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In the past five years, the machine 
learning and artificial intelligence commu-
nities have done significant work in using 
algorithms to identify patterns within data. 

These patterns have then been applied to various problems, 
such as predicting individuals’ future responses to actions 
and performing pattern-of-life analysis on persons of 
interest. Some of these algorithms have widespread 
application to Department of Defense (DoD) and intel-
ligence community (IC) missions. One machine learning 
and artificial intelligence technique that has shown great 
promise to DoD and IC missions is the recommender 
system, summarized by Resnick and Varian [1], and its 
extensions described by Adomavicius and Tuzhilin [2]. 
A recommender system is one that uses active informa-
tion-filtering techniques to exploit past user behavior to 
suggest information tailored to an end user’s goals. In a 
recent working paper [3], the Office of the Director of 
National Intelligence’s Technical Experts Group’s Return 
on Investments team has identified recommender systems 
as a key “developing application” in their process map of 
“The Intelligence Cycle and Human Language Technology.” 
The most common domain in which recommender 
systems have been used historically is commerce: users 
are customers and the objects recommended are products. 
Other feasible uses for recommender systems include rec-
ommending actions, e.g., suggesting a direct traffic route, 
and following interactions between users, e.g., proposing 
possible colleagues as the popular service LinkedIn does. 

Recommender systems, which selectively 
filter information for users, can hasten 
analysts’ responses to complex events such as 
cyber attacks. Lincoln Laboratory’s research 
on recommender systems may bring the 
capabilities of these systems to analysts in both 
the Department of Defense and intelligence 
community.

»
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In the cyber arena, recommender systems can be used 
for generating prioritized lists for defense actions [4], 
for detecting insider threats [5], for monitoring network 
security [6], and for expediting other analyses [7]. 

Elements of Recommender Systems
Recommender systems rely on four important elements: 
• Information filtering. Recommender systems do 

not singlehandedly convert data to knowledge; they 
are just one component of the information pipeline. 
Sensors collect data, data processing turns those bytes 
of data into useful pieces of information, and then 
recommender systems help to filter that information 
into the most relevant pieces from which a human can 
extract knowledge and take action. Note that filtering 
referred to here does not imply deletion of any infor-
mation but rather prioritization.

• User behavior. The value of having computers learn 
from user behavior rather than apply prescribed rules 
or heuristics is that the users are never required to 
explicitly state what the rules are. The rules by which 
users make decisions are inferred from the way the 
users act. This utilization of user behavior rather than 
heuristics enables recommender systems to reflect 
nuances in individual human preferences that would 
otherwise be difficult to quantify. It also provides us 
with a simple test for classification of decision support 
systems: if a system makes recommendations that do 
not include considerations of past user behavior, then 
it is not a recommender system.

• Suggest information. Recommender systems operate 
under a “push” rather than a “pull” paradigm. An infor-
mation-retrieval system, such as a search engine, is 
guided by a query submitted by the user—a pull for 
information. Recommender systems, on the other hand, 
utilize user behavior and context history to ascertain the 
needs of users and are therefore equipped to predict or 
prescribe, i.e., push, new information to the user. 

• End user goals. The main distinction between recom-
mender systems and the broader class of filtering and 
sorting techniques is the applicability of the output of 
a recommender system to the needs of a particular user 
or group of similar users.

Recommender systems consist of four primary 
components: users, objects, ratings, and a model. Users 
include anyone whose behavior is being recorded in some 

way to train the recommender system or anyone who is 
receiving recommendations. Objects refer to products, 
documents, courses of action, or other recommendations. 
Ratings are some quantifiable measure of the utility of 
a given user-object pair and may come from explicit 
feedback (e.g., thumbs-up votes, assessments on a five-
star rating scale, or text reviews) or implicit feedback (e.g., 
number of clicked links, number of downloaded files, 
or time spent on a page). The model is used to process 
known ratings and make recommendations based on the 
predicted ratings for unrated user-object pairs. The func-
tional architecture depicted in Figure 1 shows these four 
elements, with additional detail shown for the four stages 
in the workflow of a generic model.

Recommender systems are able to make relevant sug-
gestions in a given situation by observing how users act (i.e., 
recording ratings assigned to particular objects in a specific 
context). How users act is, in turn, affected by the goals 
or policy that the user follows, the user’s intuition about 
what objects will satisfy those goals, and domain-specific 
knowledge that the user may have. This information is 
generally not formalized or conveyed to the recommender 
system. However, as the recommender learns from the user 
behavior that is affected by these influences, its recommen-
dations will begin to reflect these influences.

