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A Theory for Optimal MTI Digitai Signal Processing

Part I: Receiver Synthesis

,

ABSTRACT

A classical problem in radar theory is the detection of moving targets in

a ground clutter plus receiver noise background. Improvements in clutter re -

jection have recently been made by replacing analog MTI processors by their

digital equivalents as this eliminates many of the problems associated with

the maintenance of the analog hardware. In an attempt to determine the ulti-

mate improvements possible using this new technology, the MT I problem was

formulated as a classical detection problem and solved using the generalized

likelihood ratio test. By manipulating the likelihood ratio, the receiver

could be interpreted as a clutter filter in cascade with a doppler filter bank.

The performance of the optimum receiver was evaluated in terms of the out-

put signal-to-interference ratio and compared with well-known MTI proces-

sors. It was shown that near-optimum performance can be obtained using a

sliding weighted Discrete Fourier Transform (DFT).

All of the results in Part I assume uniformly spaced transmitted pulses,

which, for high velocity aircraft, leads to aliasing of the target and clutter

spectra and detection blind speeds. In Part II the maximum likelihood method

is applied using a more general model for the non-uniformly sampled target

returns. This leads to an optimum receiver that is a slightly more complicated

version of the sliding weighted DFT. In addition to removing the detection

blind speeds, it is found that unambi~ous doppler measurements are possible

by selecting the staggering algorithm to properly design the signal’s ambigu-

ity function.
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1. INTRODUCTION AND SYNOPSIS

The exact role of radar in the beacon equipped Air

system is uncertain, and the issue will probably not be

Traffic Control (ATC)

completely resolved

until after this decade. In the interim it is quite clear that it will be necessary

to employ radar for the detection and tracking of uncooperative non-beacon-

equipped air craft. It is therefore of interest to determine whether or not re-

cent advances in radar technology could have any serious impact in improving

the performance of radar as an ATC surveillance sensor.

There are two basic problems associated with the use of radar for air-

craft surveillance. The first arises from the fact that .bhe radar uses a fan

beam in elevation to obtain the desired altitude coverage. This means that

target returns must be processed in a strong ground clutter background, a

problem which has not really been successfully resolved even after two dec-

ades of MTI development. Once a target return has been detected, there re-

mains the problem of associating the radar position measurement with the

aircraft that was the actual source of the datum. The difficulty here arises

from the fact that radar has been used to extract information of only the posi-

tion of the aircraft, no velocity filtering having been performed.

It was originally intended that a study be made of recent advances in radar

* clutter processing techniques that have resulted mainly through the use of

. digital signal processing (DSP). On trying to deduce a rational means for

. determining the enhancement in clutter rejection that might be obtained using

*
I)SP in conjunction with the present enroute radars, it was discovered that no

general body of theory was available to adequately characterize the signal and

noise environment that confronts the MT I processor. Hence no optimal MTI
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receivers had ever been derived, hence nti performance measures existed for

comparing a practical receiver with the theoretically optimum. It was decided

that such a theoretical investigation be undertaken, the results of which make

up the bulk of this paper. In addition to deriving a theory that puts classical

MTI processors in perspective, a new optimal processor is deduced that can

lead to significant improvements in the ability to detect targets in ground clut-

ter. Quite accidentally, this processor happens to be capable of resolving

the data association problem as it provides for unambiguous estimates of aircraft

velocity. These estimates can be used to perform bulk filtering on the raw

data and, in addition, lead to significant enhancement of the quality of aircraft

tracks. The processor will have to be implemented using DSP techniques

which is entirely appropriate considering the current developments in radar

technology.

The paper is structured as follows: In Section 11 models are derived for

the sampled-data target and clutter returns that evolve from a particular

range-resolution cell as the antenna scans through azimuth. Statistical

Decision Theoretical tests are then applied to these models in Section 111 to

derive the optimum detector. It is shown that the optimm receiver consists,

not surprisingly, of a clutter rejection filter and a bank of matched filters.

The pulse -canceller filters used in classical MTI technology can be interpreted

as practical approximations to the optimum clutter rejection filter. The good-

ness of this approximation is the subject of Section IV where it is shown that

the performance of the optimal and sub optimal filters is well- characte ri7ed

by the signal-to-interference ratio (SIR). This performance measure is used

to compare the detection in clutter capabilities of the classical MTI filters
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with the optimum processor. It is shown that the two-pulse canceller per-

forms very poorly indeed, and that the ideal clutter notch filter loses 10 dB

in detection SNR as compared with the optimum. Since the receiver involves

filters that are matched to the two-way antenna pattern the possibility exists

for optimum azimuth estimation. The standard formula for the mean-squared

error in the delay paraIneter is applied to the azimuth parameter in Section V.

