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ABSTRACT

Automated Exposure Notification (AEN) was implemented in 2020 to sup-
plement traditional contact tracing for COVID-19 by estimating “too close for too
long” proximities of people using the service. AEN uses Bluetooth messages to pri-
vately label and recall proximity events, so that persons who were likely exposed to
SARS-CoV-2 can take the appropriate steps recommended by their health care au-
thority. This paper describes an agent-based model that estimates the effects of AEN
deployment on COVID-19 caseloads and public health workloads in the context of
other critical public health measures available during the COVID-19 pandemic. We
selected simulation variables pertinent to AEN deployment options, varied them in
accord with the system dynamics available in 2020-2021, and calculated the out-
comes of key metrics across repeated runs of the stochastic multi-week simulation.
SimAEN’s parameters were set to ranges of observed values in consultation with
public health professionals and the rapidly accumulating literature on COVID-19
transmission; the model was validated against available population-level disease met-
rics. Estimates from SimAEN can help public health officials determine what AEN
deployment decisions (e.g., configuration, workflow integration, and targeted adop-
tion levels) can be most effective in their jurisdiction, in combination with other
COVID-19 interventions (e.g., mask use, vaccination, quarantine and isolation peri-
ods).

iii



This page intentionally left blank.



ACKNOWLEDGMENTS

The authors are grateful for the dedicated efforts and expertise of all who contributed to
SimAEN’s design, implementation, analysis, and technology transfer: Lauren Finklea, Jody McLean,
Hammad Ali, Charlie Ishikawa, Jesslyn Alekseyev, Richard Gervin, Madeline Chiemelinski Malan,
Sarah Miller, Greg Gianforcaro, Bob Hallowell, Nathaniel Hanson, Gwendolyn Gettliffe, Ben Davies,
Joaquin Avellan, Chet Beals, Travis Riley, Maegan Jong, Elizabeth Bernardo, Brent Cassella, Tom
Savel, Peter White, and Addam Driver.

v



TABLE OF CONTENTS

Page

Abstract iii

Acknowledgments v

List of Figures viii

List of Tables ix

1. INTRODUCTION 1

2. BACKGROUND 3

2.1 Health Care 3

2.2 How AEN Works 4

2.3 Modeling approaches 5

3. THE SIMAEN MODEL 7

3.1 High-Level Overview 7

3.2 Model Description 9

3.3 Validation 18

4. RESULTS 22

4.1 Effects of AEN Adoption 22

4.2 Variations in AEN Sensitivity and Specificity 25

5. DISCUSSION 27

5.1 Scope 27

5.2 Limitations 27

5.3 Future Work 28

6. CONCLUSION 29

30

34

vi

Appendix A PARAMETER DEFAULT VALUES

Appendix B MODEL OUTPUTS



TABLE OF CONTENTS
(Continued)

Page

Glossary

Notation

vii

Appendix C AEN PROCESS-FLOW ANALYSIS FOR MASSACHUSETTS 36

39

40



LIST OF FIGURES

Figure

No. Page

1 Original public health workflow incorporating Exposure Notification (EN)
into testing, case investigation, and contact tracing activities. 3

2 Simplified diagram of key feedback loops modeled within SimAEN, showing
a subset of the input parameters and output values. 8

3 Agent generation (solid lines) showing the conditions that agents can ob-
tain based on whether they are identified by the generator (dashed lines)
according to a probability distribution. 15

4 Testing methodology as implemented in SimAEN. 17

5 Cumulative distribution function (CDF) of daily interactions (dots), along
with best fit log normal distribution (solid line; µint = 2.1, σint = 1.1) and
Pennsylvania fit (dashed line; µint = 1.9, σint = 1.1). 19

6 Infection growth for the first 20 days of the COVID-19 outbreak in Pennsyl-
vania, alongside the results of simulation from SimAEN without any active
interventions. 20

7 Comparison of SimAEN results and the analytic Massachusetts results. 21

8 Costs and effects for the interaction rate µ = 2.1. 23

9 Costs and effects for the interaction rate µ = 2.5. 23

10 Costs and effects for the interaction rate µ = 2.7. 24

11 Costs and effects for the interaction rate µ = 2.9. 24

12 The number of new daily infections along with the number of false quaran-
tines for a collection of probability of detection and false discovery rate, and
AEN adoption rate of 25%. 26

C.13 Generic process flow model of an AEN system. 37

C.14 AEN process flow with UK estimates of participation at each step. 38

C.15 AEN process flow, applying UK estimates to MA case rate estimate. 39

viii



LIST OF TABLES

Table

No. Page

1 Effects of AEN adoption across a range of interaction rates. Percent change
for each adoption rate was calculated with a control of 0% adoption. 22

ix



 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) is a viral respiratory disease, spread primarily through
close contact with infected individuals who may not be aware of their infection status (pre-
symptomatic or asymptomatic transmission).[1] Initial methods of disease transmission control
relied heavily on traditional contact tracing methods, as well as profoundly disruptive stay-at-
home orders and social distancing guidelines.[2] The success of contact tracing hinges on several
factors, including (1) the ability of public health to identify and communicate with infected indi-
viduals, (2) the ability and willingness of infected individuals to share their contacts, (3) the ability
of public health to notify these contacts, and (4) the willingness of these contacts to comply with
public health instructions. The COVID-19 pandemic has particularly challenged contact tracing
efforts:

1. In many jurisdictions, the size of the outbreak has exceeded local contact tracing capacity

2. Infected individuals may have more contacts than they can identify

3. Infected individuals may not know that they are infected

4. Distrust of public health institutions prevents some individuals from cooperating with contact
tracing efforts

Automated exposure notification (AEN) was devised in March of 2020 [3] to complement
traditional or “manual” contact tracing (MCT) activities for COVID-19. The overarching goal
of AEN is the same as MCT: to notify individuals of their potential exposure to a disease to
mitigate the disease’s spread. AEN seeks to complement MCT by notifying contacts that MCT may
have missed, and by notifying contacts faster, without compromising privacy. The Google-Apple
Exposure Notification (GAEN) service is one example of an AEN system, and has been adopted by
many countries and U.S. states[4], although it is not the only AEN-type system deployed during
the COVID-19 pandemic. For the purposes of this paper, the term AEN refers to any automated
exposure notification service that implements a privacy-preserving protocol such as PACT[5], and
that relies on a proximity sensor on smartphones and the voluntary participation of individual
citizens and public health jurisdictions in its operation. Prior work has found that AEN has the
potential to control the spread of COVID-19.[6]

An AEN service uses Bluetooth messages to estimate when individuals were too close for
too long (TC4TL) to an infected person and are therefore at risk for infection themselves. These
individuals are notified of their exposure through alerts on their smartphones, which include in-
structions about testing or recommending quarantine. The process is anonymous: notified contacts
are not made aware of which infected individual was nearby, and neither public health nor the
infected person is aware of who receives notifications.

Public health institutions may determine how to set the TC4TL threshold for AEN—i.e., the
sensitivity and specificity of the Bluetooth-based risk detector. The detector attempts to act as a
dosimeter, recording exposure in both duration and distance. Lowering the detector threshold—
i.e., increasing its sensitivity—corresponds to a nearer too close exposure and/or a briefer too
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long exposure. The intended effect of increasing sensitivity is to alert more infected individuals,
with the goal of slowing disease spread. The side effect is that more uninfected individuals will be
unnecessarily alerted (lower specificity), because the distance and time are not decoupled in the dose
estimate comparison to the threshold. Many of these uninfected individuals will seek a COVID-19
test, potentially burdening their local test infrastructure. They may also quarantine unnecessarily,
at social and economic cost to themselves and their communities. This trade-off between slowing
disease spread and increasing public burden leads to a critical question: How should public health
set the sensitivity and specificity configuration of AEN?

The answer depends on a variety of factors, including:

1. The properties and prevalence of the disease

2. The performance of the Bluetooth-based sensor

3. The behavior of individuals within the jurisdiction

4. The workflows and capacities of public health

These variables interact in complex ways, preventing obvious answers to the question above.