User behavior is recorded in the data collection stage 
of a recommender system. In addition to ratings, infor-
mation about traits of users, such as range of ratings 
or scores, objects, or context may be recorded. Context 
denotes situation parameters that can be known by the 
system and may have an impact on the selection and 
ranking of recommendation results. 

Once these data have been collected, they are used 
to update the model of user preferences. First, significant 
features such as important aspects of a dataset (e.g., in 
a cyber network log, one feature may be time of logged 
event) must be extracted. Explicit user ratings may be 
entered directly, whereas implicit ratings may require 
some processing or inference to relate user behavior to a 
quantifiable rating to be stored. To reduce noise and lower 
computational complexity, some form of dimensionality 
reduction (i.e., a mechanism to reduce the number of vari-
ables being considered to the most critical variables) is 
often performed at this stage. 

Once the model is updated, the next task is to estimate 
the ratings that the current user would give to the objects 
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with which he or she has not yet interacted. Collaborative 
filtering and content-based, knowledge-based, or hybrid 
techniques (described in the next section) are used to 
generate these rating estimates. At this stage, additional 
recommendation rules, such as favoring recommenda-
tions that support specific objectives, may be applied. For 
example, a commercial recommender may be designed to 
favor products with large profit margins.

Then, using the estimation just performed, the rec-
ommender returns results to the user in a desired form 
(e.g., a top result, top n list of results, or all results above 
a given threshold). The subsequent actions of the user are 
recorded, and the cycle repeats.

How a Recommender System Works
To illustrate how a recommender system works, let us 
look at a very simple recommender system that recom-
mends online articles or documents for an analyst to 

examine. In this example (modified from Jannach et al. 
[8]), we are applying a collaborative-filtering recom-
mender system in which analysts are searching through a 
corpus of online documents for information about poten-
tial exploits or cyber attacks. In this scenario, because 
the number of documents is greater than the number of 
analysts, the analysts rely on a recommender system to 
prioritize important documents. For ease of illustration, 
we will consider only five analysts and six online docu-
ments although a real-world system could easily consist 
of many millions of analysts and documents. Assume that 
whenever an analyst reads a document, that document 
is given a rating on a scale of 1 to 5 (1 = not useful at all, 
5 = very useful). This rating may come from both explicit 
analyst input and implicit input. Shown in Table 1 are the 
analyst ratings for the documents.

In this illustration, we want to predict what the rating 
of Analyst 1 would be for Doc 5 and Doc 6. The document 
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FIGURE 1. A recommender system consists of users, objects, and ratings that interact with each other through a model 
developed by the recommender system. A recommender system takes information collected from domain knowledge, human 
intuition and goals, or policy and combines that information with user ratings. The recommender model is derived from data 
collections, model updates, model exploitation, and recommendations from other users or previous actions.



 VOLUME 22, NUMBER 1, 2016  n  LINCOLN LABORATORY JOURNAL 77

VIJAY N. GADEPALLY, BRADEN J. HANCOCK, KARA B. GREENFIELD, 

JOSEPH P. CAMPBELL, WILLIAM M. CAMPBELL, AND ALBERT I. REUTHER

with the higher rating can then be recommended to her to 
read next. The predicted document ratings for Analyst 1 
will be based on the ratings given to those documents 
by analysts who have expressed similar ratings to hers 
in the past on other documents that they all have rated. 
This prediction will require some metric for measuring 
the similarity between users. Common metrics, many of 
which are described in Herlocker et al. [9], include cosine 
similarity, Pearson’s correlation coefficient, Spearman’s 
rank correlation coefficient, or the mean squared error 
difference. We will use a variant of cosine similarity called 
adjusted cosine similarity.

If we represent the ratings of a particular analyst by 
a vector, the cosine similarity of two vectors (ratings of 
two different analysts) is equal to their dot product, 
divided by the product of their magnitudes:
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a
"!
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The cosine similarity of Analyst 1 and Analyst 2 for 
the first four documents can then be calculated as

This calculation, however, does not take into 
account that analysts may generally give ratings in dif-
ferent ranges. For example, a particular analyst may tend 
to give ratings only in the range of 3 to 5 or may click 
more links than most analysts click on every page he 
visits (leading to higher implicit ratings). These types of 
factors may be accounted for by subtracting from each 
rating the average rating given by that user. Using this 
adjusted cosine similarity formula, we obtain the sim-
ilarity scores shown in Table 2 in which a higher score 
indicates greater similarity.

Because we are basing Analyst 1’s unknown ratings 
on the ratings of those who have similar rating histories, 
we may choose to use the ratings of only the k closest 

sim A1, A2( )=
5∗3( )+ 3∗1( )+ 4∗2( )+ 4∗3( )

52+32+42+42 ∗ 32+12+22+32
=0.975

Table 1. Analysts’ Document Ratings
DOC 1 DOC 2 DOC 3 DOC 4 DOC 5 DOC 6

Analyst 1 5 3 4 4 ? ?