A brief discussion of the effects that weather clutter would have on the opti-

mal ground clutter processor is included in Section VI. For theoretical com-

pleteness the optimum weather clutter processor is derived and interpreted

in terms of adaptive minimum-mean-squared-error filters.

The results in Part I are based on the assumption that pulses leave the

translnitter uniformly spaced in time. For ATC en route L-band radars in

which the unambiguous range must bc ZOO nmi, unambiguous velocity mea-

surements are not possible. Furthermore, IIblind sPeedsrl occur at multiples

of tbe transmitter PRF at which the detection SNR of even the optimal detec-

tor is degraded below practically useful limits. In the development of classi-

cal MTI processing it has been found from intuitive considerations that if the

transmitter pulses arc staggered in time, improved detection performance

can be obtained. However, there has been no theoretical investigation of the

exact effect that staggered PRFIS have on the underlying target and clutter

models. In Part II this question is explored in detail as a signal design

problem and uses the a]lalytical techniques developed in Part I.
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II. TARGET AND CLUTTER MODELS FOX. MT] PROCESSING

The key discriminant that is used to process aircraft targets out of a

ground clutter background is the doppler frequency shift that is induced by the

aircraft as it moves relative to the stationary clutter. The processing is done

on the basis of a set of returns received as the antenna scans past the air-

craft. Since the aircraft moves slowly relative to the tip speed of the antenna,

there will be no significant change in the target range during the short tin-,e on

target. For this reason MTI is fundamentally a sampled data system as the

relevant information shows up at the same range each inter pulse period:

lIistorically pulse-to-pulse processing has been done by storing all of the range

data from each transmitted pulse in delay lines. More recently, it has be-

come popular to store samples of the range data and implement the MTI filters

digitally, as this overcomes many of the practical problems associated with

analog processing. In an attempt to obtain a measure of the clutter rejection

capabilities of the best possible MTI processor, digital or analog, it be-

came clear that good performance upper bounds were not available. In arl at-

tempt to deduce them, it was also recognized that presently used target and

clutter models are imprecise and leave out valuable information that can be

used in target tracking. The historical background and development of clas-

sical MTI can be found in [1] - [3]. Reference [2] provides the best descrip-

tion of target and clutter models, but fails to include the target azimuth which

is also a relevant parameter to be estimated. The general approach to target

and clutter modeling and detector synthesis cleveloped in this paper has much

in comon with the work in reference [4] which documents the results of a

parallel but independent study of Airborne MTI.
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Target Model

The radar transmits a never-ending seq~,ence of simple on-off pulses of

RF energy at carrier frequency fc Hz. The complex envelope of the basic

pulse is p(t), where

{

d~/AT OSt SAT
p(t) =

o otherwise

Ep being the energy per pulse. The transmitted

(1)

waveform is therefore

(2)

where Tp is the interpulse period. Throughout Part I it is assumed that T
P

is constant, while Part 11 is devoted to studying the effects of changing T
P

from pulse-to-pulse. For the Air Route Surveillance Radar (ARSR), the

radar to which the results of this study are to be applied, the preceding

parameters have values f= = 1300 MHz and T = 1/360 sec.
P

If an aircraft is located at azimuth y and the antenna scans at a rate u
s

rad/scc. then the detailed model of the signal return for the conventional

1
scanning pulsed radar [5 ] is then

g2(t) = yc2(@,t – ~) eJ2Tvt: p(t-nTp-q . (3)

n= -m

In (3) ejzm”t represents the doppler modulation due to the aircraft motion,

v = 2\rrfc/c is the doppler shift (vr = radial velocity towards the radar,

1 The carrier frequency is removed at the receiver,
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c = velocity of light); Gz(e) is the antenna tvro-way voltage gain, ? is the delay

corresponding to the targetts position at ran{;e R = c?/2, q is the target bearing

and y = AeJ8 represents the unknown amplitude and phase of the carrier signal

return.

