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Abstract

Accepting input from the outside world is one of the most dangerous things a system
can do. Since type information is lost across system boundaries, systems must perform
type-specific input handling routines to recover this information. Adversaries can
carefully craft input data to exploit any bugs or vulnerabilities in these routines,
thereby causing dangerous memory errors.

Including input validation routines in kernels is especially risky. Sensitive memory
contents and powerful privileges make kernels a preferred target of attackers. Fur-
thermore, the fact that kernels must process user input, network data, as well as input
from a wide array of peripheral devices means that including such input validation
schemes is unavoidable.

In this thesis we present Automatic Validation of Input Data (AVID), which
helps solve the issue of input validation within kernels by automatically generating
parser implementations for developer-defined structs. AVID leverages not only the
unambiguity guarantees of parsing expression grammars but also the type safety
guarantees of Rust. We show how AVID can be used to resolve a manufactured
vulnerability in Tock, an operating system written in Rust for embedded systems.

Using Rust’s procedural macro system, AVID generates parser implementations
at compile time based on existing Rust struct definitions. AVID exposes a simple and
convenient parser API that is able to validate input and then instantiate structs from
the validated input. AVID’s simple interface makes it easy for developers to use and
to integrate with existing codebases.
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Chapter 1

Introduction

In the age of cyberwarfare, mission-critical systems depend on security for correct

operation. One facet of security is that of memory safety: the state of a system’s

memory being safe from security vulnerabilities. For systems with sensitive memory

contents, input-output interfaces are especially popular channels of attack. Attack-

ers can provide data of their choosing, often specifically crafted to exploit bugs that

compromise memory safety. The ability to handle such input data while maintain-

ing confidentiality, integrity, and availability is difficult, especially for systems with

complex, monolithic kernels and embedded systems with many different peripheral

devices.

Processing user or device input often involves reading data from memory into

structures, or structs. Structs can contain multiple fields with different types, and

developers often manually write code to verify that given data can be interpreted as

a certain struct. Algorithms that execute such procedures are prone to developer-

introduced bugs and logic errors; attackers can then craft input to exploit these

specific errors.

Errors of this type are classified by the Common Weakness Enumeration (CWE)

as "Improper Input Validation" [1]. Classes of vulnerabilities within this category

include buffer overflow and type confusion, which happens when data of one type

is interpreted as data of another type. These vulnerabilities can be exploited to

produce denial of service and code execution attacks. For example, in July 2018,
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a vulnerability in Adobe Flash Player was disclosed where user-specified data could

cause a type confusion error, leading the program to execute code included in the

attacker’s payload [2] [3].

Errors such as these are especially dangerous in operating system kernels. In a

system that performs critical tasks or stores sensitive data (e.g., credit card infor-

mation), an adversary who is able to execute arbitrary code could do immeasurable

damage. Therefore, a common objective of modern operating system engineering is

to ensure memory safety, especially when interpreting user input.

One operating system that emphasizes memory safety is Tock. Tock is written

in Rust, a type-safe language that uses novel mechanisms to prevent spatial and

temporal memory errors. Another security-mindful Tock design choice is its kernel

architecture, which resembles a microkernel. Microkernels compartmentalize services

so that each component requires minimal permissions—when one of these components

is compromised, the amount of harm an adversary can do to the system is limited.

However, even in a supposedly safe operating system, structs still need to be

explicitly cast from memory. For example, when reading process metadata from

flash memory, Tock must perform manual checks on the input data. Any error in

performing this cast could, either directly or via the created process, violate the

memory safety of the kernel. For this reason, we see Tock as a promising target

for the work presented below, which extends the Rust language with mechanisms to

reduce or eliminate such input handling errors.

Our work enables bug-prone manual input validation to be replaced with automat-

ically generated input parsers. All input is parsed unambiguously using a provably

sound parsing algorithm generated at compile-time. To do so, this work leverages

parsing expression grammars (PEGs) to automatically validate input before it is

stored in user-specified structures. Per-struct PEGs are derived automatically from

struct definitions, and the associated parser can be invoked by the developer on any

untrusted data before it is cast into a struct.

Since PEGs are unambiguous, attempting to parse user data into a struct either

succeeds as intended or fails without compromising the system. Together, Rust’s
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type-safety guarantees and PEG parsers’ unambiguity guarantees provide the system

with a secure mechanism for I/O handling. Integrating this parsing mechanism with

Tock removes the need to manually cast structs in the kernel, thereby eliminating

the possibility of dangerous input mishandling bugs. While this thesis uses Tock as

an application for the parser generator, the system can also be used as a stand-alone

tool for any Rust project.

1.1 Objective and Goals

The objective of this work is to replace bug-prone manual input validation with

automatically generated input parsers that implement a provably sound validation

algorithm. Furthermore, we would like this work to help developers use the minimum

amount of "unsafe" Rust as possible. Unsafe Rust code can perform certain ac-

tions on memory that safe Rust cannot, such as dereferencing arbitrary raw pointers.

Using unsafe Rust voids some of the safety guarantees provided by Rust; since we

want to rely on these guarantees for the safety of our parser, we would like to avoid

using unsafe Rust.

Because this work is motivated by and in support of Tock, the parser generator

is specifically intended for the types of data structures used by the kernel. These

structs are often relatively simple, containing only a few fields which are either Rust

primitives (e.g., integers, booleans) or references to other kernel data structures. More

complicated recursive data structures, such as a graph node struct a user might

implement as part of a graph algorithm, are out of scope for this system.

This work emphasizes system usability by prioritizing functionality, efficiency, and

minimal developer effort. The system should be able to support Rust structs whose

fields are an arbitrary combination of primitives and references to previously-defined

structs. Furthermore, the system should perform parsing tasks with minimal temporal

and spatial overhead. Finally, the system should require minimal extra effort from

developers. Developers should be able to define Rust structs normally and simply

add an annotation to invoke parser generation and execution.
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1.2 Contributions

This thesis designs, implements, and validates a type-safe parser generator-based pars-

ing mechanism, which is invoked with a simple source code annotation, and shows

that it prevents certain classes of vulnerabilities and attacks. Chapter 2 introduces

common attacks on input handlers. Chapter 3 describes relevant theory behind for-

mal languages, including the differences between context-free grammars and parsing

expression grammars, two types of formal languages often employed by input parsers.

Chapter 4 introduces and motivates our system. Chapter 5 describes the implemen-

tation in detail as well as its integration into Tock. Chapter 6 discusses classes of

attacks prevented by the parsing system. Chapter 7 measures the performance of the

system after including the parsing modifications. Chapter 8 compares the system to

other parser generators and previous memory safety approaches. Chapter 9 concludes

and outlines future work.
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Chapter 2

Memory Safety and Common

Vulnerabilities

Within a computer system, a vulnerability is a weakness created by a logic error

or bug such that an adversary can take advantage of this weakness to gain some

sort of control over the system. An exploit is the specific procedure the adversary

executes to trigger the vulnerability. Oftentimes the exploit involves the adversary

directly providing the system with data, or input. Since the adversary has complete

control over the input, they can carefully craft it to trigger any vulnerabilities within

the system. Bugs or mistakes in input-handling code are dangerous because they

threaten memory safety and therefore invite memory corruption attacks.

Essential to the security of a system is memory safety. Ensuring the memory

safety of a system requires protecting it from memory errors, that is, vulnerabilities

that expose the potential for memory corruption. Memory errors can be divided into

two categories: spatial and temporal [4]. Spatial errors occur when an out-of-bounds

pointer is dereferenced; temporal errors occur when a pointer to an invalid or freed

value is dereferenced. These errors, possibly combined with an adversary’s input, can

be used to carry out a range of attacks from simply leaking memory to controlling

the flow of the program.

To better understand memory errors, we must first review the regions of memory

used during code execution. Random access memory (RAM), also called main mem-
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ory, is a form of primary memory used in computing systems. When storing data,

RAM is favored over mass storage devices such as disks and solid state drives due

to its low read and write latency from the central processing unit (CPU). In most

systems, RAM is divided into four main regions: the stack, the heap, text, and data.

The latter two regions store code and static (global) variables, respectively.

The stack stores variables related to function calls during runtime, and the heap

is primarily used to dynamically allocate blocks of memory for objects. During each

function call, a stack frame comes into scope. The stack frame contains data related

to the function call itself, such as parameter values and local variables, as well as in-

formation on what to do after the function call completes. The latter is accomplished

by saving a return address that points to the next instruction to execute after the

function returns. For example, if function 𝑎 calls function 𝑏, function 𝑏’s stack frame

will contain a return address that points to the instruction directly after function 𝑏

is called within function 𝑎.

Because the saved return address specifies an instruction to execute, it is often the

target of memory corruption attacks. Since local variables live on the stack near the

current return address, an adversary might try to exploit a spatial error by corrupting

the return address via a local variable. Executing this exploit with carefully crafted

input allows the adversary to set the return address to an address of their choosing.

They can thereby control the flow of the program and, depending on the protections

in place or lack thereof, execute arbitrary code.