This paper presents SimAEN,1 an agent-based simulation whose purpose is to assist public
health in understanding and configuring an AEN system. SimAEN models a population of inter-
acting individuals (“agents”) in which COVID-19 is spreading. These individuals interact with a
public health system that includes AEN and MCT. These interactions influence when individuals
enter and leave quarantine and isolation, affecting the spread of the simulated disease. Over 60
user-configurable parameters influence the outcome of SimAEN’s simulations. These parameters
allow the user to tailor SimAEN to a specific public health context and to explore the predicted
effects of various interventions, including different sensitivity settings of AEN.

1 SimAEN, pronounced “SIM-ee-uhn,” is short for “Simulation of AEN.”
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2. BACKGROUND

2.1 HEALTH CARE

Identifying exposed individuals, and advising them to test and/or self-quarantine, is only
part of an AEN system’s effect on a jurisdiction. This capability has to be integrated into the
public health workflow around testing, test results, case investigation, and communication with the
public, as well as with up-to-date epidemiological guidance on the transmission behavior of the virus,
the effectiveness of vaccines, and the effectiveness of other non-pharmaceutical interventions (e.g.,
masking and reducing social interactions), and pharmaceutical interventions (e.g., vaccination),
in conjunction with each other. Figure 1 shows a typical U.S. jurisdiction’s workflow from 2020
through mid-2021, with the Google-Apple Exposure Notification service integrated into lab testing
and case investigation/contact tracing activities. Note that although the public health authorities
are mandated to carry out their work, individual citizens may be more or less likely to get tested,
answer the phone, share their contacts’ information with a contact tracer, or anonymously alert
their close contacts through AEN.

Figure 1. Original public health workflow incorporating Exposure Notification (EN) into testing, case inves-
tigation, and contact tracing activities.

In addition to integrating AEN with the testing and close contact workflow, a public health
authority must decide how to configure the sensitivity and specificity of the Bluetooth sensor. For
example, in GAEN, the configuration is a set of weights and thresholds that enable a public health
authority to “bin” exposures into more or less risky categories, and alert and advise users according
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to their relative risk.[7] This will determine how many people are sent AEN alerts and subsequently
how many people may test and/or quarantine. Choosing the “right” AEN configuration is not an
exact science, due to variations in phone hardware as well as the effects of the phone’s use and
environment on signal strength.[8] [9]

The next touch point between public health and AEN is through the testing procedure.
Initially, states opted to authorize positive cases to upload their AEN keys via a call from a public
health worker, but this was burdensome and states could not keep up with rising case loads, so
many shifted to providing authorization via an automatic text message.

The public health jurisdiction also chooses the alert message to display to AEN close contacts.
During different phases of the pandemic, states have chosen messages they found congruent with
both available resource levels (e.g., for polymerase chain reaction (PCR) testing or home testing)
and with the availability and palatability of other interventions (e.g., vaccines, mask mandates,
and levels of lockdown). Therefore, the behaviors requested of close contacts have included calling
public health, self-isolation, testing, vaccination, and simply monitoring for symptoms or wearing a
mask if leaving home. The probability of compliance with any of these steps, and the concomitant
effect on public health resources, is part of a complex feedback system that affects the spread of
disease.

The choices that a jurisdiction makes in regards to these questions will determine the workload
experienced by their contact tracers and other public health professionals. SimAEN aims to provide
guidance to public health teams to help them select the AEN settings and structure their program
in the way that best serves their constituents, in a variety of possible pandemic contexts.

2.2 HOW AEN WORKS

When two individuals, each running the AEN smartphone service, are close enough to each
other that the Bluetooth signal from one phone is detected by the other, encrypted messages are
exchanged between the phones. The message is stored by the AEN service on the phone for future
comparison, along with the signal strength associated with the message. The encrypted message is
rotated periodically as part of the privacy scheme.

After receiving a positive test, an individual may upload to a remote server all of the keys that
they have used over some prior period (originally 14 days, but configurable by public health). This
establishes a database of all recent keys for all positive individuals (stale keys are automatically
removed). Several times a day, the AEN service on the smartphone downloads fresh keys.

When “unlocked” by the shared cryptographic key of the infected user, and combined with a
weighting scheme set by the public health jurisdiction, the message history data generates a score
for each interaction on the “close contact” phone. A cumulative daily score that exceeds the public
health authority’s risk threshold will cause an exposure alert to appear on the phone screen, along
with messaging selected by the public health authority regarding next steps for the individual.
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2.3 MODELING APPROACHES

The prediction and estimation of disease spread have been performed using many different
methods. In general, these methods land in three broad categories: compartmental models, data-
driven models, and agent-based models.

2.3.1 Compartmental models

Compartmental models use a series of interdependent ordinary differential equations (ODEs)
to describe the mean number of individuals in each of several categories. The total population is
broken down into several subpopulations (susceptible, exposed, infectious, and recovered, among
others) and the fraction of the population in each of the subpopulations changes over time according
to the prescribed ODEs [10]. These models are typically described using a convenient shorthand
(SIR, SEIR, etc.) indicating the subpopulations being considered. Owing to their relatively easy
evaluation and understandable results, these models have gained wide adoption in the epidemio-
logical community. To gain this tractability, the model makes many assumptions, such as that the
entire population is homogeneously mixed. However, this assumption and other aspects of their for-
mulation limits their ability to predict the real-world operational changes that occur when resources
are limited and interactions are conditionally probabilistic. Small world models, such as those by
Strogatz and Watts [11], show that mixing heterogeneity is omnipresent in human interaction and
greatly affects the propagation of disease.

2.3.2 Data-driven models

The idea behind data-driven modeling is that given sufficient data about a population, you
can discover a relationship among the inputs that minimizes the error signal between the model and
some set of real-world outputs. This can take the form of neural networks [12], fuzzy logic systems
[13], or regressions [14], which all use prior data to train the weights in the systems of equations
that constitute the model. One problem with these models is that they can be opaque, meaning
their internal workings are difficult to interpret and their outputs hard to justify.

This sort of model does not consider the population dynamics explicitly, instead focusing on
measurable data and assuming that there is an underlying sensible reality generating them. By
creating a system with enough freedom, the model is able to work as a surrogate for this reality.
However, since they are only a product of the data, expert knowledge might not be considered.

Further, since they require initial data and only represent reality as it is currently operating,
these models are not suited for investigating potential changes in the system or in the early stages
of a disease before sufficient data has been collected.

2.3.3 Agent-based models

Agent-based models attempt to limit abstraction, instead depicting every member of the sus-
ceptible population and adjusting their condition based on the progression of the disease according
to a set of rules. On the most abstract side of agent-based modeling are grid-based simulations
known as cellular automata. This framework is most famously implemented in Conway’s Game of
Life [15] but has also been applied to disease dynamics [16]. These models treat the agents as nodes
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of a regular grid or irregular network [17] and update the state of these agents based on the state
of their neighbors.

Less abstract agent-based models account for spatial variation in interactions. These models
create agents that conform to schedules as they move through a virtual landscape. The population
of agents can mirror reality in terms of demographics, behavior, and spatial distribution. Underlying
these models is the assumption that if reality is intricately modeled, then the model will behave in
the same way as reality.

The benefits of more realistic implementations do come at a cost. The amount of computa-
tion required to evaluate the model goes up as a function of the number of agents, and memory
requirements expand as the list of agent parameters (e.g., features) grows. For these reasons, these
models are reasonably recent developments, only just now being fully realizable thanks to modern,
high performance computing architectures and tools.
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3. THE SIMAEN MODEL

We aimed to augment the early literature on AEN’s potential effects by creating an agent-
based model that could be rapidly adapted to additional contact tracing protocols as they are
developed, and to include new or refined parameters for disease transmission, human behavior,
and public health resources. Our model also has a more realistic testing and quarantine model
that takes delays of testing into consideration and allows for transition out of quarantine after
negative tests. Further, because this effort focused on the public health response, the model provides
probabilities associated with the subtleties of AEN implementation and configuration by the public
health jurisdiction.