For the ARSR the pulse duration DT = 2U sec. is small relative to the

interpulse period of T = 1/360 and since the antenna pattern changes slowly
P

relative to AT the following approximation can be used:

m

G2(WST – q) ~ p(t – nT -
Pn= -m

Furthermore at L-band targets

T)= ~ G2(wsnT + ws ~ – q) p(t – nTp, – T)

n= -m P

(4)

moving at 600 knots induce a doppler shift of

(5)

2600 Hz. Hence the smallest period of the doppler modulation is .4 msec.

which is large relative to AT, hence allowing the approximation

j2nvt j2nv(nTp t ~)
e p(t–nT –~)~e

P
p(t–nT –~)

P

The constant 2nv~ can be lumped with the unknown RF phase leaving

.
j2~vnT

53(t) = y ~ G2(nw~ Tp tws~–q)e pp(t–nT –T) .(6)

n= -m P

It is standard practice to match filter each T segment of range data to e]~-
P

hance the range resolution. This is accomplished using the filter with im-

pulse response h(t) = p( -t)/&p (with delay AT to insure realizability). The

resulting waveform is

b

\

.
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T

S(t; g) = J p 53(t – u) h(u) du
0

,

where
.

*p(t) = # ~ P(r) P(u t t) dy
P -m

~) (7)

(8)

is the autocorrelation function of the basic pulse and g = (v, q).

Notice that although S(t; ~ represents a continuous function in range, the

effects of the doppler modulation and antenna beam pattern are well approxi-

mated by discrete time sample-values taken each interpulse period. In other

words the significant changes in the doppler information arise only every T
P

sec. , hence some provision must be made for storing all of the range informa-

tion over several T segments. In classical MTI this is done using a number
P

of analog delay lines each of length T sec. For a variety of reasons that are
P

of more practical interest than theoretical, modern MT I processors have been

implemented digitally. This. means that each Tp seconds of range data is

sampled at discrete range intervals and converted to a digital number for dig-

ital processing. It is convenient to think in terms of the data that evolves from

.
a Particular range res OlutiOn cell on a sampled-data basis. Ideally this sam-

pling would be done at least twice per radar pulse width to prevent a loss in

detectability due to sampling rate [6]. In this case a 1 megacycle A/D conver-

ter would be needed to sample S(t; g) in (7) to produce samples spaced

AT/2 = 1~ sec apart.
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Henceforth it is assumed that samples of S(t; ~ are taken at times

nTp t mDT/2 sec. , where first a value of n is specified, and then for each

value ofn, m=l ,2, . . . ..M. The processor can be visualized as having

M separate memories and as each range sample is taken it is shuffled to the

memory unit whose index corresponds to the range cell being sample.

Therefore in the m
th

memory unit are stored the samples taken at titnes

tm= nTp t AT/2 which when applied to (7) yields the target sample values
n

n=0,1,2, . . . ..N. m =1,2, . . . ..M.

For convenience it has been assumed that the sample-store operation begins

at t = .0 at which time the antenna is pointing in the reference azimuth. Since

the exact value of T is unknom, the factor ~ !p(& – ~)is unknown and

adjoined to Iy \.

Furthermore the antenna pattern changes very slowly relative to a pulse

width AT, hence

G2(nw~ Tp t T – q) ~G2(nu~T tw
m AT
—–T) .

PS2
(lo)

Since q, the aircraft azimuth, is unknown, the bias WS mAT/Z can be included

in its definition. However, it will be necessary to add this bias term onto

the estimated value of q.

Therefore when an aircraft is located within the m
th

range ring, N com-

plex data samples corresponding to one scan of the radar will be stored in

8



the m
th

memory unit, whose values are

j2mvnT

Snm(g) = y Gz(n us T –q)e P
P

n=0,1,2, . . . ..N. (11)

The vector g = (v, q) denotes the unknom doppler shift and azimuth location

of the aircraft. In the most general context it is desirable to detect the pre-

sence of an aircraft and to estimate the parameters v and q as well. Equation

(11) resembles the classical delay -doppler target model, In this case, how-

ever, the delay corresponds to the target bearing. This can be made explicit

by defining T = q/ws, and

g(t) = G2(w6 t) (12)

where T~ = 2w/w~ is tbe time for one antenna scan, the time needed to collect

the N data samples. Then (11) can be written as

j2rvnT
Snm(g) = y g(nT – T) e P

P
(13)

n=o, l,... ., N–l; NTP=T
s

where g is defined to be tuple (v, ~). Equation ( 13) is interesting because it

suggests that the optimum filter will probably involve a bank of filters each

matched to the two-way antenna pattern, g(t), but tuned to different doppler

frequencies. A visual summary of tbe target model is presented in Fig. 1.