An attacker can still corrupt program control flow without touching the return

address or going out-of-bounds of an object. For example, input that triggers a divide-

by-zero error may crash a system; this is a denial-of-service attack. Another type of

memory error is a type confusion error, which happens then memory is accessed as

an unintended or incompatible type [5]. This memory error can again be exploited

by an adversary so that the system performs some otherwise prohibited actions. For

example, if a casting algorithm accidentally interprets a region of memory containing

user input as a struct that contains a field that is a pointer or reference, an adversary

could craft their input to set this pointer to point to an address of their choosing.

22



2.1 Example: Parsing a Struct

Input from users or peripheral devices is often unstructured, so developers must write

code that explicitly performs a cast for the given data type. The omission of important

input checks can create vulnerabilities that may not be obvious during code review or

testing. Complex corner cases lead to bugs that are rare and hard to identify; these

bugs can cause vulnerabilities. Writing code that handles user input leaves little room

for error.

Consider the following example, where a developer writes a function to cast some

integers into a simple struct. MyStruct, whose definition is shown in Listing 2.1, has

three fields, all integers, or u32’s in Rust notation—unsigned 32-bit integers. The

parsing function, parse_struct, takes in a fixed-size array of three u32’s—one

for each field of MyStruct—and then returns an instance of MyStruct with the

fields set. This function is shown in Listing 2.2. Line 2 creates an empty instance of

MyStruct called my_struct; line 3 creates a raw pointer to the instance; lines 5

through 7, within the unsafe block, supposedly fill in the instance with the provided

integers; line 9 returns my_struct.

The developer, knowing that the stack grows downward, may deduce that de-

creasing the value of the pointer to my_struct will give them access to subsequent

fields of the struct. They decide to use Rust’s sub method to subtract an offset

from the pointer [6]. However, perhaps confusingly, this method does the opposite

of what the developer wants and instead increases the value of the pointer by a cer-

tain offset. While the first member of fields (the input) will end up in field_1

of my_struct, parse_struct will end up overwriting existing stack data with

the second and third members of the input array. Specifically, parse_struct will

end up overwriting the return address, thus changing the execution of the program.

Figure 2-1 shows the stack frame corresponding to this function call.

Even those unfamiliar with Rust will see that this example is particularly con-

trived; it requires that the developer be unaware of not only the Rust documentation

but also the fact that the input can be passed into the MyStruct constructor. Nev-
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ertheless, it is not uncommon for developers to publish buggy, untested code. This

example also shows that the usage of Rust’s unsafe keyword, necessary for raw

pointer arithmetic and dereferencing, is dangerous—unsafe code cannot protect

the developer from spatial and temporal errors. In an ideal world, unsafe code

would be consolidated into trusted and vetted libraries and only accessible through

provably safe APIs. This work contributes to this effort by ensuring that developers

do not have to manually cast or parse structs.

1 struct MyStruct {

2 field_1: u32,

3 field_2: u32,

4 field_3: u32,

5 }

Listing 2.1: A simple Rust struct with three fields, all u32 integers.

1 fn parse_struct(fields: [u32; 3]) -> MyStruct {

2 let mut my_struct: MyStruct =

3 MyStruct { field_1: 0, field_2: 0, field_3: 0 };

4 let raw_pointer = &mut my_struct as *mut MyStruct;

5 unsafe {

6 *(raw_pointer as *mut u32) = fields[0];

7 *(raw_pointer as *mut u32).sub(1) = fields[1];

8 *(raw_pointer as *mut u32).sub(2) = fields[2];

9 }

10 my_struct

11 }

Listing 2.2: A function that parses three u32 integers into an instance of MyStruct.

Beside spatial errors, buggy code can also create type confusion errors. One issue

that may invite a type confusion error is that of endianness. The concept of endianness

deals with the order in which bytes appear in memory. In a big-endian representation,

the first or most significant byte appears first (i.e., at the lowest address) in memory;

in a little-endian representation, the least significant byte appears first. Accessing

bytes in the wrong order as intended is a type confusion error.
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EBP+16 fields

EBP+12

EBP+8

EBP+4 Return address

EBP Saved base pointer

EBP-4 field_1

EBP-8 field_2

EBP-12 field_3

Figure 2-1: The stack frame for the parse_struct function call.

For an example of what might go wrong, consider a program that calculates the

slope of a line. It does so given a hard-coded point, (1, 1), and a user-provided point,

represented as two 32-bit integers. The program was first written on a big-endian

machine and accessed the bytes of the integers in the correct order. The developer

then loaded the code on a little-endian machine, at the same time remembering to add

a check to make sure the user’s provided y-coordinate does not equal 1, thus preventing

a critical divide-by-zero error. While this check accesses the y-coordinate in the now

correct little-endian order, the developer forgets to update the slope calculation code.

Therefore, the panic-inducing divide-by-zero error is not actually prevented; it can

be exploited by an adversary to perform a denial-of-service attack.

This example illustrates that input handling can be architecture-specific and that

failing to account for this causes memory errors. Another architecture-specific detail is

word size, which determines pointer size and therefore the size of types that represent

pointers. We wish to hide these details from developers who may not understand

or account for them. Since our parser generator system requires knowledge of these

details, we would like the system to be able to accept and then remember the provided

options. This way, the parser generator can be configured once, and developers who

invoke the parser do not have to consider the architecture on which their code is

running.

25



26



Chapter 3

Formal Grammars

Since our solution to the I/O safety problem employs parser generators, we must

first provide some background on formal language theory and grammars. In general,

the goal of formal language theory is to study language syntax, or constraints on

the structure of sentences in a given language. A formal language is defined by an

alphabet, or a set of symbols, and certain rules that determine which combinations

of symbols are valid. For a given language, these rules can be described by a formal

grammar. A grammar is used to build the set of strings that are valid under the

language it describes.

According to Noam Chomsky’s 1956 article "Three Models for the Description

of Language", a formal grammar, which is comprised of symbols and production

rules, can be defined by the tuple 𝐺 = 𝑁, 𝑇, 𝑃 [7]. Symbols can be either terminal or

nonterminal. The set 𝑁 contains nonterminal symbols, which are essentially variables

used only during string production; they do not appear in any strings produced by

the grammar. 𝑁 also contains the start symbol 𝑆, which is used to begin string

production. The set 𝑇 contains terminal symbols; these are the symbols that appear

in strings generated by the grammar. 𝑇 is disjoint from 𝑁 . The set 𝑃 contains

production rules, which are the actions performed on a string to transform it. Rules

take the form (𝑇 ∪𝑁)*𝑁(𝑇 ∪𝑁)* → (𝑇 ∪𝑁)*—that is, each rule maps a combination

of terminal symbols with at least one nonterminal symbol to a combination of terminal

and nonterminal symbols.
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3.1 Parser Generators

Although first proposed by Chomsky for use in the study of natural language, formal

grammars are now important tools in computing applications such as specifying pro-

gramming language syntax. As part of their specification, programming languages

define a grammar that describes valid sequences of tokens. When compiling code, the

compiler must validate that the sequence of tokens can be generated by the grammar.

To validate such input is to parse it; an object that performs this action is called a

parser. The sequence of production rules that built the string is called the derivation

of the string.

There are a few properties that we would like a parser to have. First, it should

be safe—that is, free of memory errors. As discussed in the previous section, bugs in

input-handling code can create dangerous vulnerabilities that adversaries can carefully

exploit using malicious input. Second, the parser should behave deterministically.

Given input to be parsed, there should be at most one possible derivation, and the

result of the parse should reflect this derivation. This property is important because it

is difficult to reason about nondeterministic behavior. Sometimes interpreting input

as one type and sometimes as another type invites the possibility of type confusion

errors, which we want to avoid.

Finally, we wish our parser to be efficient. Different parsing algorithms have dif-

ferent space and time complexities. We would like the parser to have spatial overhead

viable on lightweight microcontrollers, the type of machine on which Tock runs. Fur-

thermore, since we intend for struct parsing to happen in the kernel, we would like

an efficient parsing algorithm that does not add significant performance overhead to

the operating system.
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3.2 Context-Free Grammars and Parsing Expression

Grammars

Beside introducing this formalization, "Three Models for the Description of Lan-

guage" also introduced what is now known as the "Chomsky hierarchy" of formal

grammars. This hierarchy categorizes grammars by the forms of production rules al-

lowed. Type-0 grammars, or unrestricted grammars, allow any production rules that

follow the pattern stated above. Type-1, -2, and -3 grammars permit increasingly

strict subsets of production rules. For example, type-2 grammars, or context-free

grammars (CFGs), only include production rules that map a single nonterminal sym-

bol to a combination of terminal and nonterminal symbols (i.e., 𝑁 → (𝑇 ∪𝑁)*).

Since first introduced by Chomsky, CFGs have been a popular choice for pro-

gramming language grammars. The first language to use a CFG to specify syntax

was ALGOL [8]; more recent uses of CFGs in programming languages include the

Extensible Markup Language (XML) [9] and Google’s Go [10]. GNU Bison, widely

used for creating programming language parsers, generates a parser for a language

based on the language’s CFG [11].