3.1 HIGH-LEVEL OVERVIEW

The workflow SimAEN uses is a simplified version of real-world actions surrounding COVID-
19 exposure and interactions with public health. SimAEN has over 60 input parameters (described
in Appendix A); all of these are variable in the model’s configuration. We selected the model
outputs to provide insight into the potential effects of combined interventions on public health
outcomes (disease prevalence) as well as workloads. The specific model outputs are listed in detail
in Appendix B. Our model validation focused on test counts, “cases identified” counts, and effective
reproduction number (RE), as those are most directly observable in the real world.

A high-level overview of the relationships between key model inputs (parameters) and outputs
(metrics) is shown in Figure 2. Each multi-day model run generates and captures the complex
interactions between probabilities, agent interactions, and the effects of interactions. The modules
and connections in the center show a simplified view of SimAEN’s internal state. The model’s
internal components include aspects of disease spread and intervention strategies, represented by
white modules. Those modules that directly translate into model outputs are highlighted in blue.

The model includes several feedback loops. Positive (amplifying) effects are shown with green
solid arrows, and negative (reducing) effects are shown with red dashed arrows. As each model
run plays out over the specified number of days, the numbers of tests, calls, infections, isolations,
and quarantines are tracked and reported out. As each model run is not identical, we run the
module multiple times and average the outputs to produce a more accurate prediction for a given
combination of input parameters.

The model was implemented in Python and is available on GitHub so that others may update
parameter values and adapt it for their needs.[18] Some or all of the variables that define model
behavior are accessible as input parameters to the model execution. This simplified the organization
and execution of parameter sweeps over many runs of the model, for better fidelity across ranges
of real-world conditions.

The model component was designed for low computational cost, but users with access to a
high performance computing cluster will see significant benefit from parallelizing model runs. We
constructed a small utility to generate the Cartesian product of the free variables, and distribute
the model runs to multiple computational nodes. The utility is also responsible for maintaining the
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Figure 2. Simplified diagram of key feedback loops modeled within SimAEN, showing a subset of the input
parameters and output values.
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parallel outputs without collision from other processors, and finally, organizing them into a SQLite
database for exploration.

3.2 MODEL DESCRIPTION

The SimAEN model definition is based on the Overview, Design concepts, Details (ODD)
protocol as specified in [19]. This formulation establishes a standard way of communicating an
agent-based model in a manner that allows for re-creation by other interested parties. The agents
in this description represent people and we will refer to them as agents, people, or individuals
interchangeably.

3.2.1 Overview

Purpose AEN is a new technology and there is need to understand its effectiveness. The SimAEN
agent-based simulation was developed to explore and understand how AEN and its configuration
may affect COVID-19 case rates and public health workloads, in the context of other available
interventions. In addition to the independent effects of AEN, we also examined the effects of manual
contact tracing, widespread testing, and mask use, as well as the results of deploying these strategies
in combination with each other.

Entities, state variables, and scales Agents in the SimAEN model represent individuals whose
interactions are guided by a collection of probabilities. The ”world” in which individual agents
operate is also implemented as a collection of probabilities and parameters (e.g, the duration of
each phase of the disease, the number of contact tracers within the jurisdiction, etc.). Agent-
based models are naturally suited to object-oriented programming methods, so both individuals
and worlds can be thought of as objects—though for this simulation only a single world exists at
any one time. Further information on the parameters of the individual and world objects can be
found in Appendix A. These parameters determine the states that individuals traverse during the
simulation.

The world in which individuals exist advances on a discrete schedule, where state changes
occur once per day. We chose the 24-hour time frame because it captures the phenomena relevant
to disease transmission, while also being long enough that it does not take an unacceptable amount
of computation to determine results. In addition, longer time frames (e.g., once per week) would
not permit the granularity associated with testing events or other characteristics of interest.

The individual is the smallest agent level considered. This model does not directly consider
family units or workplace structures. The type of transmission events that take place in these
settings are accounted for by modeling the events using a log-normal distribution. This distribution
features a long tail, meaning that there is a relatively high probability of an event occurring where
a large number of individuals contract the disease (e.g., in the tail of the distribution).

One of the key features of the SimAEN model is the low computational cost, achieved chiefly
by not maintaining a fixed population. A typical agent-based model would track all members of
the population, even if they never become infected or come in contact with an infected person.
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However, these individuals have no impact on the results of the model, meaning that all of the
computations required to process them are unnecessary effort. SimAEN avoids this by using the
following approach.

At the start of the simulation, a chosen number of infected agents are created. For each of the
agents, the model generates new people with whom they have the possibility of interacting. This
group is called the agent’s “neighborhood” and is distributed as

Ci ∼ Lognormal(µneighborhood, σ2neighborhood)

where µneighborhood and σneighborhood are the mean and standard deviation of the underlying Gaussian
distribution. On each simulated day, the model draws from this pool to select the agents that the
infected agent interacts with that day. The number of agents that are interacted with on a day is
drawn from the distribution Ci(t) ∼ Lognormal(µint, σ2int). If any of these agents are infected, then
the simulation will generate neighborhoods of agents for them to interact with.

Consider an agent Ai and their set of potential interactions Ci = {Ai1, ..., Ain}. Each day, Ai

interacts with some subset of Ci. The subset it interacts with on day t is Ci(t). For this model,
Ci(tu) ⊂ Ci and Ci(tv) ⊂ Ci, but there is no guarantee that Ci(tu) ⊂ Ci(tv). Additionally, there is
no enforcement that

⋃∞
u=0Ci(tu) = Ci; some individuals may never interact with others. When Ai

recovers, all of the agents in Ci that were not infected are removed from the simulation.

Spatial units are not represented in SimAEN, although the chances of disease transmission
are inherently spatially influenced. The duration and distance of the exposure are encoded in the
BLEMUR model’s prediction of the probability of detection and false discovery rate of the AEN de-
tector. This simplification was made both because the disease transmission characteristics of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were still under active research during the
model development in 2020, and because more research is needed on contact characterization and
distribution in various social contexts in order to inform a representative model of spatial behaviors.

3.2.2 Process overview and scheduling

The simulation advances one day at a time, during which each of the individuals in the
simulation updates its status, potentially gets tested, is processed by public health, and changes its
behavior.

Each day is broken down into a series of events where various aspects of the simulation
are performed. These events always occur in the specified order, though this order was chosen
arbitrarily.

The first event to be processed is transmission. During this event, each infected individual
is evaluated to see whether they produced additional infections. Some number of uninfected indi-
viduals are also produced, based on the false discovery rate and the probability of transmission
associated with the individual.
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The number of agents interacting with individual Ai on day t is distributed as Int(Ai, t) ∼
Lognormal(µint, σ

2
int). Some percentage of the agents being interacted with will be infected based

on the infected agent’s stage of the disease (see: Disease Properties in Appendix A).

Following the transmission event is the testing event, during which all individuals are checked
to see whether they test for COVID-19, based on a probability conditioned on the agent’s traits
(i.e., have they been notified of close contact status by AEN or MCT, as well as the baseline testing
rate and symptomatic testing rate). If a test is performed, then a countdown is started, simulating
the delay that occurs between test and results. The test is also entered into a queue to account for
potential limits on the testing capacity of public health.

The next event is automatic tracing, in which close contact notifications are triggered by
individuals who have tested positive on a prior day and have probabilistically decided to upload
their keys to the AEN server. The delay between test results and automatic notification (in days)
depends directly on the parameters for the number of contact tracers, the time each call takes,
and whether sharing one’s diagnosis with AEN requires interacting with public health to obtain
authorization.2

In the final event of each simulation day, public health performs manual contact tracing. This
step involves contacting a person who has tested positive to identify individuals they may have
come in contact with and have potentially infected. Whether contact tracing succeeds in reaching
the next generation of infected individuals depends directly on the parameters for call success rates
(i.e., did the positive individual answer), the contact tracing identification success rate, and the
maximum number of close contacts recalled. The timing of a successful MCT activity (i.e., length
of delay after test result is available) depends directly on the parameters for numbers of contact
tracers, call durations, number of call attempts to one individual, and length of the work day.