Analyst 2 3 1 2 3 3 1

Analyst 3 3 3 1 5 4 5

Analyst 4 4 3 4 3 4 2

Analyst 5 1 5 5 2 1 3

Table 2. Similarity Scores Between Analysts via Adjusted Cosine Similarity
ANALYST 1 ANALYST 2 ANALYST 3 ANALYST 4 ANALYST 5

Analyst 1 – 0.85 0.00 0.71 –0.79

Analyst 2 – 0.43 0.30 –0.89

Analyst 3 – –0.71 –0.59

Analyst 4 – –0.14

Analyst 5 –
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neighbors or of those who have similarity scores above a 
certain threshold. In this case, we will use the ratings of 
only those who have Analyst 1 similarity scores greater 
than or equal to 0.5 (Analyst 2 and Analyst 4). The pre-
dicted rating of document d for user a thus becomes 

From this equation, we obtain the following values 
for rA1, Doc5  and  rA1, Doc6 :

Comparing the magnitudes of these predicted ratings 
reveals that Doc 5 should be recommended to Analyst 1 
over Doc 6.

Example Recommender System Using Topic 
Modeling
A common form of a recommender system can use a 
mechanism of topic modeling to recommend objects 
such as new webpages, articles, or movies. The idea 
behind such a recommender system is that if a user is 
interested in a particular topic, she will be interested 
in other objects with the same topics. Similar to using 
techniques employed in a content-based recommender 
system, one may model a corpus of documents to find 
important topics. Once a topic is highlighted, a user 
is recommended other documents containing similar 
topics or terms. In this section, we will describe a simple 
but powerful way to perform topic modeling on very 
large datasets. 

Non-negative matrix factorization (NMF), described 
by Lee and Seung [10], is a technique used to factorize 
a given matrix into two matrices, both of which only 
consist of non-negative elements. Multiplying these two 
matrices produces an approximation of the original 

ra ,d = ra+
sim a,b( )∗ rb,d−rb( )b∈k∑

sim a,b( )b∈k∑

rA1, Doc5= 4+
0.85∗ 3−2.17( )+0.71∗ 4−3.33( )

0.85+0.71
= 4.75

rA1, Doc6= 4+
0.85∗ 1−2.17( )+0.71∗ 2−3.33( )

0.85+ .071
=2.97

matrix. Consider a matrix  A m × n to be factored into 
matrices  Wm × k  and H k × n , where m corresponds to the 
number of rows of  A, n corresponds to the number of 
columns in  A, and k corresponds to the number of 
topics. By definition,

In the above factorization, the columns of  W can be 
considered a basis for the matrix  A with the rows of H 
being the associated weights needed to reconstruct  A. A 
common method to solve this factorization problem is 
through the alternating least-squares (ALS) algorithm 
as described in Gadepally et al. [11]. However, one of 
the challenges in working with very large datasets is the 
inability to store intermediate products produced by 
the ALS algorithm. Very often, intermediate matrices 
created in each iteration of the ALS algorithm can be 
many times larger than the original dataset or available 
computational resources. 

We have recently developed a new tool to perform 
NMF on large, sparse datasets. We refer to this tool as 
the projected ALS. In addition to removing non-negative 
elements in each iteration of the ALS algorithm, we can 
also enforce a particular sparsity level. This method has 
been shown to perform qualitatively as well as the original 
dense ALS algorithm. However, with this extra projection 
step that enforces sparsity, we are able to achieve much 
better computational performance as shown in Figure 2. 
By computing the matrix factorization through the pro-
jected ALS algorithm, we can determine a set of topics 
from a data corpus. We applied the projected ALS algo-
rithm to a corpus of data collected from the popular social 
media site Twitter. We then found five topics from this 
dataset (Table 3). If a user highlights a certain tweet, a 
recommender system can then find other tweets that have 
keywords within the same topics of the selected tweet. 
For example, if the user highlights a tweet with the word 
“love,” the recommender system can suggest tweets with 
the hashtag “#PerksOfDatingMe” because these tweets 
are related via topic 2. This technique can be easily 
extended to the identification of malicious conversations 
about cyber attacks or other cyber events that often occur 
on social media sites such as Twitter; once the system dis-
covers suspicious conversations, it can alert analysts to 
take a closer look at the suspect tweets.