Among programming language grammars, CFGs are popular because they fall in

a sweet spot along the Chomsky hierarchy. Type-3 grammars, or context-sensitive

grammars, are more restrictive than CFGs and require parsing algorithms that keep a

significant amount of state. Because this extra overhead can be expensive, CFGs are

more desirable than context-sensitive grammars. On the other hand, less restrictive

grammars pose their own problems. It has been shown that unrestricted grammars

are equivalent to Turing machines—deciding whether a string was generated by an

unrestricted grammar is equivalent to the Halting problem, which is undecidable [12].

One downside of CFGs is that a single string can have multiple derivations. For

example, consider the following grammar.
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𝑇 = 𝑎

𝑁 = 𝑆 (3.1)

𝑆 → 𝑆 + 𝑆 | 𝑆 * 𝑆 | 𝑎

This grammar describes a simple arithmetic expression that uses only addition and

multiplication. It consists of a single terminal symbol, 𝑎; a single nonterminal symbol,

𝑆, or the start symbol; and a single production rule. This rule provides three choices

for replacing 𝑆: addition of two 𝑆, multiplication of two 𝑆, or the terminal 𝑎. The

order in which these operations are applied determines the value of the expression.

Consider the string 𝑎 * 𝑎 + 𝑎 produced by this grammar. This string has two

derivations: the first derivation consists of the first rule option (addition) followed

by the second rule option (multiplication), and the second derivation consists of the

second rule option followed by the first rule option. This example shows that CFGs

can indeed have multiple derivations and can therefore be ambiguous. This ambiguity

leads to nondeterminism, which in turn leads to type confusion errors.

However, our problem statement necessitates that we interpret struct data without

ambiguity in order to avoid such type confusion errors. We therefore choose instead to

work with a different class of grammars, called parsing expression grammars (PEGs).

Similar to CFGs, PEGs consist of a set of terminal symbols, a set of nonterminal

symbols, and a set of production rules [13]. These production rules take the form

𝑁 → 𝑒, where 𝑁 is a nonterminal and 𝑒 is an expression, again requiring that the

left-hand side consist of only a single nonterminal.

The main difference between PEGs and CFGs is in how PEGs handle expressions.

The right-hand side of a CFG production rule can be the empty string, a single

terminal, a single nonterminal, or a sequence of these symbols. It is also possible

to specify a repetition of symbols using the Kleene star. PEG expressions consist

of all of these options as well as a prioritized choice operator, which lists multiple

expressions eligible for replacement in priority order.
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This prioritized choice operator is specific to PEGs and plays a key role in the

unambiguity of PEGs. When parsing a string generated by a PEG, the prioritized

choice operator enforces that even if multiple expressions match the operator, only

one is selected, and it is selected deterministically based on the order of expressions

specified in the grammar. Whereas multiple derivations might exist when parsing

a string relative to a CFG, the equivalent PEG would contain a prioritized choice

operator that effectively decides which derivation is chosen during parsing.

Consider again the grammar shown in (3.1). Common sense tells us that when

presented with the expression 𝑎 * 𝑎 + 𝑎, we apply the arithmetic order of operations

to perform the multiplication first. This correct ordering corresponds to the first

derivation described above, where we applied the addition rule option before the

multiplication option. If we convert the CFG to a PEG, we can use the prioritized

choice operator in the rule to enforce the order of operations. The resulting PEG will

correctly ensure that multiplication is always performed before addition.

One further distinction between PEGs and CFGs is that the PEG Kleene star

is greedy. When parsing, the expression within the repetition is consumed as many

times as possible. This behavior removes the possibility for ambiguity when deciding

whether an expression appears n or n+1 times. While a CFG parser would explore

both possibilities, a PEG parser simply chooses the greedier option (i.e., the 𝑛 + 1

option).

Because of the unambiguity of PEGs, PEG parsers are more efficient than CFG

parsers. While CFG parsers require 𝑂(𝑛3) time to produce a derivation, PEG parsers

require only 𝑂(𝑛) time with 𝑂(𝑛) memoization. For a system that makes use of

PEG parsers to cast critical structs at startup, this performance speedup is crucial.

Together, PEGs’ unambiguity and efficiency should make it clear that PEGs are a

good choice for our parser generator system.
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Chapter 4

AVID: Solution Overview

To solve the critical issue of improper input handling and validation, we have devel-

oped a system that can automatically generate parsers for developer-defined structs.

Automatic Validation of Input Data (AVID) is motivated by Tock, partially due to

a potential vulnerability that we discovered in its kernel. Tock, an operating system

written in Rust, is designed to run on lightweight microcontrollers [14]. It is inspired

by microkernel architectures; the kernel is divided into three sections: the core kernel,

platform-specific device drivers, and kernel extensions called capsules.

Unfortunately, the low-level operations required of an operating system often in-

volve manipulating raw pointers, necessitating unsafe Rust code. For example,

register addresses vary by board and therefore must be hard-coded. These hard-

coded addresses are then accessed via raw pointers. In Tock, this unsafe code

exists solely in the core kernel and device drivers, where it is absolutely necessary.

Because these components use unsafe code, they must be trusted to have been

implemented correctly and cannot be verified by the compiler.

Trusting code is a famously bad idea [15], and the Tock architecture minimizes

the amount of trusted code by requiring that capsules, which are untrusted, not

use unsafe code. Capsules implement key features such as encryption logic, driver

interfaces, and timers. When a developer wants to add new capabilities to Tock, they

implement new capsules to run on top of the core kernel without writing unsafe

code. This way, the trusted codebase rarely changes or needs to be re-verified.
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Theoretically, at least, adding arbitrary safe Rust code to Tock capsules should

not compromise the security of the operating system. However, the potential vulner-

ability we discovered contradicts this idea. Tock’s console capsule, which provides an

interface for processes to write to peripheral devices, is used by Tock’s implementa-

tion of the print function [16]. Specifically, the implementation of print reserves

a buffer of size 64 within kernel memory and then passes this buffer, along with the

data the user desires to print, to the console capsule.

Unfortunately, the capsule relies on manual, developer-inserted checks to enforce

that the user data fits within the allocated buffer. To confirm this, we removed the

checks and provided improperly sized input from a user application. The result was a

spatial error that enabled a buffer over-read attack. As a result, the print function

ended up printing kernel memory outside of the allocated buffer. This information

leak vulnerability, dubbed "Information Exposure" under the CWE, can expose sen-

sitive data that would be of interest to an adversary (e.g., encryption keys) [17].

Although this capsule vulnerability is merely a demonstration of a potential de-

veloper error, it illustrates the need for a safe input-handling mechanism within the

Tock kernel. Furthermore, it shows that even supposedly safe Rust can, if buggy,

expose vulnerabilities in the operating system. Therefore, it is not enough to simply

minimize the amount of unsafe code; we must also take extra measures to prevent

input mishandling in the kernel. It should be clear that Tock would indeed benefit

from a parser generator system that validates input.

AVID secures struct parsing by automatically generating parser implementations

for structs and allowing the developer to invoke them with a single line of code.

The system harnesses the power of Parsing Expression Grammars (PEGs), which,

as previously described, are unambiguous and therefore allow for efficient parsing.

Requiring minimal developer effort to integrate with existing codebases, the system

protects against memory errors that may arise when manually casting structs. Fur-

thermore, it absolves developers of the need to think carefully about type casting and

architectural details.

We use Pest, an open-source PEG parser generator written in Rust, to create
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struct parsers at compile time [18]. Pest takes advantage of Rust’s procedural macro

system to generate parser implementations based on the tokens being compiled. While

Pest is designed for parsing ASCII characters based on a grammar defined in a sepa-

rate text file, we want to impose as little additional work on developers as possible,

and enable Rust struct definitions to be automatically translated into grammars.

Therefore, significant modifications were made so that Pest’s parsing algorithm could

be applied to struct definitions.

The contributions of this work include a compiler macro, using Pest’s PEG pars-

ing algorithm, which can generate parser implementations from Rust struct defini-

tions. Developers mark structs for parser generation using a novel derive attribute,

shown in the first line of Listing 4.1. This attribute tells the Rust compiler at compile

time to invoke the macro described above on the annotated struct definition. Archi-

tectural details are configured via AVID-specific environment variables, which

can be configured in a central location so that such details are mostly abstracted

away.

Our new, compiler-generated parser exposes a simple and convenient API

that is easy for developers to invoke. Listing 4.2 shows an example usage of a gener-

ated parser. The developer has some input data, represented by the input variable

as an array of bytes. To interpret these bytes as an instance of MyStruct, the devel-

oper simply invokes the method parse_and_create, which first verifies that the

sequence of bytes is valid under the struct grammar and subsequently casts the bytes

to an instance of MyStruct and returns the object.

1 #[derive(Parser)]

2 struct MyStruct {

3 f1: u16,

4 f2: u16,

5 f3: u16,

6 }

Listing 4.1: Annotated Rust struct definition.
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1 input = [...];

2 let ms: MyStruct = MyStruct::parse_and_create(input);

Listing 4.2: Parser invocation.