Clutter Model

Since ATC radars use fan beams in elevation to obtain altitude coverage,

it will happen that objects at zero elevation will be illuminated by the transmit-

ted pulses and constitute legitimate radar returns. Due to range -gating, oIlly

9
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Fig. 1. (a) sampling pattern in range. (b) Sampling pattern in range and
azimuth. (c) Typical voltage samples due to aircraft in mth range ring.
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those objects located in the m
th

range-resolution ring will constitute sources

of interference to the target signal, as illust::ated in Fig. 2(a). Each scat-

tering center can be considered a target moving with zero velocity. Hence,

th
the k

th
scatterer in the m range ring at azimuth ~k yields a clutter signal

return according to (1 3) with v = O, namely

cm=~,n Yk g(nTp – ‘k) (14)

where T =
k Vk/~~ – m AT/2 takes the bias term mAT/2 into account. In this

case yk = Ake ‘ok where Ak is related to the scattering cross-section of the

~t h
scatterer and ek is the carrier phase shift it introduces. The total clut-

ter return is the aggregate of the signals in (14) and is therefore given by

c:=kc~ck‘kg(nTp-Tk) (15)

The antenna scanning pattern and translnitter PRF are not synchronized which

means that each time the beam returns to the reference azimuth new phase

relationships will be generated between the collection of scatterers. This

means that on a scan-to-scan basis T
k’ ‘k’

and ek will be random variables

which means that C m will be a discrete time random process. It is reas On-
n

able to assume that the returns from separate scatterers are statistically

independent and that the phases of each of the returns are uniformly distributed.

Hence the following conditions are satisfied:

—
yk=o ( 16a)

Ykyj= o ( 16b)

-
~k Yj

26V=rk k,j ( 16c)

11
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where the bar denotes statistical averaging over the ensemble of scatterers.

2.
The parameter Uk

th
lS proportional to the radar cross-section of the k scat-

terer, and 8 denotes the Kronicker Delta.
k, j

If it is further assumed that the

total number of scatterers is large enough so that some form of the Central

Limit Theorem holds, hence Cnm can be thought of as a sample function of a

discrete time complex Gaussian process [7]. Such a process is completely

characterized by its mean and two autocorrelation functions. Using (16a)

and (16b) it is easy to show that

Cnm = o (17a)

Cmclm=o .
n

(17b)

The final relationship needed is

(18)

To evaluate (18) it is noted that the effective time duration of g(t) is well ap-

proximated by TE = Ae/ws where A6 is the antenna beamwidth. Hence the

number of terms in the summations of (18) will be limited by the number of

scatterers in the intervals (nT p – TE/2, nTp t TE/2) and (1 Tp – TE/2, ] Tp t TE/2),

as illustrated in Fig. 2(b). Letting I(n) denote the index set corresponding

to the scatterers that contribute non-zero elements to (18) we have
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Fig. 2(b). Effective scatterers in a range-azimuth CC!ll.
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Since thetwo-way antenna voltage gain pattern is real andusing(16c), (19)

becomes

cm clm~’ = ) 2

n Uk g(n Tp– ~k) g(l Tp– ~k) .

k61in)

(20)

To carry out the statistical averaging needed to evaluate (20), it is useful to

deal with a more general problem.

Consider

Ts/2

g(t – Tk) g(fi – Tk) = ~T ,2 g(t-~k) g(s ‘Tk) p(~k) ‘Tk (21)

s

where p(~k) is the probability density function of the location of the k
th

scat-

terer. It is reasonable to assume that the scatterers are uniformly distri-

buted in azimuth throughout the range ring, in which case

p(Tk) = l/T~ (22)

Hence

T~/2

~ g(t-~k) g(s-~) ‘7k ~ (23)g(t–~k) g(s – Tk) = ~ -T ,2

s

Since the effective time duration of g(t) is small relative to the scan time

(i. e., TE << T. since ~e << 2m)j then



= Rg(t– S) (24)

where Rg(T) is the autocorrelation function of the scaled two-way antenna voltage

gain pattern. Using (24) with (23) in (20) the correlation between elements in

the clutter sequence is given by

cm c~’k = & Rg[(n– 1) Tp]
n

~ c;,

s kcI(n)

(25)