A=W ∗H
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Recommender Systems and the Cyber Domain
Recommender systems have the potential to greatly 
reduce the response time to cyber threats. In the cyber 
domain, it is very easy for analysts to be inundated with 
information. For example, the Target Corporation’s 
security breach was reported by the company’s security 
software but was ignored along with many false positive 
alerts [12]. In such enterprise environments, recom-
mender systems can be valuable tools to filter and 
prioritize information that may be of interest to an 
analyst. Consider the common case of an information 
technology (IT) security team defending an organi-
zation against evolving cyber threats. As reported by 

the 2015 Global Information Security Workforce Study 
[13], 62% of organizations claim that their information 
security teams are too small. These resource-constrained 
teams are also often responsible for paying attention to 
100s of websites and blogs to look for information about 
publicly reported exploits. These teams may then have 
to turn to the National Vulnerability Database [14] to 
understand the impact of exploits to their organization. 
Finally, these teams may develop patches that are even-
tually deployed across the organization with varying 
levels of impact to the end users. 

As of 2015, approximately 25 new vulnerabilities 
are reported per working day (as calculated by using 
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FIGURE 2. The time in seconds taken for 100 
iterations of the alternating least-squares (ALS) 
algorithm. The dashed black line corresponds to 
the time taken for the original ALS algorithm that 
yields dense intermediate products. The solid 
blue line corresponds to the time taken for 100 
iterations of the projected ALS algorithm that 
enforces sparsity within each iteration. The large 
reduction in time is due to the computational effi-
ciency of the projected ALS algorithm.

Table 3. Topics in Twitter Posts Determined by Alternating Least-Squares 
Algorithm

TOPIC 1 
(TWEETS 

WITH TURKISH 
WORDS)

TOPIC 2 
(TWEETS RELATED TO 

DATING)

TOPIC 3 
(TWEETS RELATED 

TO ACOUSTIC GUITAR 
COMPETITION IN 

ATLANTA, GEORGIA)

TOPIC 4  
(TWEETS 

WITH SPANISH 
WORDS)

TOPIC 5 
(TWEETS 

WITH 
ENGLISH 
WORDS)

word|:) word|#PerksOfDatingMe word|#5sosacousticATL word|con word|I’ll

word|@ word|@ word|#5sosfam word|creo word|I’ve

word|Airport word|My word|#5sosgettoatlanta word|cuando word|If

word|Hastanesi word|go word|@5SOS word|da word|Just

Word|International word|love word|acoustic word|del word|Lol

word|Kadiköy word|out word|atlanta? word|dormir word|My
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the number of Common Vulnerabilities and Exposures 
listed in the National Vulnerability Database [14] for the 
year 2015). In developing an appropriate response, the 
security team must weigh dozens of factors, such as the 
time since the vulnerability’s discovery, severity of the 
exploit, existence of a patch, difficulty of deploying the 
patch, and impact of the patch on users. Recommender 
systems can provide a mechanism to greatly simplify this 
response process. A recommender system can automat-
ically track 100s of sites, learn from past user behavior 
about important cyber security news items, and rec-
ommend them to the IT security team. Recommender 
systems can use prior information about the vulnera-
bility’s severity and impact to the user community to 
suggest a course of action for patching the vulnerability. 
For example, a recommender system may propose post-
poning the deployment of a minor vulnerability’s patch 
that would cause a major impact for the user community, 
or the system may recommend immediate deployment 
of a major vulnerability’s patch that would have minor 
user impact. Furthermore, recommender systems can 
be used to track anomalies across the network (such as 
unpatched systems or systems exhibiting behavior very 
different from that of others on a network) to allow 
the limited resources of the IT security team to quickly 
address potentially important problems rather than 
being inundated with regular traffic.

Specific Concerns of the Department of 
Defense and Intelligence Community
While recommender systems have reached maturity 
in the commercial world, there are many challenges in 
directly applying these systems to DoD and IC problems. 
Commercial and government entities both have the 
need to collect, store, and process a large amount of 
high-dimensional data. However, government applica-
tions have certain traits that make utilizing traditional 
methods to produce actionable intelligence more difficult. 
Some of these differences are shown in Table 4.

The first difference concerns the lack of ground 
truth and the difficulty in quantifying success for DoD 
applications. In industry, success tends to be measured 
by a concrete action, such as a sale of a product or a click 
on a webpage. In DoD and IC applications, however, 
the desired measure of effectiveness is whether or not 
an action will lead to a greater probability of mission 

success. Because this metric is speculative, it is much 
more difficult to measure than the commercial standard 
of profitability.