Motivated by the potential Tock vulnerability example we found, we have inte-

grated AVID with the Tock kernel. Even through Tock’s core kernel is trusted, it is

still important to reduce and consolidate the amount of unsafe code used; AVID

helps accomplish this goal. Following the integration, we show that certain key structs

critical to Tock can be safely cast from memory. This application demonstrates that

it is feasible and worthwhile to invest in input-handling safety mechanisms, which

protect systems against critical I/O-related memory errors.
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Chapter 5

AVID Implementation

We now discuss the implementation of AVID, our input verification solution for kernel-

based I/O. Intended to replace possibly buggy and therefore insecure input handling

in sensitive codebases, AVID absolves developers of the need to manually write struct

parsing routines. AVID currently supports the parsing of simple structs containing

Rust primitives, as typical of kernel data structures. Integrating AVID into existing

systems requires minimal developer effort while preventing the types of careless errors

previously presented, such as certain spatial and type confusion errors.

AVID replaces manual struct parsing code by automatically generating parser

implementations based on struct definitions. To tag a struct for parser generation,

which happens at compile time, developers simply include a single-line source code

annotation above the struct. Using the simple parsing API that AVID exposes,

developers can then invoke the generated parser to validate input and instantiate

a struct based on this input. Critical architectural information required for correct

parsing and instantiation, such as endianness and word size, is configured in a central

location and abstracted away from developers. This design emphasizes usability while

also minimizing the effort needed to integrate AVID into existing codebases.

AVID works by leveraging both an existing PEG parser generator implementa-

tion, called Pest, as well as built-in Rust tools. We chose to work with Pest because

it not only provides us with a working implementation of the packrat parsing algo-

rithm used for efficient PEG parsing but also leverages Rust’s procedural macro tools
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to generate parsers [19]. Unlike standard Rust macros, which many other parsing

libraries use, procedural macros take as input the code being compiled—this is useful

for our purposes since we would like AVID to generate parsers based on only existing

struct definitions.

5.1 Extensions to Pest

Pest was originally intended to parse strings of ASCII characters, while AVID parses

arrays of raw binary data. Extending Pest to support this required significant mod-

ifications. First, we needed to change the mechanism for specifying the grammar.

Originally, Pest accepted grammars via text files provided as an additional argument

to the procedural macro. This is inconvenient for AVID, as we would like the existing

Rust struct definition to act as the grammar. Passing the struct information through

a text file would not only be redundant but also invite the possibility of dangerous

inconsistencies. Instead, we extended the procedural macro to determine the struct

definition from the tokens passed to it at compile time. The resulting interface is

simpler, less error-prone, and easier for developers to use.

Unlike AVID, Pest’s original use case of parsing ASCII characters required no

knowledge of data types. To allow our toolchain to parse and instantiate structs,

we augmented Pest with built-in parsing and generation rules for each Rust primi-

tive. These rules are based on preexisting built-in Pest rules, which were previously

relevant for ASCII parsing—one example is a WHITESPACE rule that matched a

single whitespace character (e.g., space, tab). Each of our new primitive parsing rules

consumes from the input the same number of bytes as the size of the primitive; each

generation rule casts these bytes to the respective type.

However, knowing how many bytes to consume and in which order to consume

them requires knowledge of platform-specific architectural details like word size and

endianness. For example, Rust’s usize and isize primitives depend on the archi-

tecture’s word size. As previously demonstrated in section 2.1, not accounting for

these details can cause a careless developer to create dangerous vulnerabilities. To
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avoid this issue, we augmented Pest with a simple mechanism to specify such param-

eters before parser generation. AVID currently supports two such parameters: one

for word size and one for endianness. When the primitive rules described above are

applied, these parameters, stored in environment variables, are accessed to ensure

that bytes are correctly cast.

Another significant change made to Pest is the last step of struct instantiation

after a valid parse. While Pest parsers originally returned simply whether an ASCII

string was a member of the provided grammar, AVID’s use case requires that the

validated input be safely cast to an instance of the relevant struct. We achieved

this by extending the parser API to provide not only parsing but also instantiation

capabilities. Specifically, AVID uses the aforementioned typecasting methods to cast

the input to the respective types of each struct field and then returns an instance of

the struct with these field values.

5.2 AVID Interface

We now further explore the mechanisms behind the AVID toolchain, illustrated by

Figure 5-1. Before compilation, the developer marks each struct intended for parser

generation with a Rust derive attribute for AVID’s Parser trait (1). Within the

AVID codebase, the procedural macro entry point is marked as the derive handler for

this Parser trait. This procedural macro and the tools it uses comprise AVID.

Figure 5-1: AVID toolchain implementation and interface.
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During compilation, after the compiler has constructed an abstract syntax tree of

the program, it checks for any derive attributes on user-defined types. The compiler

isolates the tokens that represent this type, passing them to the respective derive

handler in the form of a stream of token trees. AVID then uses syn [20], a third-

party library, to convert the tokens to types from which the original struct definition

information can be more easily accessed (2).

The procedural macro uses this struct information to procedurally generate addi-

tional code to add to the program: the parser API, type-casting functions for struct

instantiation, and a rule corresponding to the struct grammar. Code generation is

made possible by a macro provided by quote [21], a third-party library (3). This

generated code is returned to the compiler as another stream of token trees, which

the compiler then appends to the existing syntax tree of the program.

The aforementioned struct rule is represented as a sequence of rules, each rule

corresponding to the respective type of each struct field. AVID outputs this new rule

to the compiler as a function that can be accessed whenever the generated parser is

invoked. However, this rule method is not meant to be used directly by developers.

AVID also outputs an API for interacting with the generated parser, implemented

as a trait for the user-defined struct. This API has two main uses: to validate that

input bytes can be interpreted as the given struct type, and to instantiate a struct

of this type from the input. The functions corresponding to these uses are exposed

to the developer as methods of the given struct type and are applied at runtime to

provided input data.

AVID’s parsing functionality is dependent on the packrat parser implemented

in Pest (4). When invoked, the parser uses the outputted struct rule function to

match and consume bytes in the order of the struct fields. After a successful parse,

AVID’s instantiation functionality can be used to return an instance of the given

struct type with field values corresponding to the input bytes. Instantiation is made

possible by the generation methods mentioned above, which use the third-party li-

brary byteorder [22] to read bytes as different Rust primitive types (5).
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5.3 Design Decisions

There were several key design choices we made while developing AVID that affect

its usability, functionality, and interface. One previously mentioned decision is to

use Rust struct definitions as the grammars that determine parser behavior. Many

other parsing libraries store type grammars in separate files, sometimes represented

in a domain-specific language (DSL). Reasons for recording grammars this way in-

clude language agnosticism as well as the ability to specify semantics not possible in

a programming language’s struct definition, such as length fields and magic fields.

However, since AVID is specific to Rust and does not support such special fields, du-

plicating the type information outside of the source code would unnecessarily increase

programmer effort and the potential for errors.

When considering AVID’s use case, we made a conscious decision to restrict what

design patterns the system would support. One popular pattern, especially in net-

working applications, is a packet type with a length field and a payload of that length.

While the presence of the length field may help protect against inadvertent out-of-

bounds memory access via the payload, the length field being attacker-controlled still

poses security risks for vulnerable systems. For data whose interpretation is influ-

enced by an adversary, there is no way to guarantee that it is safely or correctly

parsed. We instead wish to apply AVID to the simpler types of fixed-size structs

typically used in kernels.

Another design choice related to AVID’s developer interface is the choice to pass to

the parsing API a byte slice containing the input to validate. Another option initially

considered was to pass a raw pointer to the start of the memory region. However,

since raw pointers have no regard for memory regions or object boundaries, reading

from a raw pointer without bound could result in spatial errors. We instead choose

to have the developer pass in an array of bytes from which and only from which

the struct is instantiated. This provides developers with the capability of enforcing

memory regions in their application.

Since AVID requires knowledge of architecture-specific details such as endianness
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and word size to correctly instantiate structs, we needed a method of specifying these

details that was effective as well as usable. In our initial prototype, endianness and

word size parameters were passed in to the parser API on each invocation. This

pattern is not ideal not only because of information redundancy but also because we

would like to hide such details from the average developer.

On a given platform, endianness and word size change very infrequently, if at

all. Therefore, these parameters can be hard-coded in a central location and only

changed if absolutely necessary. Furthermore, saving these parameters in a central

location absolves developers of the need to think about such details when invoking

the parser. Therefore, our solution is that before compilation, a maintainer of the

given codebase sets certain AVID-specific environment variables that the toolchain

later accesses when trying to instantiate structs. These environment variables can be

set manually or in a Makefile, if applicable.

5.4 Example: Use Case of AVID

We now show an example use case of AVID. Consider Listing 5.1, which contains the

definition for a simple struct that holds system call arguments:

1 struct Syscall {

2 driver: u32,

3 command: u16,

4 arg1: usize,

5 arg2: usize,

6 }

Listing 5.1: System call struct definition.

To mark this struct for parser generation, we add the derive attribute for the Parser

trait above the struct definition (shown in Listing 5.2).
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1 #[derive(Parser)]

2 struct Syscall {

3 driver: u32,

4 command: u16,

5 arg1: usize,

6 arg2: usize,

7 }

Listing 5.2: Annotated system call struct definition.