As the antenna rotates, the beam will envelope ensembles of scatterers whose

underlying statistical parameters will be the same over azimuthal segment of

the range ring, but may vary from azimuth cell to azimuth cell. This time-

varying nature of the average clutter cross -section can be made explicit by

defining

u2(nTp) =
1“:

(26)

k~I(n)

The final expression for the correlation function of the clutter process at the

th
range cell is

Rcm(iTp, jTp) ~ Cim CJrn’:< = ~~ Rg [(j – j) T2 (iTp) . (27)
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The result shows that the clutter process is’ basically a non-stationary

discrete-time process, due to the time-varying nature of the clutter cross-

section. Since the target data evolves as the antenna sweeps past the air-

craft, it is intuitively clear that only clutter scatterers that matter arc those

located within a beamwidth on each side of the target. over this much smaller

interval, the clutter statistics are unlikely to change significantly and it is

reasonable to assume that the process is quasi-stationary. In this case

2
u (nT ) can be considered a constant, hence the clutter correlation function

P

reduces to

2

Rc(jTp) = Cim Ci~~ = & Rg(jTp) .
s

(28)

Receiver Noise Model

In addition to the target and clutter samples at each range cell, there

will be a noise component corresponding to the sampled data version of the

receiver noise process. In (7) it was assumed that the signal return after

each transmitted pulse was processed by a matched filter and sampled every

AT/2 sec. out to the maximum range. If ~(t) represents the RF white Gaussian

noise process due to the amplifiers in the receiver front end then its two sided

spectru is

1.
NO/2 If+ fcl sB/2

Sri(t) = (29)
o otherwise

where N = kT k is Boltzman’s constant, Te the effective temperature a~~d
0 e’

B the bandwidth of the amplifier. Since both amplitude and phase of the signal

are to be processed, the receiver noise shows up as a complex C,aussian noise

17



process. If this is denoted by v(t), then its autocorrelation function is

~(t) TX<(S) = 2N0 6(t – s) . (30)

It is this noisy waveform that is processed by the transmitted pulse matched

filter to yield to the new noise process

Samples of this process are taken at times tm = nT t mAT/2, hence
n P

(31)

(32)

which represents the noise sample when the m
th

range resolution cell is

sampled at time nT . It is easy to show that this complex noise process has
P

zero mean, is Gaussian, and has correlation function

m ~9&

Wi w,
J

= 2N0 *P [(i–j)Tp] . (33)

Since the autocorrelation function of the basic pulse has duration 2 AT which

is small compared to T then it follows that the sampled receiver noise sc -
P’

quence is also a white process, that is

m m ~%
w, w,

1
= 2N0 6ij .

J
( 34)

The MTI Problem

Moving Target Indication (MTI) is fundamentally a detection problem. In

terms of the signal, clutter and noise models developed in the preceding

18



paragraphs it can be stated mathematically as a hypothesis testing problem as

follows:

j2rv nTp + Cn’(nTp) t Wm(nTp)
‘: target present: rm(nTp) = y g(nT – T ) e

‘1 P

‘: target absent:
‘o

rm(nTp) = Cm(nTp) t Wm(nTp)

. n= 0,1, . . ..l —l. m=l,2, ,.. ,M (35)

The notation rm(nTp), Cm(nTp), Wm(nTp) rather than ‘rim, c;, ‘nm ‘s ‘Seal

to make the sampled-data nature of the problem explicit. The test is to be

applied separately to each of the M range -rings. In addition to the lack of

knowledge concerning the targets location in range, there also remains the

problem of estimating the unknown parameters, y, v, T. In the next sectiOn

sampled-data techniques are used in conjunction with statistical decision

theory to deduce an optimum receiver for target detection and parameter

estimation.

19



III. DECISION THEORY IN MTI AND THE CLUTTER REJECTION FI1.TER

The detection problem state in (35) could also be formulated as the test

for the presence of a finite dimensional signal vector in a colored noise vec-

tor background. This is the approach used in [4], [13], [14] and it leads to

very useful theoretical results but at some loss to physical insight as the pro-

cessing is stated in terms of the inverse of a certain clutter correlation

matrix. In an attempt to find a solution that can be interpreted i)~ terms of

linear filtering theory, the problem formulation will be altered slightly. Since

the doppler signal e
j2rvnT

p is amplitude modulated by the two-way antenna

pattern g(nT – 7), which is non-zero for a relatively small number of hits
P

compared with N, it can reasonably be assumed that the received signal se-

2
quence r(nTp), is infinite in extent, This

a sampled-data whitening filter, hw(nTp).

rw(nT ), then
P

.

sequence is then preprocessed by

Denoting the output sequence as

rw(nTp) = ~ hw(nTp-kT~ ‘(kT~ ~

k=--
,

Under the Hl hypothesis, the target is absent and

r(nTp) = C(nTp) t W(nTp) .

