoint operations) per generation.
The workload is related to the number of genes and the populsize per generation.
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Parts of the genetic algorithm code are embarrassingly parallel, including the crossover and
mutation sections. Most of the evaluation section is also embarrassingly parallel, except for the
elite chromosome determination portion. However, the selection and reproduction section can-
not be conducted in a parallel manner since a view of the entire population is necessary. More
discussion on parallelizing and distributing genetic algorithms can be found in [5].
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6. Further Kernel Benchmarks

These are benchmarks that might be considered for a secbotksenel benchmarks, but are not
included with this first set.

Image encoding. Compress a synthetic aperture radar (SAR) image for staagansmission.
The dynamic range of SAR imagery is such that it is not welrespnted using conventional
image processing standards such as that defined by the jmtdgraphic experts group (JPEG)
for image compression. The JPEG 2000 standard addresspsotiilems that JPEG presents for
SAR images. For more details on JPEG 2000, see Taubman aceéIN®f15]. Baxter and Seibert
have performed an analysis of the desirable features of@derg algorithm for SAR images [1].
The major features of the encoding algorithm as they desdridre:

e wavelet packet transforms with a Gabor-like tree strucamd@ smooth biorthogonal wavelet
filters,

e trellis-coded quantization, and

e a bit-allocation procedure based on minimizing distortjparceptual distortion, based on
the human visual system) and rate.

Some of these features (particularly trellis-coded quatitin) are in “part 2” of the JPEG 2000
standard, and are therefore not yet present in most pulaeyable implementations of the stan-
dard.

Secure network protocol. Transmit a message of a given size with authentication acygtion,
based on IPSec or a similar protocol.

Synchronization. Mark a value on a different processor or in a remote memaornexalusive
access (lock/unlock operations).

Image processing: morphological operations. Take an image and perform an “opening” or
“closing” operation on it. These are integer convolutioeKgtions.

Image processing: edge detectionPerform edge detection in both theandy dimensions of a
two-dimensional image.

Giga-updates per secondRead, then write a sequence of random memory locations irga la
memory space. A description of the benchmark is at
<http://iram.cs.berkeley.edu/"brg/dis/gups/>

Incomplete Gamma function. Calculate values of the mcomplete gamma function.
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APPENDIX A
Revisions

This is the first public revision of the document, dated 13eJ2005. It introduces the following
changes from the original public version:

references to kernel benchmark code and its availabilitysiaere deleted,;
the database kernel benchmark description was revisediaveeimplementation details;

the CFAR workload and description were revised to refteat (as opposed to complex)
data;

an outline of the calculations performed in the pattern m&&rnel was added, and some
errors in the operation count were corrected;

the QR factorization section was added;
the SVD section was revised to reflect a reduced SVD;

the corner turn workload was revised to clarify the data aizé why the workload is twice
the matrix data size;

the FIR workload was slightly changed and some notes on theatpn counts were added;
and

the “Revisions” chapter that you are reading now was rerediso that the most recent
changes were at the start.

The first public version of the document was issued 23 Jar2@0¥. It introduced the follow-
ing changes from the program-private version:

an error in the CFAR workload table (Table 5) was corrected,;
a description of the reduced SVD algorithm, including wodd estimates, was added,;

the description of the database kernel benchmark was lggavised and the workload was
changed,;

a description of the random number generator used for thetigeadgorithm was added and
its workload was updated in a corresponding way;

the pattern match benchmark description and workload wedated to reflect a more effi-
cient implementation and to introduce a second data set; and

the discussion of metrics (in particular, of efficiency amdgvam stability) was updated to
reflect that efficiency is not always easily calculable fa thfferent kernels.

The original version of this document was distributed to P@Agram participants (only) at
sponsor direction, July 31, 2002.
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