During compile time, the tokens of the Syscall struct definition will be passed

to AVID’s procedural macro. Using these tokens, AVID will output a rule to parse

a Syscall struct, which is a sequence consisting of a u32, a u16, and two usize

primitives. However, since the size of a usize primitive depends on the word size

of the target, we must set AVID’s word size environment variable to equal this value.

We also set AVID’s endianness environment variable based on the architecture’s en-

dianness. On Unix systems, these environment variables can be set with the export

command, as shown in Listing 5.3.

1 export AVID_ARCH_SIZE="64"

2 export AVID_ENDIANNESS="LE"

Listing 5.3: Setting AVID environment variables.

Finally, we can invoke the API of the generated parser. Suppose we have a byte

slice that we want to interpret as a Syscall struct. Listing 5.4 shows how the

parse_and_create method—automatically generated by AVID—is invoked with

the byte slice.

1 let input = [...];

2 let syscall = Syscall::parse_and_create(input);

Listing 5.4: Invocation of AVID’s exported parse_and_create method on a slice

of input bytes.

Here, parse_and_create first validates the input and then instantiates and re-

turns a Syscall struct containing this input. Using our system, we can be sure that
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the returned struct represents a correct cast of the input bytes.

5.5 Integration with Tock

To fulfill our goal of securing input validation in Tock, we integrated the AVID

toolchain into the Tock kernel, invoking the parsing mechanism in various subroutines

that handle input. AVID integration was as simple as adding it as a Cargo dependency

of the Tock kernel as well as configuring AVID’s necessary environment variables in

Tock’s Makefile. Applying the toolchain to parse_and_validate_tbfheader,

where raw pointers into flash memory are read from into application header structs,

was a simple and effective way to add a layer of verification to the long and complex

parsing method.

AVID also proved useful for a couple of other Tock functionalities. Running Tock

on a board from Nordic Semiconductor’s nRF52 series, we used AVID in Tock’s

nRF52-specific library to verify a struct of system call arguments—usize primitives

passed from user space via the board’s memory-mapped registers—for Tock’s Com-

mand system call. Using AVID to ensure that usize’s are read as the correct size is

especially useful in this case, as reading out-of-bounds from memory-mapped registers

could result in a dangerous spatial error within sensitive kernel memory.

Lastly, we integrated AVID with Tock’s Bluetooth Low Energy (BLE) advertising

tools within the userland library libtock-rs. While AVID is not designed to parse a

full Bluetooth packet, which takes the form of a length field and a variable-length

payload, we used it to securely parse the packet header. This validated header can

then be safely used to read the rest of the payload. This same Bluetooth header

parsing can be added to Tock’s Bluetooth-related capsules, but for our purposes, it

was easier to test the integration by sending packets from userland.

Many projects targeted at embedded systems face unique implementation chal-

lenges related to platform and architecture constraints, and AVID is no different. One

Rust-related issue frequently encountered by developers of embedded systems is lack

of support for Rust’s standard library. Rust’s standard library contains commonly
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used types and functionality that make life easier for Rust developers. However,

since some of its tools contain architecture-specific operations such as file I/O, it is

not supported by all targets, including Tock’s. Therefore, integrating AVID with Tock

involved modifying the AVID codebase and all dependencies to use Rust’s no_std

configuration.

A more unique issue to integration with Tock specifically is the absence of a

heap within the Tock kernel. Not being able to dynamically allocate memory during

parsing provided interesting challenges for the packrat parsing algorithm, which uses

a stack to keep track of current rules. While the original Pest implementation used a

Rust Vec to record this information, since Vec’s are dynamically allocated, this was

not possible for our integration. We instead used a fixed-size array of size 50 for the

stack. This fixed-size array constrains the number of nested rules to 50, which should

be more than sufficient for simple kernel data structures.
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Chapter 6

Evaluation: Security

In embedded systems with a variety of potentially untrusted peripheral devices, cor-

rectly validating external input is critical. Tock aims to bring security to embedded

systems by adopting an isolated kernel design as well as leveraging Rust’s security

features. However, even Tock is not immune to bugs and design errors. In June

2018, the publication of CVE-2018-1000660 revealed a bug within parse_and_-

validate_tbfheader such that a compromised Tock capsule would be able to

access arbitrary memory [23]. While this vulnerability is no longer an issue after

the deprecation of TbfHeader v1, it reveals the very real possibility that there are

further input handling errors in Tock.

The reason for this vulnerability is not a parsing or casting error but rather a

design error combined with side-effects of unsafe Rust. Unfortunately, AVID is

not equipped to protect against this design error. The landscape of input handling-

related exploits is so broad and diverse that it is difficult if not impossible for a

single, comprehensive solution to protect against every improper input validation

vulnerability. Threat models constantly change as technology evolves and is used in

new ways.

Therefore, AVID is not intended to be a catch-all solution for arbitrary input

validation errors. It is instead designed to handle a specific set of issues that Rust

developers face when implementing input handling routines. Specifically, AVID is

able to prevent spatial errors caused by incorrect pointer arithmetic; spatial errors
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caused by reading out-of-bounds memory; and type confusion errors during struct

instantiation, including those due to erroneous architectural details (i.e., endianness,

word size). Such dangerous errors may seem simple to an experienced developer, but

complex systems with a large amount of input handling code often contain such bugs.

6.1 Tock Vulnerability Example

We now consider a manufactured vulnerability within Tock that can be avoided by

enabling AVID. In Tock, system call arguments are read from memory-mapped reg-

isters by incrementing a stack pointer. Since it is possible for system call arguments

to be pointers, all arguments are of the Rust usize primitive type—usize’s, like

pointers, have length equal to the word size of the given architecture.

However, a careless developer may not realize that the length of a usize depends

on the platform. Instead, they may assume that the length is the same as on their

personal machine, perhaps 64 bits. On the other hand, small, portable boards like

those from the nRF52 series usually use only 32-bit words. Mistakenly reading 64-bit

integers instead of 32-bit integers will cause a spatial error such that kernel memory

following the memory-mapped registers will be interpreted as usize data. There-

fore, depending on how many system call arguments are being accessed, the careless

developer will introduce a dangerous bug that leaks kernel memory.

We introduced this bug to the Tock kernel to demonstrate how such an error

could be abused. We created a simple user application that invoked a system call

from Tock’s Bluetooth advertising driver capsule. This system call, which sets the

transmitting power of the driver, accepts a single argument: the desired transmitting

power in milliWatts [24]. However, the erroneous kernel code will not pass to the

capsule the user’s desired power but rather the contents of kernel memory from just

past the memory-mapped registers. Figure 6-1 shows the results of this error—the

capsule attempts to set the transmitting power to the exposed contents of kernel

memory. Although the driver is not able to support every possible provided trans-

mitting power, in certain cases, an adversary could perform a side-channel attack and
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read kernel memory by measuring the transmitting power.

Figure 6-1: Demonstration of our manufactured Tock vulnerability.

Figure 6-2: Demonstration of correct behavior after applying AVID.

We then applied AVID in an attempt to fix the system call struct bug. Re-

placing the incorrect parsing code with an invocation of parse_and_create, we

see in Figure 6-2 that the vulnerability is resolved—the user’s desired transmitting

power, not contents of kernel memory, are passed to the capsule. With AVID in use,
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the careless developer no longer needs to manually read system call arguments from

memory. Furthermore, AVID keeps track of architectural details using the correctly

set environment variables, so the developer has no reason to be mistaken about the

architecture’s word size in the first place.

6.2 Out-of-Scope Threats

We now pivot to consider specific issues AVID is not designed to solve and discuss

our reasoning behind these decisions. Firstly, AVID supports neither packet types

nor type-length-value (TLV) data and thus is not able to ensure correct length-based

payload parsing. There are several reasons for this decision. PEGs, which are context-

free, do not allow for length fields or other special fields that determine how the rest

of the input is interpreted. Since we wish for AVID to benefit from the unambiguity

guarantees of PEGs, the system is not able to support such fields.

Furthermore, allowing such fields would require us to change AVID’s type defi-

nition interface. The fact that AVID reads type information from the Rust struct

definition at compile time means that developers do not have to put in extra effort

to specify struct grammars. Changing the interface to allow for special fields would

complicate the system and increase developer effort to enable AVID. On the other

hand, a developer that parses a packet header using AVID can confidently use the

parsed length field to read the packet payload.

Another decision we made when designing AVID’s scope of defense was to keep the

system specific to Rust. Some parser generators, like Kaitai, are language-agnostic;

they help solve the problem of type consistency across multiple platforms [25]. Since

type information is lost when data moves past a system boundary, correctly recon-

structing this type once it reaches its destination is crucial lest a type confusion error

arise. Tools like Kaitai assist with this process by keeping track of type information

in a central location that can be accessed by Kaitai toolchains on multiple platforms.