3.2.3 Design concepts

Basic principles This SimAEN model is based on the transmission and public health response
associated with COVID-19. This means that transmission occurs through close contact between
individuals, not through contact with a previously exposed surface, consumption of contaminated
food or drink, or other methods of disease transfer. This affects the number of people that can
be expected to become infected by an individual in any particular transmission event and the
likelihood that a person would be able to identify the person who infected them or whom they may
have infected.

One important assumption of our model is that the disease only ever infects a small portion of
the population. In the standard SEIR model [20] the rate of change of the susceptible population is
a function of the infected population as a proportion of the overall population. However, as long as
this fraction is small, we can treat the susceptible population as a constant—a pool of individuals

2 Initial GAEN deployments in the U.S. required public health teams to authorize AEN users to share their keys
through issuing a one-time code, which the user would manually enter into the AEN service on their phone, before
keys could be uploaded to the national server. The Delta variant caused case rates to rise more sharply and motivated
public health jurisdictions to automate the delivery of authorization codes via SMS, instead of requiring a phone call
between the positive individual and a case worker. It was a simple change to SimAEN to add a boolean parameter
to support both workflows.
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that we can always draw from. As such, we do not model the greater population of people who have
not been directly affected by the disease. Instead, individuals are created at the time that they are
needed and then disposed of once they are no longer integral to the simulation. The downside of
this method is that it allows the number of people affected to grow without bound over long time
scales. However, it saves significant computation by not simulating all of the people who are not
impacted (which, per our assumption, is most of them). This also allows us to ignore the spatial
aspects of individuals since transmission events do not have to occur at a given intersection of
modeled individuals journeys.

The nature of COVID-19 also determines ranges of potential parameters for stages and dura-
tion of the disease. Infections are assumed to last 17 days [21] from initial exposure to recovery. In
SimAEN individuals who are infected progress through the following stages of the disease: EXPOSED,
PRESYMPTOMATIC, SYMPTOMATIC (or ASYMPTOMATIC), and RECOVERED. The SimAEN model does not
account for the difference between recovery and death as both of these outcomes remove the in-
dividual from the system and do not have an impact on the methods of mitigation employed by
public health.

Testing capability is also modeled based on what has been seen in the COVID-19 pandemic.
Evidence from the current testing regimen suggests that there are very few false positive results.
There is, however, a relatively high rate of false negatives.[22] These rates are dependent on what
stage of disease the individual is in at the time that the test is performed.

Emergence We are interested in the proportion of individuals who need to be running the AEN
service for there to be a notable effect on disease propagation. This fraction will be dependent on
the expected time between when the individual contracting the disease and any of the people they
infected receiving an alert from AEN service. It will also be affected by the other mitigation efforts
taken, as they will have potential overlap with the population using AEN.

A quick analysis shows that there is a quadratic effect between the fraction of people who
are running the AEN service and the fraction of people who will receive an alert. Assume that the
probability of an individual running the AEN service is x. Since it requires that both members of
an interaction be running the AEN service for either of them to receive an alert, this means that
an interaction has a probability of x ∗ x = x2 of meeting this criteria.

Another emergent aspect of this model is the feedback between MCT and AEN. Individuals
being contacted by MCT are more likely to get tested, and if they are running the AEN service and
test positive, then more potentially infected individuals will be notified of this fact. This works in
the other direction as well. However, there is also the overlap between the two (individuals receiving
both an AEN alert and being contacted through MCT) reducing their overall effectiveness.

While the Google-Apple Exposure Notification service has emerged as a de facto world stan-
dard implementation, its risk estimation algorithm and Bluetooth sensor are only one possible and
practical approach to estimating exposure “dosage” on smartphones. We decided that SimAEN
would not encode the GAEN algorithm into its model; rather, SimAEN treats AEN’s weights-and-
thresholds configuration as an abstraction, and uses the BLEMUR [23] model’s estimates for the
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probability of detection (P(D)) and false discovery rate (FDR) of two template configurations, the
“narrow net” and “wide net” configurations (v1.0.1)3 proposed at the November 2020 Risk Scoring
Symposium Invitational.[26] This design decision for SimAEN means that it is simple to substitute
another “close contact” detection and risk estimation system into the model if its P(D) and FDR
are known.

Adaptation The SimAEN model assumes that there are two distinct levels of interaction: NORMAL
and RESTRICTED. Agent in the RESTRICTED state have fewer close contacts, leading to lower levels
of disease spread. Each day, agents are checked to see if they transition to RESTRICTED as a result of
their condition. The probability of this transition is conditioned on several traits (such as receiving
a positive test or being contacted by public health) that may also change during the course of the
simulation.

Agents will also probabilistically don masks, conditioned on their level of interaction. It is
assumed that as agents isolate themselves, they are also more likely to take other precautions. Once
an agent starts wearing a mask, it will not stop wearing a mask.

The SimAEN model does not adapt agent behavior based on the progression of time or the
prevalence of the disease. That is, agents do not respond to high disease rates by altering their
levels of interaction or deciding to wear masks. Changes resulting from public health messaging
such as deciding to promote mask wearing are also not modeled.

3.2.4 Objectives

Since the adaptation in SimAEN is purely driven by probabilities, there is no objective that
is trying to be optimized. In the abstract sense, the agents are trying to minimize the amount
of exposure to others, but this is projected on them by the selection of probabilities for behavior
transition.

Sensing Agents are aware only of themselves with the exception that they are able to identify
some fraction of the people who they have interacted with for the purposes of contact tracing by
public health. Agents are able to identify if they are SYMPTOMATIC, as this is a trait that will affect
their probability of getting tested or changing their behavior.

Interaction Agents are created along with the set of all individuals who they will ever interact
with (apart from the agent that infected them). Each day a subset of this set is randomly selected
for interaction, making them eligible for infection.

3 The symposium participants reconvened in August 2021 due to mutual concern over the increased infectiousness
of the Delta variant, and to review newly available data from the Exposure Notification Private Analytics[24] system.
The RSSI-2 symposium produced a revised pair of template configurations.[25] The work shown in this paper used
the original narrow and wide configurations, but it is a simple matter to adjust the inputs to BLEMUR and SimAEN
for a jurisdiction’s desired configuration.
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During automated and manual contact tracing, individuals interact through an intermediary,
either the AEN service or the public health system.

Stochasticity This model is driven significantly by stochasticity associated with the initial pa-
rameter settings. These probabilities are outlined in Appendix A, but a brief overview is given
here.

How an agent experiences the disease are determined by the latent and incubation times,
which are drawn randomly from a normal distribution on a per-agent basis.

Several agent traits have to be set during agent creation. First, the agent is probabilistically
set to be wearing a mask. The mask-wearing state of the new agent is combined with the mask
state of the infecting agent to determine whether the new agent is set as infected or uninfected.
Finally, the new agent has some probability that they had previously downloaded and are running
the AEN service. The agent is also assigned a collection of individuals who they have the potential
to interact with over the course of their time in the simulation.

During transmission events, the number of individuals that an agent interacts with is prob-
abilistic, conditioned on the behavior state of the transmitting individual. If the transmitting in-
dividual is running the AEN service there is also the probability that they will interact with some
number of uninfected agents who were not close enough to have been infected but were identified
by the AEN service. The false discovery rate models the inaccuracies inherent in the Bluetooth
“close contact” detector. If the person transmitting the disease and the person being infected are
both running the AEN service there is some probability that the AEN service on either end of the
transmission will detect the signal.

Whether an agent gets a test is probabilistic, conditioned on whether they have been contacted
by public health, received an notification from AEN, tested positive, or are feeling symptomatic.