This is a discrete-time quasi-stationary random process

function

(36)

(37)

,
with correlation

.,
L

The superscript notation denoting “m’n range ring” has been suppressed
since identical processing is applied to the data from each range cell.

20



Rr(nTp) = Rc(nTp) t 2N0 6(nTp) (38)

which follows from (28), (34) and the fact that 6(nTp) is used to represent the

Kronicker Delta 6 This random process has a spectral density defined as
no.

the Z-Transform of its autocorrelation function [7 ]. If S(z) denotes the spec-

. tral density of a sampled-data random process whose correlation function is

R(nTp), then

.

.

S(z) = ~ R(nTp) z-n = Z [R(nTp)]

n=--
(39)

Applied to (38)

Sr(z) = Se(z) t 2N0 . (40)

Since rw(nTp) is the result of passing r(nTp) through a linear filter, its spec-

tral density is [8]

Sr (z) = Hw(z) Hw (;) Sr(z) (41)
w

where

Hw(z) = Z[hw(nTp) ] . (42)

The filter was to be chosen to generate an uncorrelated output sequence when

,.V, ,_ .LA ,- . . . . . ml.:- ------- .,. –.
\2 I ) 1S L1lS lIL~UL. L Ills means tnac

Sr (z) = 1 (43)
w

which can be achieved by choosing the filter so that

Hw( Z) Hw( :
1

- S=(Z) t 2N0 “ (44)

21
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If SC(Z,) were a ratio of polynomials in z., then (44) could be factored into

poles and zeros inside and outside the unit circle I z I = 1 in the complex

z-plane. The poles and zeros within the circle could he assigned to Hw(z),

1
while Hw(~) would thel~ account for the poles and zeros outside the unit circle:.

As it turns out, the whitening filter is riot used explicitly in the final detector

realization, hence it is really not necessary to specify the rule for solving

(44). The point is, that ,Indcr the no signal hypothesis

rw(nTp) = 7(nTp) (45)

u,here V(nTp) is a zero mean, Gaussian discrete time white random process

with unity spectral density. Under the Ho hypothesis, the target is preserlt

and

r(nTp) = yS(nT ; a) t C(nTp) t W(nTp)p– (46)

where from (38) : = (v, ~) and

‘2nvnT
S(nTp; ~ = g(nTp – ~) eJ P

The response of the whitening filter to the input (46) is

rw(nTp) = ySw(nT ; a) + 7(nTp)p–

where

Sw(nTp; ~) = ~ hw(nT - kTp) S(kT ; ~
P P’

k=-m

(47)

(48)

(48)

An hypothesis test that is completely equivalent to (35) can now bc formu-

lated in terms of the detection of a signal in white noise.



HI: target present: rw(nTp) = ySw(nTp; ~ t v(nTp)

‘o: ‘arget absent:
rw(nTp) = V(nTp) (50)

For a variety of reasons [5], the optimum detector is chosen as the one

that computes a generalized maximum likelihood ratio and compares its value

with a threshold. The target is declared present if

.

When the noise is zero mean, Gaussian and white, (51) is maximized fOr

(51)

(52)

The denominator

ting

in (55) can be considered a normalization factor. Then let-

.

and substituting (52) and (53) into (51) yields the test

(53)

(54)

3 The asterisk denotes complex conjugate.
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A block diagram representation for this processor is shown in Fig. 3.

This result is still not amenable to phys’,cal interpretation and alternate

ways of implementing (54) are sought. This will be done following the

sampled-data analog of the technique used in [91, [ 10] in cOnJunctiOn with ‘he

detection of stochastic signals in colored noise. The mathematical ~nanipula -

tions are detailed in the Appendix where it is shown that the test in (54) is

equivalent to

where now

m

E(g) = } y(nTp) S’;<(nT ; Q)J ~–
n=-m

x(nTp)= Z
[

‘1 Hw(z) Hw(~)

[
y(nTp) = Z-l Hw(z)Hw(~

(55)

(56)

1R(z) (57a)

1
5(74;g) (57b)

and R(z), 5(z; ~) are the z-transforms of the non-whitened sequences r(nTp),

S(nTp; ~, respectively, The sequences x(nTp) and y(nTp) can be interpreted

as the result of passing signals r(nTp) and S(nT ; S) through a filter whOs~
P

z-Transform is .