However, since AVID leverages Rust safety guarantees, we decided not to ex-

tend AVID to other languages without such guarantees (e.g., C). Furthermore, since
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AVID is designed to be enabled within kernels, which are usually unilingual, we

have no need to implement the toolchain for multiple languages. Lastly, extending

AVID to multiple languages would require developers to specify type grammars in

a language-agnostic DSL, burdening them with extra work when enabling AVID in

their codebases.
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Chapter 7

Evaluation: Performance

We now evaluate and discuss the performance overhead of AVID. We not only present

microbenchmark results for both compile- and runtime but also consider AVID’s

performance implications for representative use cases of the toolchain within Tock.

Evaluation code is included in the appendix.

7.1 Microbenchmarks

Microbenchmark experiments were run on an Intel Celeron N3060 CPU outside of

Tock. Microbenchmark measurements were performed outside of Tock for increased

timer precision. We applied AVID to a bare-bones Rust program containing only

the necessary import statements and struct definition(s). The program, provided in

Listing A.4, was compiled and run with Rust nightly compiler 1.31. We performed

three sets of microbenchmark measurements, regarding program compile time with

and without AVID under various struct configurations, input parsing time, and struct

instantiation time.

Compile time was measured as the time to compile only the Rust file containing

our simple program. Starting with a struct definition containing three fields of u16’s

(Rust’s unsigned 16-bit integer primitive), we compared the compile time of the pro-

gram when AVID parser generation was enabled versus disabled. Figure 7-1 presents

our results. Measuring elapsed time using Unix’s date command, we saw that en-
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Figure 7-1: Compilation time with and
without AVID parser generation.

Figure 7-2: Compilation time versus
number of struct fields.

Figure 7-3: Compilation time by types
of struct fields.

Figure 7-4: Compilation time for sim-
ple versus nested structs.

abling AVID parser generation for our three-field struct added 170.15 milliseconds to

the original 742.16 ms, for a total of 912.31 ms—an approximate 23% overhead.

We next considered how struct size, or number of struct fields, affected compilation

time. For this experiment, we varied the number (but not the type) of fields in our

original struct. During parser generation, AVID outputs reader methods for each

primitive type used, which are later invoked during struct instantiation. Since our

structs contained only u16’s, we see from the results in Figure 7-2 that the amount

of code generated by AVID did not significantly change with the number of struct

fields containing u16’s.

A logical follow-up to this experiment is to test whether a struct with more diverse

field types would take longer to compile than a struct containing fields of the same

type. We modified our original three-field struct by changing one of the three field
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types to an u8 (unsigned 8-bit integer) and another field to an i16 (signed 16-bit

integer). Figure 7-3 compares the compilation time for this new struct definition

compared to the original definition. Although a struct with more diverse types re-

quires that AVID generate more code, there turns out to be no significant increase in

compilation time.

Finally, we explored whether AVID’s parser generation took significantly more

time for nested structs. For this measurement, we modified the program to contain a

second struct definition, one of whose fields was our original struct type. We measured

compilation time for the simple and nested structs both with and without enabling

AVID parser generation. Results are shown in Figure 7-4. We see that while without

AVID, compilation time for the two types of structs is not significantly different,

enabling AVID causes a significant increase in compilation for the nested struct. The

reason for this difference is that the AVID must generate additional parsing and

casting functionality for the outer struct to correctly handle the inner struct.

We now move on to consider how varying struct definitions affect the time for

AVID to parse input. Specifically, using Rust’s time library, we measured the time

elapsed while AVID’s exported parse method validated provided input bytes. The

time for the parse function to complete is largely the time for Pest’s packrat parser

implementation to validate the input.

We first returned to considering the effect of number of struct fields, again all

u16’s. Intuitively, a larger struct should take longer to parse, as more input must

be checked. Figure 7-5 confirms this suspicion—larger structs take longer to parse.

On average, extending a struct definition to contain an additional u16 increased the

time to parse by approximately 822.13 nanoseconds.
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Figure 7-5: AVID parse time versus
number of struct fields.

Figure 7-6: AVID parse time by types
of struct fields.

Figure 7-7: AVID parse time for
nested versus five-field structs.

Figure 7-8: AVID instantiation time
versus number of struct fields.

Figure 7-9: AVID instantiation time
by types of struct fields.

Figure 7-10: AVID instantiation time
for nested versus five-field structs.

56



We repeated the above experiments regarding field type diversity and nested

structs while measuring parse time. Changing the original struct of three u16’s

to a struct containing a u8, a u16, and an i16 did not significantly affect parse

time, as shown in Figure 7-6. To measure the effect of nested structs on parse time,

we compared a simple struct containing five u16’s to the original three-field struct

nested within a parent struct with an additional u16 field, for a total of five fields.

We again found that there was no significant difference in parse time for these two

struct definitions, as shown in Figure 7-7.

Lastly, we considered the time taken to instantiate structs using AVID’s novel in-

stantiation functionality. The instantiation routine does not include input validation

and is intended for use only on previously validated input. We repeated the same

measurements as completed above for the parse time experiments, considering the

effects of struct size, field types, and struct nesting.

We again found that larger structs took longer to instantiate. Results are shown

in Figure 7-8. Each additional u16 increased the time to instantiate by an average

of approximately 157.66 nanoseconds. This result should again be intuitive, as the

amount of work to instantiate a struct increases linearly with the number of fields.

Also similar to our parse measurement results, we see in Figure 7-9 that our struct

with more diverse fields did not take a significantly different amount of time to in-

stantiate compared to the original three-field struct.

On the other hand, unlike our parse time results, instantiating a nested struct took

significantly longer than a simple struct with the same number of fields. Results are

shown in Figure 7-10. For the nested struct, instantiation time increased from 1021.6

nanoseconds to 4481.0 nanoseconds—a 3458.4-nanosecond or approximately 338%

increase. The reason for this is that the instantiation method for the outer struct

must validate the bytes corresponding to the inner struct; therefore, the instantiation

routine for the outer struct includes the parsing routine for the inner struct.

57



7.2 Tock Integration

After completing our AVID integration with Tock, we considered the performance

implications of enabling the toolchain. Running Tock on Nordic Semiconductor’s

nRF52832 board, compiled with Rust nightly compiler 1.30, we chose certain regions

of the code base that handle external input to implement representative applications

of AVID. These applications include application header parsing, system call argument

validation, and Bluetooth packet header construction.

Our first application is our original motivating example for integrating AVID

into Tock: the parsing and validation of a TbfHeader. On startup, Tock loads

application metadata from flash memory into TbfHeader structs. Our goal is to

use AVID as a level of verification over Tock’s long and complex parse_and_-

validate_tbfheader function. We enabled AVID’s validation routing on two

sub-structs of TbfHeader.

Enabling AVID parser generation and validation for these two structs, we mea-

sured the difference in application load time (for a single application) at startup.

Results are shown in Figure 7-11. This procedure was repeated 100 times by run-

ning a custom script that repeatedly reloaded the application onto the board. Time

elapsed was measured in number of clock ticks, directly using the on-board clock.

This clock, whose frequency is 32.768 kHz [26], gives us a measurement granularity

of approximately 30.5 microseconds.

We can see that enabling AVID validation within parse_and_validate_-

tbfheader increased the number of clock ticks spent on loading the application from

3 to 11—an overhead of approximately 244 microseconds or 267%. We ran the same

experiment two more times, each time disabling parsing for one of the two structs,

and found that the time to parse and instantiate each struct was approximately equal:

4 clock ticks.
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Figure 7-11: Time to load applications in Tock with and without AVID enabled.

Figure 7-12: Time to perform a system call in Tock with and without AVID enabled.

Figure 7-13: Time to send Bluetooth advertising packets in Tock with and without
AVID enabled.
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We next measured the overhead for applying AVID to system call argument val-

idation. System call arguments are passed as usize fields from userland and then

read by the kernel from memory-mapped registers. Using AVID to ensure that the

usize’s are correctly read is critical here, as accidentally reading the nRF52’s 32-bit

usize primitives as 64-bit would cause a spatial error that exposes kernel memory.

For this example, we created a user application using libtock-rs that repeatedly

measured the time for batches of ten system calls to complete. Time elapsed was

again measured using the on-board clock, this time via the system call interface

exposed to userland. In order to further investigate the significant overhead imposed

by enabling AVID, we performed three different measurements: completion time with

AVID disabled, completion time with only AVID parsing enabled, and completion

time with both AVID parsing and instantiation enabled.

Figure 7-12 shows us that there was again a significant performance overhead for

enabling AVID validation. We saw that the bulk of AVID’s overhead is imposed by

its parsing functionality. After enabling parsing, the average number of clock cycles

spent per system call increased from 1.424 to 6.280—an overhead of approximately

148.2 microseconds or 341%. Enabling struct instantiation on top of parsing only

incurred a further overhead of approximately 0.567 clock cycles per system call—an

additional overhead of approximately 17.3 microseconds or 39.8%.

Our final example Tock integration is with libtock-rs functionality that constructs

Bluetooth advertisement packets. There are many places we could have enabled Blue-

tooth header parsing, including Bluetooth-related Tock capsules as well as architecture-

specific networking routines. We chose to integrate AVID with libtock-rs’ Bluetooth

tools for ease of packet creation and performance measurement. Time elapsed was

again measured with the on-board clock via system call from userland.