The probability of a test coming back positive is based on the stage of the disease the agent
is in at the time of the test. As noted in the assumptions, there are no false positive test results.

There is a probability that after receiving a positive test, an individual will contact public
health for the purposes of contact tracing. During contact tracing there is a probability that any
given call will successfully reach the agent. If the return call from public health is successful, then
there is a probability that the traced person infected will be identified.

A positive test also comes with the probability that the individual will upload their key to
the AEN server. When the key is subsequently downloaded by users of the AEN service, they are
alerted of their potential exposure.

Finally, there are probabilities associated with an individual changing their interaction be-
havior, conditioned on the traits of the individual. Agents who transition to RESTRICTED will stay
in that condition, except if they receive a negative test, in which case they will probabilistically
transition to a behavior state based on the distribution of states currently occupied across the
simulation.
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Figure 3. Agent generation (solid lines) showing the conditions that agents can obtain based on whether they
are identified by the generator (dashed lines) according to a probability distribution.
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Collectives There are no collectives, such as families or work groups, included in this model.
All individuals are treated based only on their own traits and do not have any probabilities or
parameters based on their generator or the agents they are generated alongside.

The closest aspect to a collective in this model is the set of individuals with which an agent
is generated. This group represents the entire population of people with whom that agent has any
chance of interacting. Individuals in this set are the only people that the agent can infect.

Observation Each agent keeps track of every transition that it makes while being simulated.
Tracking this information supports forensic analysis of the simulation and how it progress. Examples
of information that agents track include all of their traits (such as whether they have been tested)
along with the days (since simulation start) on which those traits changed. They also keep track
of all generation events including the status of all of the people involved in that event. Agents also
track things for which they do not have direct knowledge. For example, agents keep track of how
many times they have been unsuccessfully called by public health. This information is not used by
the agent but supports deeper understanding of the simulation AEN process.

3.2.5 Details

Initialization The simulation begins with a collection of infected individuals. For simulations
starting from the “initial outbreak” state, we chose 20 infected agents to start. This is a small
enough number that it will not overwhelm the steady state yet is large enough that the disease
will be able to take hold and propagate. It is assumed that there has been some low level of
the disease circulating in the population prior to the exponential grown segment of the spread,
and so these 20 individuals are initiated at a random point in the disease progression. This is
accomplished by starting them with a “day in system” variable set to a random value drawn from
a uniform distribution over the 17 days of the disease lifespan. Each run starts with a new random
specification of these 20 agents. These individuals are also assumed to not have been tested, since
we are starting from a time before widespread testing is available and AEN is in use.

For simulations of the disease in later states of spread, a multiplier was used to account for the
potentially large number of individuals being infected. One simulation we performed looked at the
state of Massachusetts in February 2021. At this point in time, there were an estimated 72270 active
cases in the Commonwealth [27]. However, since the exact mix of individuals (what state of the
disease they are in) was unknown, we had to adjust this number slightly in order to get day-to-day
new case numbers which match the observed rates. We found that a starting cases count of 53000
produced this match. This lower number is likely because of lower infectiousness of individuals late
in the disease progression. Instead of simulating all 53000 individuals, we started with 530 and
multiplied all outputs by 100. Simulating only a fraction of the population also requires a change to
the number of contact tracers and daily testing capacity since each agent now effectively represents
100. This method slightly decreases the fidelity of the simulation, but the gain in speed is fair
compensation.
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Input data All information necessary for progression of the model is contained within the simu-
lation itself. The only outside input is through the selection of the parameters that drive the system.
Once the model is started, it carries forward without any additional input.

3.2.6 Submodels

The SimAEN model includes submodels for testing, behavior, and public health interventions
(AEN and MCT).

The testing submodel assumes that individuals will seek out a test contingent on their traits.
Each day, a random draw occurs for each individual to determine if they will get a test performed.
When an individual gets a test, it generates a TEST object. Each day, a number of tests is processed
based on the testing capacity parameter. When a test is returned, a random draw is made to
determine the result (positive or negative), conditioned on the state the agent was in when they
were tested. A positive test will further prompt a random determination of whether they will upload
their key to the AEN system and/or call public health. Contacting public health will add them to
a list of index cases.

Figure 4. Testing methodology as implemented in SimAEN.
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Behavioral changes of the individual are based on their traits. All agents start out in the
normal or base state where they are interacting with society in the way that they would have were
they not infected. Each day, a random draw is made to determine if the individual will transition to
the RESTRICTED behavior. It is assumed that an individual in the RESTRICTED state will stay in that
state unless they are not symptomatic and receive a negative test result. While people in the real
world may have day-to-day-variation in their level of interaction, we assume that the probabilistic
nature of transmission employed in this model is sufficient to describe this and that variation will
not significantly affect the measures of interest being studied.

In the AEN submodel, individuals receiving a positive test have a random probability of
uploading their keys to the AEN system. Some jurisdictions have selected a workflow that requires
individuals talk to public health before uploading their key. In this case, the individual running
the AEN service who received a positive test will also generate a CALL object. Once this call is
processed, the agent will upload their key. Uploading a key triggers the AEN system to transmit
an alert to all close contacts of the uploader who were running the AEN service and received a
beacon message during the transmission event. All of these agents will update their object variables
to note that a notification was received.

MCT encompasses both contact tracing and notification of identified contacts. It is assumed
that there is a limited number of contact tracers and that each works some period of time each
day. Each call they make takes some amount of time, which is based on whether it is a call for
the purposes of contact tracing or just as a notification. There is also some time associated with
missed calls. Our manual contact tracing submodel processes an ordered list of CALL objects (the
“call list”). During the manual contact tracing portion of the daily simulation evaluation loop, calls
go out to people in the order they were placed on the call list. When a call occurs the appropriate
amount of time is subtracted from the available call time:

available call time = # contact tracers ·# work hours/day

If the call being made is to an index case, then a contact trace is performed. If any individuals
are identified during the trace, they are added to the call list. Individuals who are not successfully
called are added to the back of the contact list. Missed calls are logged and after an individual
misses their allotment of calls, public health will assume that they are unreachable and remove
them from the list. When there are large numbers of people on the call list, the call list may not
be cleared on a single day. In that case, the contact tracing calls will pick up the next day at the
point where they left off the day before.

3.3 VALIDATION

The parameters used at the time of model development and validation (i.e., before February
2021) were based on established research, where available. This includes the probability of transmis-
sion for presymptomatic, symptomatic, and asymptomatic individuals[28], the rate of asymptomatic
cases[29], the effectiveness of masks[30][31], the lengths of the incubation [32], latent[21] and in-
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fectious periods[21], probability of a receiving a positive test [33], and daily personal interaction
survey data [34].

Transmission also depends on the number of interactions that an individual has on any given
day. Our model assumes that each day, an individual interacts with a number of people drawn from
a log normal distribution parameterized by σint, µint as shown in Figure 5.

Figure 5. Cumulative distribution function (CDF) of daily interactions (dots), along with best fit log normal
distribution (solid line; µint = 2.1, σint = 1.1) and Pennsylvania fit (dashed line; µint = 1.9, σint = 1.1).

Validation of the model was performed by showing that given these parameters, the model
reproduces the rate of spread in real-world conditions. For our case, we compared the output of
the model with the early days of the outbreak in Pennsylvania. Using the initial phase of the
outbreak eliminates several confounding factors, such as the prevalence of mask usage and changes
in interaction behavior.

As can be seen in Figure 6, the parameter set shown in Figure 5 produces infection curves
that match the real-life data as observed in Pennsylvania. The use of a mean interaction parameter
lower than the best fit curve for [34] (µ = 2.1 vs. µ = 1.9) is justified on the following bases:

• The counts from [34] are not unique interactions. Since most people interact with their family
and coworkers regularly, we would anticipate a lower mean number of unique contacts.