Compared to industry applications, government appli-
cations typically carry much more extreme consequences 
for false automatic calculations that lead to suboptimal 
decisions. Once again, the magnitudes of these conse-
quences are harder to quantify. Dollars provide an obvious 
surrogate for risk in a commercial setting, but there is 
no clear, established metric for measuring operational 
readiness. The lack of such a metric makes it difficult to 
determine whether government organizations should use 
a particular piece of technology in support of their mission.

Similar to commercial cyber security applications, 
government applications exist in a space where the adver-
sary is continually evolving. Yet, the current architectural 
and political landscape found in most government organi-
zations necessitates that analytics are developed, deployed, 
and re-engineered over a much longer time scale than 
industrial applications typically employ. Thus, government 
organizations experience fewer opportunities to make 
incremental improvements to the underlying analytics.

Differences in the skill levels of users affect the design 
and value of recommender systems. Users of recom-
mender systems in the DoD and IC will likely be experts 
in their fields who engage with these systems daily. Such 
familiarity with the system may allow for more capable 
and complex functionality to be utilized. Perhaps, more 
importantly, the inclusion of experts in this human-in-the-
loop process may lead to a different balance of autonomy. 
Recommender systems may need to be capable of making 
the reasons behind their recommendations transparent in 
order to gain the confidence of experts who are making 
high-stakes decisions. For example, a system may provide 
the end user with a confidence measure (such as proba-
bility) associated with each recommendation.

Another significant difference between big data appli-
cations used by commercial and government groups is that 
a commercial entity generally controls its data sources and 
approaches the data with specific goals and questions while 
government groups usually do not. For instance, Google 
may create a new feature on Google+ to obtain a different 
type of information from its user base to better its adver-
tising services. However, government agencies, which 
usually do not have collection authority over the data they 
use, have limited control over designing data collection 
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paradigms; even those agencies with collection authority 
are often bound by regulations that restrict their ability to 
deploy sensors that can collect the specific data they desire. 

Finally, commercial applications are often designed to 
learn from millions to billions of users whereas DoD and IC 
applications may only have 100s to 1000s of users whose 
behaviors can be used to model recommender systems. 
Also, very often, commercial entities employ user agree-
ments to determine data collection and usage whereas 
government organizations may not be able to readily access 
data without the help of law enforcement or legal statutes. 

Recommender Systems Applied to 
Lincoln Laboratory Programs 
Lincoln Laboratory has a rich history in developing 
decision support systems. Over the past five years, these 
systems have been incorporating recommender system 
concepts and technologies. In this section, we summa-
rize past, current, and future Laboratory programs that 
incorporate recommender systems. The work conducted 
in these programs can inform research into systems that 
improve cyber security. 

Dynamic Customization of Content Filtering 
The objective of Dynamic Customization of Content 
Filtering (DCCF) is to allow an analyst to perform 
on-the-fly customization of content filtering (for example, 
open-source social media data mining) on the basis of 
simple relevance feedback acquired during the inspection 
of filtered content (Figure 3). 

First, the analyst sets the parameters of an initial 
data-stream filter (e.g., keywords, geographical area, time 
interval) to mine for content of interest. Typically, as when 
keyword filters are used on social media data, this approach 
will lead to a mixture of relevant content embedded within 
various types of irrelevant content. While reviewing the 
content, the analyst provides simple binary feedback (indi-
cating relevance or irrelevance) as desired and submits this 
feedback to the system. The DCCF model uses this feedback 
to create a secondary filter to remove irrelevant data that 
passes through the first filter. The creation of this secondary 
filter is based on a broad set of text- and image-derived 
feature spaces (i.e., characteristics of a general dataset; a 
dataset of a network’s cyber attacks may include feature 
spaces such as date, time, type) coupled with aggressive 
feature space downselection and classifier training so that 
the model is suited to potentially diverse content-filtering 
needs. The DCCF model is generated on the fly (during 
analyst use) every time new feedback is submitted, thus 
improving content filtering as the user increasingly inter-
acts with DCCF. The DCCF tool may be considered a 
recommender system because it pushes out filtered content 
that is based on earlier user-specific feedback. 

Delve
The goal of Delve is to develop an approach for recom-
mending documents to analysts who are answering broad, 
complex questions. This task is particularly suited for rec-
ommender systems because analysts are often uncertain 
as to what relevant information may be available to them 

Table 4. Comparison of Commercial Applications to DoD Applications
COMMERCIAL APPLICATIONS DOD APPLICATIONS

High dimensionality of data High dimensionality of data

Large volume of data Large volume of data

Known truth; easier to quantify success Unknown truth; difficult to quantify success

Mild consequences of decisions Serious consequences of decisions

Past is representative of future Past does not represent future

Continual development and improvement Deployment; long durations between improvements

Average or untrained users Expert or trained users
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and therefore are ill-equipped to find all the information 
that they need via precise queries only. The Delve system 
employs a hybrid recommender that calculates both 
individual document characteristics (e.g., word count, 
number of entities) and collective browsing behavior (e.g., 
identification of articles that tend to co-occur or follow 
others in a browsing path). Using these calculations 
along with dimensionality-reduction techniques, Delve 
significantly outperforms baseline approaches, such as 
using only webpage attributes or term frequency–inverse 
document frequency (TF-IDF), for recommending addi-
tional documents of interest, given an initial document 
selected by the analyst.