Figure 7-13 shows us that the performance overhead for this application was not

as significant as for the previous examples. Time to send an advertisement packet

only increases from 14.01 to 14.13 clock ticks when AVID is enabled—an increase

0.85%. One possible reason for the overhead being much smaller in this example is

that the struct being parsed is much smaller, containing only three bytes.
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7.3 Discussion

We now further discuss the significant performance overhead imposed by AVID’s

parsing functionality. To do so requires first examining certain details of the parser

implementation that AVID leverages. As AVID invokes its parse method on the

provided input data, it saves the current parser state as a ParserState struct.

This struct contains certain metadata such as the parser’s current position within the

input as well as the current rule being examined.

Since rules can be nested, AVID saves a list of the current rules as a stack. In the

original Pest implementation, this stack was represented by a Vec. However, since

AVID is not able to support dynamically allocated data structures (including Vec’s),

in AVID, this stack is instead represented by a fixed-size array, as described in section

5.5.

Sequences of rules are implemented as sequences of nested closures. Each closure

accepts a ParserState and then passes to a method of ParserState a closure

that accepts the same ParserState. This pattern results in the same instance of

ParserState—including the contents of its stack field—being repeatedly pushed

onto and then popped off of the current call stack.

This repeated passing of the ParserState’s stack results in significant slowdown

of AVID’s parsing functionality. Possible solutions to this issue include decreasing the

size of the fixed-size array that represents the ParserState stack; rethinking parser

internals to not pass around instances of ParserState as function arguments; and

statically allocating the stack so that only one instance of it exists.
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Chapter 8

Related Work

In this chapter we review previous approaches to input validation for memory safety

and compare them to AVID. There are many approaches to secure input handling in

complex systems. Methods orthogonal to AVID include tagged architectures, infor-

mation flow control, and software compartmentalization [27] [28] [29]. However, in

this section we choose to focus on parser generators and other input validation tech-

niques with functionality more similar to AVID. Qualities being compared include

use cases, scopes of defense, and usability.

8.1 Input Validation Techniques

We first consider previous work on parsing solutions for data types and binary formats.

Qualities being compared are presented in Table 8.1. Motivated by input injection

attacks, Hermerschmidt et al. [30] describe a system that is able to safely and correctly

encode input for use in a document described by a context-free grammar. While the

system is evidently successful in preventing XSS attacks, its scope is too limited for

our intended use case. AVID goes beyond this system by parsing and instantiating

data structures at runtime as well as limiting the grammar to ambiguity-free PEGs.

Hammer is a parser generator for binary formats. Hammer generates packrat

parsers, the same linear-time, memoized parsers used by AVID to parse PEGs [19].

However, Hammer’s approach is different from AVID in that Hammer uses parser

63



Features and attributes

Ambiguity-free Packrat parser Instantiation Supports Rust

AVID 3 3 3 3

Hermerschmidt et al. 7 7 7 7

Nail 3 3 3 7

McHammerCode 3 7 3 7

Table 8.1: Comparison of AVID and related input validation solutions.

combinators to build the final parser out of multiple sub-parsers. Unlike AVID and

Kaitai, Hammer is only able to parse input and cannot instantiate a struct based on

the input. Additionally, Hammer does not support Rust code.

Nail is a binary format parser generator that extends Hammer with an API that

is more useful to developers [31]. Specifically, Nail advertises that it is able to output

structs from parsed input and that it supports length field matching. Although

grammar operators in Nail behave similarly to PEG rules (e.g., ordered choice, greedy

Kleene star), Nail does not use a packrat parser but rather a simpler and less efficient

top-down parser. Also unlike PEGs, Nail’s grammar is not context-free—developers

can include length fields that influence how input is parsed. This behavior is useful in

certain contexts (e.g., network packets), but dangerous in that attackers have control

over this field (e.g., the Heartbleed attack). Furthermore, the fact that Nail is written

in C leaves something to be desired for our intended use case.

McHammerCode is an encoder that is also based on Hammer [32]. Like [30],

McHammerCode is motivated by and intends to prevent input injection attacks.

McHammerCode goes beyond [30] in that like AVID, it is able to create language

primitives (e.g., ints, floats) from parsed input and return them to the user. Un-

fortunately, McHammerCode’s grammar is dangerously powerful. Not only does it

allow length fields, but also offset rules that cause the program to access memory at

calculated but arbitrary offsets based on user input.
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One common use case for manually parsing data structures at runtime is in the

context of networking. Standardized packet types cause developers to include hard-

coded input validation and handling in their networking applications. Correct han-

dling of this third-party data is critical since it is untrusted and possibly malicious,

and there have been many attempts to secure networking code with parser generators

[33] [34] [35] [36] [37] [38] [39]. However, such parsers are designed for different scenar-

ios from AVID and therefore optimized for different constraints. For example, while

packet parsers must be able to handle variable-length packet types, AVID distrusts

types with attacker-controlled length fields and does not support them.

8.2 Parser Generators

AVID’s parsing mechanism leverages a parser generator. When developing the sys-

tem, instead of rolling our own from scratch, we decided to integrate an existing

implementation. While we ended up choosing to leverage Pest, there were several

other contenders that we initially considered: Oak [40], Kaitai [25], and Nom [41].

Oak is a PEG parser generator written in Rust and intended to be used for parsing

ASCII characters. Unlike Pest, Oak supports semantic actions: context-dependent

rules that can affect how future input is parsed. While Pest generates parsers using

procedural macros, Oak instead employs regular Rust macros to create parsers—in

Oak’s case, the grammar is simply the tokens passed into the macro invocation. Oak’s

interface is therefore undesirable for our use case; we prefer for Rust struct definitions

to act as grammars. Furthermore, at the time this thesis was written, Oak did not

support all valid PEGs, including certain recursive grammars.

Kaitai generates parsers for binary formats described by Kaitai Struct, its DSL.

Because Kaitai grammars are defined in this DSL, commonly-used data-types can be

defined just once and then parsed on multiple platforms. Kaitai Struct is much more

expressive than PEGs and can express types such as TLV data, where the value of

a length field specifies the size of the type. This expressiveness is useful, but it also

makes Kaitai parsers less performant than PEG parsers. While Kaitai offers runtime
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libraries for a variety of languages, Rust is currently not one of them.

Similar to Hammer, Nom uses parser combinators to build parsers for binary

formats. Nom is written in and intended for use in Rust. Unlike Hammer, Nom is

able to instantiate structs from parsed input. Furthermore, unlike both Hammer and

AVID, Nom is able to parse context-dependent TLV types. One attractive feature

of Nom is that the library is functional in a no_std context without modifications.

Nom is also able to be integrated with C applications with an exported C API [42].
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Chapter 9

Conclusion

AVID is an original input validation solution for Rust that generates parser imple-

mentations that safely parse and instantiate structs from untrusted input. Integrating

AVID with existing systems requires minimal developer effort—to trigger parser gen-

eration, developers only need to add a simple source code annotation above each

struct. Invoking the parsing and instantiation routines is as simple as passing a byte

slice to AVID’s generated parser API. Architectural details can be configured in a

central location using environment variables so that the average developer need not

concern themselves with such specifics.

AVID prevents certain types of critical type confusion and spatial errors. To-

gether, AVID’s parsing and instantiation routines ensure that input is validated and

then correctly cast to the desired struct type. In our exploit evaluation, we showed

how AVID can be used to successfully prevent a type confusion error related to in-

correct usize length. In our performance evaluation, we found that parsing and

instantiation times intuitively scale with the size of the struct, or number of fields.

AVID’s implementation leverages Pest as well as Rust’s procedural macro system.

Pest, a PEG parser generator, provides AVID’s generated parsers with unambiguity

guarantees. To uphold these guarantees, AVID restricts what types of structs are able

to be parsed—packet types are not supported, as the influence that the length field

has over struct parsing requires that grammars not be context-free. Instead, AVID is

best suited for simple kernel structs containing Rust primitives, and its unambiguity
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and safety guarantees make it a helpful tool for this use case.

9.1 Future Work

One obstacle we faced when enabling AVID’s parser generation for Tock’s TbfHeader

struct was that one of the sub-structs contained a string field. While C strings are

relatively simple to parse because of null termination, Rust strings are not null-

terminated—parsing a Rust string requires extra information beside the provided

input. In the future, it would be beneficial to implement parsing of C-formatted

strings. However, this would need to be executed in such a way such that there is no

possibility for confusion or ambiguity between C- and Rust-formatted strings.

We would also like to add support for other types of Rust types: enums and

tuple structs. Parsing and instantiating these data types is conceptually the same as

doing so for structs. The only hurdle for modifying AVID to support them is to add

functionality to the procedural macro that can distinguish struct, enum, and tuple

struct definitions; gather field information using their respective syn API’s; and then

generate parser implementations accordingly.