• The Pennsylvania case counts are for the entire state, which includes many rural areas that
may have significantly lower numbers of interactions than those found in the more urban
study.

• Due to the high number of asymptomatic cases, the number of reported cases is likely much
lower than the true number of cases.
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Figure 6. Infection growth for the first 20 days of the COVID-19 outbreak in Pennsylvania, alongside the
results of simulation from SimAEN without any active interventions.

• The first cases in Pennsylvania (March 10, 2020) were several months after reports from
Wuhan (January 2020), which may have prompted changes in behavior of the population.

The second stage of validation was against an analytic projection of Massachusetts metrics
based on fractions derived from a variety of sources. The methodology for projecting the metrics
is described in Appendix C. SimAEN’s metrics are plotted against the projected mean metrics in
Figure 7, showing that the behavior of the simulation across a wide range of measures is close to
the analytic projections.

To create Figure 7, the simulation parameters were set to those listed in Appendix A and run
20 times, each with a different random seed. The results of these runs are shown in grey. The daily
mean across these runs is shown as the solid black line. One standard deviation is denoted with
dashed black lines. Averaging the daily means produces the overall mean, which is shown in cyan.
Finally, the analytic result is the solid red line. We see good agreement between the cyan (average
simulation) and red (analytic) lines, indicating that the implementation is consistent with what is
observed from end to end.
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Figure 7. Comparison of SimAEN results and the analytic Massachusetts results.
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4. RESULTS

4.1 EFFECTS OF AEN ADOPTION

The calculated effective reproduction number (the mean number of new infected per infected
individual) is a useful metric for judging an intervention’s effect on the spread of disease. The RE

predicted by SimAEN for the baseline parameters used here, and for a range of AEN adoption
rates, are shown in Table 1. We see larger absolute effects on RE for both higher interaction rates
and higher AEN adoption rates, when varied independently. When using 0% AEN adoption (i.e., no
AEN deployment) as a control, and increasing the AEN adoption rate, we also see larger percentage
effects. Notably, at the interaction rate observed prior to the pandemic (µ = 2.9), we see larger
absolute and percentage changes in RE than at the lower pandemic-level interaction rate.

The percentage reduction in RE for each level of interaction suggests that increases in AEN
adoption are generally equally effective. That is, a 50% AEN adoption rate will reduce effective
reproduction number by ∼8% regardless of the interaction rate between individuals. This is a
result of the increased interaction rate affecting both the number of transmissions and the number
of detections via the AEN service. For lower interaction levels, the percent change is essentially
equivalent. At the highest interaction level, the percent change is slightly higher. This is due in
part to the AEN-based notifications outpacing the effects of MCT.

TABLE 1

Effects of AEN adoption across a range of interaction rates. Percent change for each
adoption rate was calculated with a control of 0% adoption.

RE (% Change) AEN Adoption Rate
0% 25% 50% 75%

2.1 1.02 0.98 (-3.8%) 0.94 (-7.6%) 0.89 (-12.8%)
2.5 1.16 1.13 (-2.5%) 1.07 (-7.6%) 1.03 (-11.3%)
2.7 1.21 1.18 (-2.8%) 1.12 (-8.1%) 1.07 (-11.7%)

Interaction Rate

2.9 1.27 1.22 (-4.2%) 1.15 (-9.5%) 1.08 (-15.5%)

We also examined how SimAEN can help public health decision makers estimate the social and
public health workload effects of varying intervention levels, in addition to the potential reduction
in RE . Figures 8-11 track the variations in the number of infected individuals, and in the number of
uninfected individuals entering quarantine each day due to a close contact notification from AEN,
for 20 runs of an 80-day simulation. (Please note that the scales of the y-axes are not uniform.)

With an interaction rate of 2.1 (Figure 8), as AEN adoption increases there is a ∼50%
decrease in the number of positive tests over time, but it comes at the cost of a fourfold increase in
the number of people unnecessarily quarantined (as AEN adoption triples from 25% to 75%). As
the interaction rate is increased, the suppression of positive cases increases to roughly 60% with
increased AEN adoption. However, the cost of unnecessary quarantines continues to track upward
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Figure 8. Costs and effects for the interaction rate µ = 2.1.

Figure 9. Costs and effects for the interaction rate µ = 2.5.
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Figure 10. Costs and effects for the interaction rate µ = 2.7.

Figure 11. Costs and effects for the interaction rate µ = 2.9.
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with both the increased interaction rate and the increased AEN adoption. This suggests that AEN
can prove to be generally more useful to a public health jurisdiction when the social and economic
cost of quarantine is lower (e.g., when sufficient social supports exist for the quarantined, and/or
when the inherent severity of quarantine is adjusted for vaccinated individuals who are less likely
to infect others after an exposure). It also suggests that AEN is more generally useful when public
health jurisdictions are faced with rising interaction rates (“re-opening”) concurrent with greater
testing capacity (both PCR and rapid antigen tests).

4.2 VARIATIONS IN AEN SENSITIVITY AND SPECIFICITY

One of the factors that public health has control over is the detector configuration for the AEN
service. The Bluetooth attenuation weights and thresholds, in combination with the cumulative
risk score thresholds for the detector, determine how likely it is that a person will receive an
alert for an encounter at a certain distance and duration. The more restrictive the settings, the
fewer people are identified, but as the aperture of the detector is widened, more people may be
quarantined unnecessarily. Therefore, in SimAEN, the probability of detection and false discovery
rate should not be varied independently, although they may appear to be independent parameters
to the model. We examine here the effect on the total number of infections, and on the number
of false quarantines due to AEN, as the sensitivity of the detector increases (from P (D) = 0.36 to
0.86) and the specificity of the detector decreases (from FDR = 0.122 to 0.3).

As can be seen in Figure 12, there is very little effect on the reproduction number (for the
baseline configuration) as the weights are made less restrictive. On the least restrictive side, the
reproduction number is 1.018, while at the most restrictive it is only reduced to 1.004. However,
the number of daily false quarantined increased from 150 per day to 492 per day.
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Figure 12. The number of new daily infections along with the number of false quarantines for a collection of
probability of detection and false discovery rate, and AEN adoption rate of 25%.
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5. DISCUSSION

5.1 SCOPE

The intention of this model is to provide public health officials with the ability to understand
the effects of the actions that they have at their disposal. In order to accommodate a large range
of potential input parameter values, it was critical to optimize the model for fast execution. To
accomplish this, we sacrificed some fidelity of the actual spread of the disease, instead focusing on
ensuring that the infection rate is appropriately affected by the public health controllable parame-
ters. The speed gained by not incorporating factors such as mobility data or interaction topology
allows the model to be executed numerous times to build up a statistical understanding of the
range of potential outputs and to explore more of the parameter space.

This model is also intended for long-term understanding, not near-term high-accuracy esti-
mates of cases or deaths. Assumptions about the predictability, or at least stability, of population
mobility may be reasonable for a two-week horizon, but decisions made by public health are typ-
ically intended to be carried out on the order of months. Decisions about the hiring of contact
tracing personnel or the setting of AEN weights are not going to change on short time scales in
response to small fluctuations in infection rate.

5.2 LIMITATIONS

There are still many processes that are not addressed in the work. First, all of the actions are
deterministic. While there is stochasticity, there is no feedback mechanism to alter behavior based
on current pandemic conditions. For example, it is reasonable to expect that people are more likely
to wear a mask when the number of cases is high, but in the current implementation, the rate of
mask wearing is static for all time and set at the start of the run. Similarly, there are no changes as
a result of seasonality. Interaction rate is likely dependent on the time of year, with riskier indoor
interactions taking place more frequently in the cold winter months.

The model enjoys a computational speed boost from the simplifying assumption that the
population is closed, but this is only reasonable for large populations with some amount of travel
restriction. For smaller, mobile populations, this assumption becomes more questionable. Care needs
to be taken when applying this model when these conditions are not met. Similarly, the assumption
that only a small fraction of the population is infected at any time, and that the total number of
infections is a low fraction of the overall population, may not be met. The model was created many
months before the Omicron variant was detected and its effects on disease prevalence measured.