Global Pattern Search at Scale
The Global Pattern Search at Scale (GPSS) is a scalable 
visual analytics platform to support the analysis of 
unstructured geospatial intelligence. With GPSS, 

analysts can interactively explore the document corpus 
at multiple geospatial resolutions, identifying patterns 
that cut across various data dimensions, and can uncover 
key events in both space and time. The tool includes an 
interactive visualization featuring a map overlaid with 
document clusters and events, search and filtering 
options, a timeline, or a word cloud (Figure 4). As an 
information filtering tool, GPSS provides detail on 
demand. However, in its current form, GPSS does not 
“push” new intelligence information to the analyst. In 
the coming year, the GPSS team plans to augment their 
tool with a recommender system that will profile user 
activity and suggest new documents of interest after 
periods of inactivity, similar to the way that advanced 
news websites such as Google News will suggest articles 
related to topics, locations, or stories in which a specific 
reader has expressed past interest.

FIGURE 3. The Dynamic Customization of Content Filtering (DCCF) uses analyst feedback to perform on-the-fly cus-
tomization of content filtering. A user first sets parameters such as keywords, geographical area, or time interval. The 
DCCF model will automatically filter content on the basis of these keywords to expedite retrieval of useful content. The 
word cloud on the top right corresponds to all retrieved results from the keyword filter. The bottom word clouds corre-
spond to results from the secondary filters.



 VOLUME 22, NUMBER 1, 2016  n  LINCOLN LABORATORY JOURNAL 83

VIJAY N. GADEPALLY, BRADEN J. HANCOCK, KARA B. GREENFIELD, 

JOSEPH P. CAMPBELL, WILLIAM M. CAMPBELL, AND ALBERT I. REUTHER

Covert or Anomalous Network Discovery 
and Detection 
Networks are often used to describe relations or interac-
tions between individuals, systems, or other entities via 
graphical models. The Covert or Anomalous Network 
Discovery and Detection (CANDiD) program aims to 
develop the mathematical understanding for constructing 
operationally relevant networks, detecting important sub-
graphs of these networks, and inferring and influencing 
the properties of select vertices in the network. Networks 
of interest often arise from large collections of comple-
mentary, redundant, and potentially noisy relational data 
sources, introducing challenges both in terms of algo-
rithmic scalability and algorithmic accuracy. Through the 
CANDiD program, we are currently looking into applying 
a recommender system perspective to the problem of fil-
tering and personalizing the multisource, noisy data used 
to construct and estimate the network of interest.

Adaptive, Reinforced, Interactive Visual Analytics 
The goal of the Adaptive, Reinforced, Interactive Visual 
Analytics (ARIVA) program is to identify important 

information that aligns with analyst-provided feedback 
to better facilitate algorithmic-aided exploration of 
complex data for evolving open-ended missions, such 
as deterring cyber threats. User-provided feedback, in 
the form of similarity and dissimilarity assessments 
between pairs of data points, is utilized to perform data 
preprocessing via feature selection and transformation. 
When feedback-aligned data embeddings are accurately 
identified, common exploration analytics, such as data 
clustering, nearest-neighbor classification, and informa-
tion-retrieval techniques, show algorithmic performance 
improvement and produce results that are grounded in an 
analyst’s preferences, understanding of mission goals, and 
expertise in a given domain. The improvement of retrieval 
algorithms in feedback-aligned data spaces suggests that 
recommender systems can augment tools like ARIVA by 
utilizing the similarity or proximity of data points in the 
learned data embedding. The use of explicit pairwise sim-
ilarity and dissimilarity constraints allows this application 
to avoid problems commonly found in recommendation 
engines whose limited feedback often leads to a reduction 
in recommender system performance.