Runtime performance was not an immediate priority while implementing AVID,

and the significant overhead incurred by enabling AVID in Tock indicates that there is

certainly room for improvement. While parsing and instantiation take only a few mi-

croseconds on modern laptop processors, this extra overhead can become substantial

for smaller systems like the nRF52 series. Especially for high-throughput applications

of AVID such as system calls and packet header parsing, it is important to keep in

mind the resource constraints of embedded systems and optimize accordingly.
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Appendix A

Code References

A.1 Security Evaluation Code

In this section, we present the code used to perform the security evaluation discussed

in 6.1. The original Tock implementation is also provided in Listing A.1 for reference.

Note that in Listing A.3, system call arguments are first parsed using AVID into

a separate struct; the fields of this struct are then copied into the COMMAND enum

instance. The reason for this is that AVID currently cannot accept enum definitions

as grammars. Resolving this issue is an area for future work, as mentioned in section

9.1.
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1 /// Get the syscall that the process called.

2 unsafe fn get_syscall(

3 &self,

4 stack_pointer: *const usize

5 ) -> Option<kernel::syscall::Syscall> {

6 // Get the four values that are passed with the syscall.

7 let r0 = read_volatile(stack_pointer.offset(0));

8 let r1 = read_volatile(stack_pointer.offset(1));

9 let r2 = read_volatile(stack_pointer.offset(2));

10 let r3 = read_volatile(stack_pointer.offset(3));

11 // ...

12 let svc_num = [...];

13 match svc_num {

14 // ...

15 2 => Some(kernel::syscall::Syscall::COMMAND {

16 driver_number: r0,

17 subdriver_number: r1,

18 arg0: r2,

19 arg1: r3,

20 }),

21 // ...

22 }

23 // ...

24 }

Listing A.1: Original Tock system call struct parsing routine.
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1 /// Get the syscall that the process called.

2 unsafe fn get_syscall(

3 &self,

4 stack_pointer: *const usize

5 ) -> Option<kernel::syscall::Syscall> {

6 // Get the four values that are passed with the syscall.

7 let r0 = read_volatile(stack_pointer);

8 let r1 = read_volatile((stack_pointer as *const u64).offset(1))

9 as usize;

10 let r2 = read_volatile((stack_pointer as *const u64).offset(2))

11 as usize;

12 let r3 = read_volatile((stack_pointer as *const u64).offset(3))

13 as usize;

14 // ...

15 let svc_num = [...];

16 match svc_num {

17 // ...

18 2 => Some(kernel::syscall::Syscall::COMMAND {

19 driver_number: r0,

20 subdriver_number: r1,

21 arg0: r2,

22 arg1: r3,

23 }),

24 // ...

25 }

26 // ...

27 }

Listing A.2: Tock system call struct parsing routine with manufactured vulnerability.
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1 #[allow(dead_code)]

2 #[derive(Parser)]

3 struct Command {

4 driver_number: usize,

5 subdriver_number: usize,

6 arg0: usize,

7 arg1: usize,

8 }

9

10 /// Get the syscall that the process called.

11 unsafe fn get_syscall(

12 &self,

13 stack_pointer: *const usize

14 ) -> Option<kernel::syscall::Syscall> {

15 let input =

16 slice::from_raw_parts(stack_pointer as *const u8, 4 * 64);

17 let command = Command::parse_and_create(input);

18 // ...

19 let svc_num = [...];

20 match svc_num {

21 // ...

22 2 => Some(kernel::syscall::Syscall::COMMAND {

23 driver_number: command.driver_number,

24 subdriver_number: command.subdriver_number,

25 arg0: command.arg0,

26 arg1: command.arg1,

27 }),

28 // ...

29 }

30 // ...

31 }

Listing A.3: Tock system call struct parsing routine vulnerability solved with AVID.
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A.2 Performance Evaluation Code

This section contains code run and code snippets used to perform performance eval-

uations.

A.2.1 Microbenchmarks

1 extern crate core;

2 extern crate avid;

3 #[macro_use]

4 extern crate avid_derive;

5

6 use avid::Parser;

7 use std::time::Instant;

8

9 #[derive(Parser)]

10 struct MyStruct {

11 first_field: u16,

12 second_field: u16,

13 third_field: u16,

14 }

15

16 fn main() {

17 for _ in 0..200 {

18 let start = Instant::now();

19

20 let input = [...];

21 let t = MyStruct::parse_and_create(&input);

22

23 let end = start.elapsed();

24

25 println!("{}", end.subsec_nanos());

26 }

27 }

Listing A.4: Microbenchmark experiment environment.
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1 #[derive(Parser)]

2 struct MyStruct {

3 first_field: u16,

4 second_field: u16,

5 third_field: u16,

6 }

Listing A.5: Three-field microbenchmark struct.

1 #[derive(Parser)]

2 struct MyStruct {

3 first_field: u8,

4 second_field: u16,

5 third_field: i16,

6 }

Listing A.6: Microbenchmark struct with differing field types.

1 #[derive(Parser)]

2 struct MyStruct {

3 first_field: u16,

4 second_field: u16,

5 third_field: u16,

6 }

7

8 #[derive(Parser)]

9 struct ParentStruct {

10 first_field: MyStruct,

11 second_field: u16,

12 }

Listing A.7: Nested microbenchmark struct.

74



A.2.2 Tock Integration

1 /// TBF fields that must be present in all v2 headers.

2 #[repr(C)]

3 #[derive(Clone, Copy, Debug, Parser)]

4 crate struct TbfHeaderV2Base {

5 version: u16,

6 header_size: u16,

7 total_size: u32,

8 flags: u32,

9 checksum: u32,

10 }

11

12 /// The v2 main section for apps.

13 ///

14 /// All apps must have a main section. Without it, the header is

considered as

15 /// only padding.

16 #[repr(C)]

17 #[derive(Clone, Copy, Debug, Parser)]

18 crate struct TbfHeaderV2Main {

19 init_fn_offset: u32,

20 protected_size: u32,

21 minimum_ram_size: u32,

22 }

Listing A.8: TbfHeader structs with AVID enabled.

Listing A.9 displays the Tock user application used to measure system call per-

formance with and without AVID integration. AVID system call validation was as

presented in Listing A.3. System call performance was measured in batches of ten to

improve timing granularity.
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1 #![no_std]

2 #![feature(alloc)]

3

4 extern crate alloc;

5 extern crate tock;

6

7 use alloc::string::String;

8 use tock::console::Console;

9 use tock::led;

10 use tock::timer;

11

12 fn main() {

13 // Timer initialization

14 let mut with_callback = timer::with_callback(|_, _| {});

15 let timer = with_callback.init().unwrap();

16

17 let mut console = Console::new();

18 let led = led::get(0).unwrap();

19

20 for _ in 0..100 {

21 let start_time = timer.get_current_clock().num_ticks();

22

23 for _ in 0..10 {

24 led.on();

25 }

26

27 let end_time = timer.get_current_clock().num_ticks();

28

29 let elapsed_time = (end_time - start_time) as u32;

30 console.write(String::from("Total num ticks: "));

31 console.write(tock::fmt::u32_as_decimal(elapsed_time));

32 console.write(String::from("\n"));

33 }

34 }

Listing A.9: User application for measuring system call performance.
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1 #[derive(Parser)]

2 pub struct Flag {

3 offset: u8,

4 gap: u8,

5 flag: u8

6 }

Listing A.10: Bluetooth advertisement packet flag struct.

1 #![no_std]

2 #![feature(alloc)]

3

4 extern crate alloc;

5 extern crate corepack;

6 extern crate tock;

7

8 use alloc::string::String;

9 use tock::console::Console;

10 use tock::ble_composer;

11 use tock::simple_ble;

12 use tock::timer;

13

14 fn main() {

15 let mut console = Console::new();

16

17 // Timer initialization

18 let mut with_callback = timer::with_callback(|_, _| {});

19 let timer = with_callback.init().unwrap();

20

21 for _ in 0..100 {

22 let start_time = timer.get_current_clock().num_ticks();

23

24 for _ in 0..100 {

25 let name = String::from("Tock!");

26 let uuid: [u8; 2] = [0x00, 0x18];

27 let str_payload = [...];
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28 let payload = corepack::to_bytes(str_payload).unwrap();

29

30 let mut buffer = simple_ble::BleAdvertisingDriver::

create_advertising_buffer();

31 let mut gap_payload = ble_composer::BlePayload::new();

32

33 gap_payload.add_flag(ble_composer::flags::

LE_GENERAL_DISCOVERABLE);

34 gap_payload.add(ble_composer::gap_types::UUID, &uuid);

35 gap_payload.add(

36 ble_composer::gap_types::COMPLETE_LOCAL_NAME,

37 name.as_bytes(),

38 );

39 gap_payload.add_service_payload([91, 79], &payload);

40

41 let handle =

42 simple_ble::BleAdvertisingDriver::initialize(

43 100,

44 &gap_payload,

45 &mut buffer

46 ).unwrap();

47 }

48

49 let end_time = timer.get_current_clock().num_ticks();

50

51 let elapsed_time = (end_time - start_time) as u32;

52 console.write(String::from("total num ticks: "));

53 console.write(tock::fmt::u32_as_decimal(elapsed_time));

54 console.write(String::from("\n"));

55 }

56

57 loop {}

58 }

Listing A.11: User application for measuring Bluetooth advertisement performance.
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