SimAEN does not attempt to model fluctuations in AEN adoption rates in response to either
pandemic or individual conditions. Because there is no fixed population, we do not have any insight
into the number of alerts an agent received from AEN. We have access to the number received for
a given instantiation of that individual, but once they have passed out of relevance, all of their
information is lost. Individuals in the real world may receive repeated AEN alerts if they interact
with a lot of infected people over time, and they may choose to stop using AEN depending on this.
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5.3 FUTURE WORK

As mentioned in the Limitations subsection, there is no implementation of adjustments to
individual behavioral probabilities in response to changing pandemic conditions (e.g., trends in
infection rates, testing availability, variants of concern). As richer data is gathered and shared
about how people have responded to these trends, the model could be enhanced to incorporate a
behavioral submodel. If the data is available, it would be simple to implement a Python function to
generate the probabilities of wearing a mask, taking a COVID-19 test, and participating in contact
tracing and quarantine from the environmental conditions, rather than using a fixed probability on
each day of the model run.

Annual patterns should also be incorporated. This was not within the scope of the initial
implementation of SimAEN, but as more information emerges about how COVID-19 is spread, and
whether seasonal patterns obtain, it would enrich the model’s predictions.

The assumptions that allow us to ignore changes in the susceptible population can be overcome
by adding a parameter that adjusts the interaction rate in relation to the number of cumulative
infections. This fix doesn’t change the speed of the model execution and allows for more dynamic
behavior. However, adding this into the model requires that the target population be specified. In
the current model, there is no need to identify the size of the population, only that it is “sufficient”.
Once there is a factor changing susceptibility, the specific size of the population has to be specified.

Finally, the original public health workflow for AEN relied on lab-processed PCR testing to
confirm an individual’s infection of COVID-19. In the months since SimAEN was developed, Google
and Apple developed a “self-report” feature for Exposure Notification, and many jurisdictions chose
to empower their citizens to share AEN keys on the basis of a positive at-home rapid antigen test.
This had the benefit of reducing public health workloads (at both PCR testing sites and labs as well
as on the teams fielding citizen requests for key sharing codes), increasing participation in AEN
key sharing, and reducing the time delay between testing and key sharing (by days). The AEN
submodel of SimAEN could be enhanced to incorporate the new “path” to key sharing through
rapid antigen testing, the regional availability of rapid antigen tests, and new data on participation
rates in AEN key sharing after testing positive with a rapid antigen test.
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6. CONCLUSION

We have presented an agent-based model of the effects of AEN and other public health
interventions on the progression of the COVID-19 disease and the concomitant effects on public
health resources and social costs (quarantines and isolation). As demonstrated in the Validation
section, the proposed model produces a good fit for the early pandemic data, as measured in
Pennsylvania, indicating that its most critical aspects are a reasonable reflection of real-world
effects. Additional simulated effects resulting from varying mask usage, AEN adoption, and initial
number of infections match expected behavioral trends and further support confidence in the model.

Some initial conclusions can be drawn from experiments with SimAEN. Because of the fre-
quent asymptomatic or presymptomatic spread, participation is the most important aspect of any
intervention relying on agent behavioral changes. Widespread masking is the most effective treat-
ment because it reduces the transmission immediately, without the delay associated with AEN and
MCT. These delays are a product of testing timeframes, but also the time that it takes for symp-
toms to develop in the generators. During this time there is ample opportunity for a large-scale
spreading event to occur.

MCT is less effective than masking at reducing the number of cases. The low probability
of an infectious agent identifying the agents they infected, coupled with the delays permitting
transmission events, means that at real-world initial infection counts used in the model, manual
contact tracing is not sufficient to control the spread of COVID-19.

This study also indicates that AEN may have a difficult time finding a role in disease mitiga-
tion. When the spread rate is approximately at replacement (RE ≈ 1), even a 75% adoption rate
has very minimal effect on reducing spread further. Even the small reduction it does afford comes
at the cost of a substantial number of false quarantines. For high spread rates, AEN can reduce
the spread rate at moderate adoption rates, but it involves the quarantining of large number of
individuals.

The best value to be achieved through a combination of AEN and MCT may come in the
community messaging that they permit, in addition to their impact on the effective transmission
rate. Public health could use this information to expand community testing efforts, direct messaging,
and identify potential super-spreader events in these areas.
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STARTING CONDITIONS

The number of cases at the start of the simulation 50000 [27, 35]

STOPPING CONDITIONS

Length of the simulation 30 days
Maximum number of current cases before program stops 1,500,000

DISEASE PROPERTIES

The mean time between an individual being exposed and
becoming infectious

2 days [21, 36, 37]

The standard deviation of latent period 0.7 [21]
The mean time between an individual being exposed and
becoming symptomatic

6 days [21, 36, 38]

The standard deviation of incubation period 2.3 days [21]
Infectious period 17 days [21]
The likelihood an infected person will be asymptomatic 0.73 [39, 36]
The probability that a true contact event involving an in-
fected person with no mask will result in infection...

...if they are asymptomatic 0.03

...if they are presymptomatic 0.03

...if they are symptomatic 0.07 [40]
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APPENDIX A PARAMETER DEFAULT VALUES

The tables below present default values for parameters of the SimAEN agent-based model.
The values presented were derived from published literature, and from interviews with public health
subject matter experts, when not available from literature.



TESTING PARAMETERS

The probability that a person who has been called by public
health will get tested on any given day

0.5

The probability that a person who has no symptoms and
has not been notified in any way will get a test

0.01

The probability that a person who has received a notifica-
tion through the AEN service will get tested on any given
day

0.5

The probability that a person who is symptomatic will get
tested on any given day

0.5 [33]

The mean and standard deviation of number of days that
it takes for a test to get back (normal distribution)

Mean µtestingdelay 2 days [41]
Standard Deviation σtestingdelay 1 day

Daily testing capacity ∞

PROBABILITY OF (+) TEST

The probability that a person will test positive given they
are...

...exposed 0.5

...presymptomatic 0.75

...symptomatic 0.9

...asymptomatic 0.9

AEN PARAMETERS

The probability that a person is running the AEN service 0.25
The probably that the phone of an infected person will
exchange information with the phone of a close contact
through Bluetooth detector settings (narrow, wide)

0.67, 0.86

The False Discovery Rate (FDR), used to create additional
false positives picked up automatically by the system. At
0.5 the number of false discoveries will equal the number of
true discoveries (narrow, wide)

0.23, 0.3

The probability that a person who is running the AEN ser-
vice who gets a positive test will upload their key to public
health

0.72 [42]

Is an individual required to be contacted by public health
before uploading their key?

No
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MANUAL CONTACT TRACING (MCT) PARAMETERS

The probability that a call from public health will reach a
person identified through CT

0.5

The probability that a call from public health will reach a
person expecting the call

0.75

The probability that an exposed individual will be found
using traditional CT

0.1

The maximum number of people an person can recall
through traditional CT on a single phone call

10

The number of contact tracers 500, 2,000 [43, 44]
How long each contact tracer can spend on calling in a day 8 hours
The number of times contact tracers will try to contact an
individual before giving up

3

The length of time that a missed call takes 0.05
hours

The length of time that a contact tracer takes to perform
contact tracing on an index case

1 hour

The length of time that a public health call takes 0.1 hours
The length of time it takes for a call to upload key 0.1 hours

STARTING BEHAVIOR

The probability that a newly initialized individual will start
in quarantine

0.0

MASK PARAMETERS

The probability that a person will wear a mask before re-
ceiving EN, being called by contact tracer, developing symp-
toms or receiving a positive test

0.25, 0.5

The probability that a person will wear a mask while they
are in the quarantine

0.9 [45]

How much maskless transmission rate is proportionally re-
duced for each person wearing a mask (higher numbers
mean less transmission risk)

0.65 [31]
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PERSONAL PARAMETERS