FIGURE 4. The Global Pattern Search at Scale (GPSS) platform enables interactive exploration of intelligence information 
by topic, time, and location. The GPSS system provides users with quick geospatial visualization about documents. In the 
display above, a user can search for terms, and the circles of different sizes and shades indicate, respectively, the prevalence 
of articles in a particular geospatial location (color spectrum runs from red for a region of conflict to lavender for a region of 
cooperation) at a particular time. 
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Structured Knowledge Space
Structured Knowledge Space (SKS) is an end-to-end 
software system that combines information extraction, 
information retrieval, and natural language processing 
to intelligently explore a corpus of unstructured docu-
ments, such as intelligence reports of cyber threats. The 
SKS suite of tools extracts entities and creates structured 
metadata for each document to improve its searchability 
(Figure 5). With this metadata, analysts can find all doc-
uments that refer to a single organization or person (even 
when that entity has several aliases or variations), that 
contain a geospatial reference within a certain distance 
of a location, or that reference a time within a speci-
fied date range. Currently, SKS operates under a “pull” 
rather than a “push” paradigm (i.e., the user searches 
and browses rather than the system making recommen-
dations). However, there are multiple ways in which 
recommender system concepts can be utilized to further 
enhance SKS. One enhancement would be to recommend 
new articles on the basis of past searches performed (e.g., 
“This article was recommended to you because of your 
interest in phishing attacks on enterprise networks.”). 

Another enhancement would be to guide novice analysts’ 
searches by using the search paths that more experienced 
analysts have taken. 

Cyber Human Language Technology Analysis, 
Reasoning, and Inference for Online Threats
Through the Cyber Human Language Technology 
(HLT) Analysis, Reasoning, and Inference for Online 
Threats (CHARIOT) program, we are developing an 
interactive filtration system to automatically identify 
documents that are relevant to analysts’ current inves-
tigations (Figure 6). With CHARIOT, analysts are 
presented with online discussions concerning cyber 
attack methods, defense strategies, and tools’ effec-
tiveness through the automated examination and 
classification of forum threads. CHARIOT leverages 
techniques such as topic classification, entity recogni-
tion, and sentiment analysis (i.e., opinion mining) to 
separate malicious cyber discussions from irrelevant 
discussions. The “Finding Malicious Cyber Discussions 
in Social Media” article in this issue discusses the 
CHARIOT program in further detail. 

Search box: 
Standard 
Google-like search 
operators

Advanced search: 
Search by geo, 
source, ingest 
date, reported 
date, document 
type

Facet categories: 
Entities listed by 
document count; 
selecting an entity 
adds it to current 
search

Search results: 
Results ranked by 
relevance; search 
terms are highlight-
ed to show context

Find similar 
documents: The 
(Similar) link is a 
new search for all 
documents that 
contain similar text

Preview and 
download a document

Plot geocoordinates 
for one or all search 
results on a 
visualization tool 
(e.g., Google Earth)

FIGURE 5. The Structured Knowledge Space search page provides diverse, useful information for the exploration of a corpus 
of unstructured documents.
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Visualization, Summarization, and 
Recommendation for Multimedia
The goal of the Visualization, Summarization, and 
Recommendation (VISR) for Multimedia program is to 
develop tools to allow analysts to effectively explore large 
multimedia data sources. The program builds on previous 
Lincoln Laboratory work in text analytics by expanding 
to multimedia data, especially audio and video, with the 
addition of a recommendation component (Figure 7). 
This recommender system utilizes a user’s ongoing work 
to identify other information of interest. For example, it 
may suggest videos of likely interest to an analyst on the 
basis of his or her current and past searches. 

XDATA
The Defense Advanced Research Projects Agency’s 
(DARPA) XDATA program aims to meet the challenges of 
big data analytics and visualization by developing compu-
tational techniques and software tools for processing and 
analyzing large, noisy, and incomplete data. For scalable 
analytics, this work includes research into distributed 
databases, statistical sampling methods, and new algo-
rithmic advances to lower the computational complexity of 
pattern matching. For information visualization, this effort 
is focusing on the development of web-based human-com-
puter interaction tools that factor computation between 
the client and the server and that are built from an open 
code base to enable rapid customization of tools to dif-
ferent missions. The XDATA program is investigating 
software that can efficiently fuse, analyze, and disseminate 
the massive volume of data these tools produce.

Lincoln Laboratory’s approach for the DARPA  XDATA 
program is to provide key enabling technologies—including 
those for natural language processing, topic clustering, and 
text language identification—to extract information from 
structured, semistructured, and unstructured text, speech, 
image, and video data. This information is then used by 
the Laboratory and our partners for upstream (later in 
the development pipeline) analytics and visualization. 
The Laboratory has developed several analytics and user- 
interface technologies for graph query by example, entity 
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FIGURE 6. The goal of CHARIOT is to filter social media 
discussions to find cyber content. This figure contrasts a 
simple keyword classifier that detects cyber discussions 
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containing 1% cyber content, the CHARIOT logistic regres-
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disambiguation, community detection, and correlation of 
similar network graph portions. Many of these enabling 
component technologies for recommender systems have 
been made publicly available via DARPA’s Open Catalog 
of DARPA-sponsored software and peer-reviewed publi-
cations (http://opencatalog.darpa.mil/). 