He(z) = Hw(z) Hw(~) . (58)

From (47)this reduces to
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1
‘C(z) = S (Z) t 2N

c 0
(59)

and for reasons that will become clearer as the analysis proceeds, He(z) is

called the Clutter Rejection Filter. In (57), which is the key operation so far

as tbe detection process is concerned, it is evident that the received sigr)al

is filtered by He(z), which depends only on the clutter and noise statistics.

The output of this filter is then correlated with locally stored versions of the

original signal, not the whitened version of that signal. As it is Ivell known

that such a correlation operation is optimum for detecting signals in white

noise, it appears that He(z) is trying to remove the clutter in some optimum

way.

Matched Filter Bank

Using (47) and the fact that E(9 depends only on v and not on ~ (Appendix),

it is possible to express (55) in terms of a bank of doppler filters. Defining

tbe impulse reponses

h(nTp; v) = g(-nTp) e Jzm“nTp/E*( v)

then it is straightforward to deduce that the likelihood ratio test, (55), is

equivalent to

(6o)

(61)

The argument in (61) is the output at sample time ~ (quantized into increments

at width Tp) of a filter whose impulse response is tuned to a doppler frequency



+v and matched to the two-way antenna pattern scaled by the factor E (v). There-

fore at each sample time a search is made over the filter bank for the largest

output. Since the memory of the filter is limited by the effective time duration

of g(nTp), TE, TE/Tp such values need to be stored. If the largest of these

number s..exceeds the threshold then a target is declared present. Further-

more the sampling time and the doppler frequency at which the maximum value

4
occur represent the maximum likelihood estimates of target bearing and

velocity.

Therefore a realization for the optimum sampled data MTI receiver has

been derived that is intuitively easy to understand from a linear filtering

point of view. As shown in Fig. 4, the received samples are processed by a

clutter rejection filter that tries to remove the clutter background from the

target information. The resulting samples are passed through a bank of filters

matched to the original target antenna modulation. These filters further pro-

cess the target out of the white noise background and at the same time gener-

ate estimates of the target bearing and velocity.

The classical works in MTI have focused on only one aspect of the above

receiver, namely the realization of the clutter rejection filter. That this is

true can be deduced by first noting that the frequency response of a sampled-

data filter is given by the z-Transform evaluated on the unit circle. From

(6o) with z = eJ2TfT P, the frequency response of the clutter rejection filter is

4
Provided the bias term m~ AT is added to the estimate.
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He(f) =
1

j2rfT
(62)

Sc(e p) t 2N0

A typical clutter spectral density is illustrated in Fig. 5, as well as the re-

sulting frequency characteristic of the clutter rejection filter. The sketch

shows the effects of sampling in terms of aliasing the spectral density and

the clutter filter characteristic. Furthermore the fact that the clutter filter

inserts a notch at DC and at all multiples of the sampling frequency is remi-

niscent of the behavior of Classical MTI pulse cancelers. However, the

derivation of the optimum MT I receiver provides the means whereby reason-

able suboptimal approximations can be evaluated and compared. In the next

29

section a design criterion that reflects the clutter rejection capabilities of a

processor is defined and applied to the ARSR problem to evaluate the perfor-

mance of classical MT I receivers as compared to the optimum processor.
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1.

IV. COMPARATIVE EVALUATION OF MTI PROCESSORS

The ideal criterion for evaluating the design of any detector is the trade-

off between the probability of detection and the false alarm probability. In gen-

eral these quantities are difficult to compute as they require precise knowledge

of the statistics of the background clutter and noise. The performance mea-

sure adopted here, as in [4], [14] is mainly concerned with the ability of the

receiver to detect targets in clutter. Since the optimum processor is a linear

filter followed by a square-law envelope ....detector. it is reasonable to restrict

the field of comparison to the class of linear filters. Then it is appropriate

to measure the detection performance of any. filter in the class bythe signal-

to-interference ratio (SIR) at the output of the filter. This quantity is defined

to be

~ Q instantaneous p eak target output power
average noise output power

When a target is present the received samples are

r(nTp) = s(nTp; ~) +c(nTp) t w(nTp)

-0 = (~o’ ’01
where a Vo) represents the true parameter values and

(63)

( 64)

s(nTp; go) = y. g(nT — To) e
j2rvonT

P
P. (65)

If h(nTp) is the impulse response of an arbitrary linear filter, the target ~ut -

put at each sampling time is

.