The probability that a person will call public health after a
positive test

0.75

The probability that a person will call public health after
receiving an EN notification

0.5

Total number of people in a person’s neighborhood (under-
lying Gaussian distribution for log-normal)

Mean µneighborhood 2.5
Standard deviation σneighborhood 1.1

The average number of contacts that an individual encoun-
ters each day if they take no precautions(underlying Gaus-
sian distribution for log-normal)

Mean µint,standard 2.9 [34]
Standard deviation σint,standard 1.0 [34]

The average number of contacts that an individual encoun-
ters each day if they are in quarantine (underlying Gaussian
distribution for log-normal)

Mean µint,quarantine 0.1
Standard deviation σint,quarantine 0.1

Probability of returning to starting behavior given negative
test result and no symptoms

0.85

PERSONAL BEHAVIOR

Probability of entering isolation given the person is symp-
tomatic

0.9

Probabilities of entering isolation given the person receives
a positive test

0.9

Probability of entering quarantine given the person is suc-
cessfully called by public health worker

0.75

Probability of entering quarantine given the person is noti-
fied by EN

0.5

VACCINATION PARAMETERS

Probability that a person is vaccinated 0
Do vaccinated individuals spread disease asymptomati-
cally?

No
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DAILY OUTPUTS

Effective reproduction number, RE Mean number of new infected cases per in-
fected individual

Cases prevented due to AEN Calculated by subtracting the number of to-
tal cases for the given AEN adoption rate,
from the number of total cases for AEN
adoption = 0 (all other input paramters be-
ing the same)

Unnecessary quarantines due to AEN Individuals identified as close contacts by
the AEN detector, and notified by AEN to
quarantine, but not actually infected
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APPENDIX B MODEL OUTPUTS

At the end of the simulation, three key summary metrics are calculated to estimate the impact
of the selected input parameters.

The following model outputs are tallied for each day of the simulation, and summed across
the course of the simulation. If multiple runs are performed, they can be combined daywise to
examine the minimum, maximum, mean, and standard deviation for each output over the course
of the simulation, which smooths out some of the stochastic effects.
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DAILY OUTPUTS

New infections total
received an AEN alert
called by MCT call
Positive test only
AEN alert + MCT call
Not detected

Unnecessary Quarantines

Positive cases ID’d and isolated

Public Health calls due to AEN
due to MCT call
(other)

Quarantines due to AEN alert
due to MCT call
due to AEN alert + MCT call
due to Symptoms

Tests due to AEN alert
due to MCT call
due to symptoms

People who tested positive & received AEN alert only
& received MCT call only
& received both
& received neither

People who tested Negative & received AEN alert only
& received MCT call only
& received both
& received neither

Symptomatic positives received AEN alert only
received MCT call only
received both
received neither

Asymptomatic positives received AEN alert only
received MCT call only
received both
received neither



At the request of the Massachusetts Department of Public Health, an analysis was conducted
to assess the expected impact of a planned deployment of Automated Exposure Notification (AEN)
in Massachusetts, based on SimAEN analysis and on AEN performance parameters obtained from
other jurisdictions.

Specifically, the analysis focused on assessing certain cost and benefits parameters that were
expected in a planned AEN deployment in Massachusetts. That included estimates of the expected
levels of additional resources that would be required due to the AEN deployment on one hand (e.g.,
the expected increased level of testing capacity requirements), and the expected levels of public
health benefits that would be attained from the AEN deployment, on the other hand (e.g., the
expected level of earlier detected infected individuals).

In order to obtain key parameters from multiple jurisdictions in a consistent manner, we
constructed a process model that represented a generic AEN flow, as depicted in Figure C.13.

Figure C.13. Generic process flow model of an AEN system.

Given the total number of new positive cases in a particular jurisdiction on a particular day, 
one can derive the estimated number of positive cases who are AEN users, based on the AEN 
adoption rate at that jurisdiction.

From the number of positive AEN users one can derive the expected number of AEN key 
uploads, based on the average percentage upload rate at that jurisdiction.

Each upload results in a certain number of triggered exposure notifications to other AEN 
users, determined by the risk score setting of the AEN service at that jurisdiction.
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The number of AEN users who receive AEN exposure notifications determines the number of
expected AEN triggered tests, based on the percentage of users in that jurisdiction who are likely
to go and get tested following the receipt of a notifications. Similarly one can derive the number of
helpdesk sessions that are expected to be triggered by AEN exposure notifications.

The percentage of AEN triggered tests which end up with positive test results is the AEN
secondary-attack-rate (SAR) and can be used to derive the number of AEN triggered users who
are expected to test positive, as well as the number of these expected to test negative.

Figure C.14 represents an assessment of the above process flow values for the AEN deployment
in the UK in a particular period. These values are derived from [42] and are based on data which
can either be measured directly in the target environment or can be assessed indirectly from other
sources.

Figure C.14. AEN process flow with UK estimates of participation at each step.

At the particular target period of time, 28% of the UK population was using the AEN service 
and 72% of AEN users who tested positive actually went ahead and uploaded their recent AEN 
keys. Each upload resulted on average in 4.4 new exposure notifications to other AEN users. It 
was estimated that only 50% of the AEN users who received an exposure notification actually 
proceeded to get tested. Of these users who tested following a receipt of an exposure notification 
it was assessed that at least 6.1% tested positive. Similarly, corresponding values were assessed for 
other jurisdictions such as Switzerland and the Netherlands.

This type of process flow abstraction and high-level estimations served as a basis for initial 
rough estimations and what-if analysis which can then be further analyzed and refined. For example, 
applying the above UK derived parameters to the number of estimated new cases in Massachusetts 
on a given day, one can derive preliminary rough estimations as depicted in Figure C3.
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Figure C.15. AEN process flow, applying UK estimates to MA case rate estimate.

That is, given an estimated number of 1245 new cases in MA on a given day, based on the 
UK parameters we can expect an estimated 553 additional tests as a result of new AEN exposure 
notifications. Such process flow model values were used to calibrate certain SimAEN execution 
parameters and refine various insights.

The process flow model can serve as a basis for a more granular quantifiable cost-benefits 
analysis and optimization. For example, one can assess the number of cases prevented (and life 
saved) by the number of earlier detected of positive cases due to AEN exposure notifications. Sim-
ilarly one can assess the extra resources associated with the additional notifications to individuals 
who are not infected.

Due to privacy-preservation concerns as well as to challenges of integration between AEN 
and public-health processes, assessing actual key AEN execution values (such as AEN’s “secondary 
attack rate”) has proven extremely challenging, and often impossible, in almost almost all jurisdic-
tions. More effective and unified operational processes can and should be designed and implemented 
to enable better assessment and optimization of the AEN value and derive important new insights, 
without violating privacy objectives.
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GLOSSARY

AEN Automated Exposure Notification

BLEMUR Bluetooth Low Energy Model of User Risk

COVID-19 The disease caused by the SARS-CoV-2 virus

CDF Cumulative Distribution Function

CT Contact tracing

EN Exposure Notification

FDR false discovery rate

GAEN Google-Apple Exposure Notification

MCT Manual (traditional) contact tracing

ODD Overview, Design concepts, Details protocol

ODE Ordinary Differential Equation

PACT Private Automated Contact Tracing

PCR Polymerase chain reaction

P(D) Probability of detection

SARS-CoV-2 severe acute respiratory syndrome coronavirus 2

SimAEN Simulation of Automated Exposure Notification

TC4TL “Too close for too long” standard
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NOTATION

µ mean of the underlying Gaussian distribution

µint mean number of daily interactions

µneighborhood mean number of people in a person’s neighborhood

σ standard deviation of the underlying Gaussian distribution

σint standard deviation of number of daily interactions

σneighborhood standard deviation of number of people in a person’s neighborhood

Ai ith agent

Ci potential interactions of the ith agent with other agents {Ai1, ..., Ain}

RE effective reproduction number

t time, i.e., day of simulation
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