Future Work
Before the DoD and IC can employ recommender systems 
in operational settings, many technical and sociotechnical 
challenges must be overcome. We have identified six 
specific challenges that future work at Lincoln Laboratory 
and within the DoD and IC could productively address: 
• Establishing user trust. The potentially serious con-

sequences of decisions made via DoD applications 
necessitate a level of user trust in the recommender 
system. One way to increase trust is to enhance the 
interpretability or transparency of results, using 
algorithms that enable explanations to be given for 
why a particular object has been recommended, as 
discussed in O’Donovan and Smyth [15]. Another 
approach to fostering trust in a recommender system 
could be to verify the reliability of the source of data 
used in the development of the system’s model by 
tracking the data’s provenance, i.e., its origins and 
route of transfer.

• Preserving privacy and security. While there is cer-
tainly a need to make the recommendations of a 
recommender system transparent, there is simulta-
neously a potentially conflicting need to ensure the 
privacy of users, as described in Avesani et al. [16] 
and Brekovsky et al. [17]. A system that relies on 
tracking user history—sometimes in great detail (e.g., 
purchase history, browsing history, eye tracking)—has 
the potential to be misused by users to learn nonpublic 
details about other users if security precautions are 
not taken. Similarly, the security of the system may be 
at risk if individual users are able to reverse engineer 
the system to learn, for example, that submitting a 
certain number of specific inputs can ensure that 
another user will see a given output. Cryptographic 
techniques, such as those described by Gadepally et al. 
[18] and Shen et al. [19], may prove a useful means 
for building into recommender systems guarantees 
that prevent information from being discoverable by 
unauthorized users.

• Adapting to user environment. The types of users 
and usage contexts of recommender systems can rea-
sonably be expected to vary significantly between 
commercial and defense applications. Whereas com-
mercial systems tend to be used in environments that 
demand little user concentration, have few time con-
straints, and assume minimal user experience with the 
system, defense systems have the potential to be used 
in environments that require high concentration from 
users, adhere to strict deadlines, and employ operators 
who have been trained to engage with the system on an 
intricate level. Research into how existing mechanisms 
may be modified to address DoD and IC constraints 
or to exploit the capabilities of their personnel and 
systems seems prudent.

• Developing multilevel metrics. Of the many ways to 
assess the value of a recommender system, the majority 
of these assessments pertain to the perceived quality of 
recommendations. Some of these metrics are described 
by Gunawardana and Shani [20]. In addition to these 
recommendation-level metrics, however, there is also a 
need for system-level and user-level metrics. System-
level metrics may reflect the measured time savings 
of a decision process or a change in the percentage of 
documents read that are considered relevant. User-
level metrics consider the users’ experiences with the 
system—how are concentration, decision fatigue, or 
confidence in decisions affected when users interact 
with the system? This area may overlap to some extent 
with the requirement of establishing user trust. 

• Promoting system extensibility. While the core algo-
rithms of recommender systems are often made public 
via publications and presentations, deployment and 
maintenance details are rarely discussed. From an 
institutional standpoint, it is important for the DoD 
and IC and their partners to understand how trans-
ferable the developed technology in this area will be 
from one domain or mission to another. It would be 
valuable to understand which technologies require 
domain-specific tuning and which ones can be rapidly 
deployed in new scenarios with little modification. 
Determining which pieces may be modularized for 
reapplication or redeployment could lead to improved 
cost estimates over the lifecycle of the developed 
technology. The development of a standardized recom-
mender system application program interface could 
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lead to users’ ability to immediately and easily interact 
with data in multiple forms on a variety of databases.

• Developing partners in academia and industry. The 
future research areas we have described focus on the 
specific needs of the DoD and IC. However, work in 
recommender systems encompasses a number of fields, 
including machine learning, big data analytics, and 
user experience, and many individuals in academia and 
industry are also conducting research in these fields. 
These researchers could partner with us to provide 
innovative ways to advance the role of recommender 
systems in various domains.  

Recommender systems could have a significant impact 
in defense and intelligence applications. With the ability to 
learn from user behavior and push suggestions to users, 
they have the potential in mission scenarios to shift com-
putational support from being reactive to being predictive. 
Recommender system technology has been advanced sub-
stantially in recent years by commercial entities, but some 
future work will be required to adapt these technologies 
for use in the defense domain, where requirements and 
objectives differ from those of commercial applications. 
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