?s(nTp) = ~ h(nTp – kTp) s(kTp; go)

k=-m

(66)



Therefore the instantaneous peak target power in <~(nTp) can be expressed

as

where H(z) =

at the output

1~.(nTp)\2= 1A @H(z) Z.(Z; go) zn-1dz12 (67)

Z[h(nTp)] and Z~(z; go) = Z[s(nT ; a )1. The noise samples
p –0

of the filter are

m

~n(nTp) = }’ h(nTp - kTp) [qkTp) t W(kTp)] (68)

k=fm

and this output sequence has average noise power

lSn(nTp) 12 = & ~ H(z) H(+) [SC(Z) t 2NO] Z-l d. . (69)

j2~fT
PSince the unit circle, z = c , is a legitimate contour of integration in

the z-plane, the SIR at sample time T is
5

l/2T

ITP ~1,2 Tp H(ej2TfTp) Zs(ej2nfTp;

~/T

go) (e

j2rfTp)
pdf12

p(T) = P
1/2 T

. (70)

Tp J,,2TP lH(’J2mfTp)12 [sc(’j2mfTp) t 2N01df

P

Since the Z-transform of (65) is [12]

-j2rvo T -~O/T
Z~(z; go) = y. G(e Pz)z P (71)

5
T and To are assumed to be multiples of T

P
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,

where G(z) = Z g(nTp)], then (70) reduces t.o

1/2 T

If -1,, VP‘(ejznf=p)‘(ej2m(f- “O)Tp)cj2Tf(T- ‘0) df12

Using the Schwartz Inequality it can be shown that the SIR is maximu~n

when

-’2T(f– Vo) T ,
~(ej2~fTp) = 1 . G[e J

Sc(eJ2TfTp) t 2N
(73)

EA(vO)
0

This is precisely the cascade combination of the clutter rejection filter and

the matched filter that is tuned to the true target doppler Vo. Furthermore

the maximum SIR is achieved only when the output of this filter is sampled at

a time corresponding to the true target azimuth To. Of course it is not pOs -

sible to build such a filter because v and To are unknown a priori. However
0

the maximum likelihood processor derived in Section 111 generates estimates

T, v which in a well designed receiver are close to the true values T v
0’ 0.

Therefore the filter that maximizes the SIR can be visualized as being the fil-

ter in the matched filter bank that is most closely tuned to the true target dop -

pler and sampled at a time T that is closest to the true target azimuth.

Therefore the maximum likelihood estimator, in addition to being an optimum

filter in the decision theoretical sense,
6,

lS also optimum in the sense of

b
Maximum probability of detection subject to a fixed false alarm probability.
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maximizing the SIR. In the former case,

Gaussian noise assumption for the clutter

case, no Gaussian assumption is needed.

applicability in MTI problems.

the realization depended on the

statistics, but in the maximum SIR

Therefore the receiver has wide

The maximum SIR is found by using filter (73) in (72). This gives

l/2T
2

p Ge
j2r(f – Vo) T

IJ
P

~ ejznf(’ “0)df12

-1/2Tp S (e
j2rfT

‘) t 2N0

1/2 k

J

p jG(e
j2n(f – Vo) T 2

P) \
df

-1/2T
j2~fT

p Sc(e ‘) t 2N0

(74)

which when sampled at the correct time yields the maximum SIR

1/2 T j2n(f – Vo) T

IY012TP ~1,2; JG(e
P)12

Popt( ~o) = df .
j2~fT

(75)

p Sc(e ‘) t 2N0

This result gives the ultimate performance capability of all linear MTI

processors, digital or analog. Probably the reason this processor was not

developed years ago, is due to the difficulty in realizing the matched filter

bank at each range cell using analog hardware. With the advent of digital

signal processing techniques, however, it is not at all unreasonable to con-

sider a practical implementation of the optimum processor [13]. To deter-

mine whether or not this is a worthwhile project, it is necessary to compare

its performance with well-known MTI receivers that may be considerably

easier to implement. This can be done by specifying the MTI filter transfer

34



●

function and using (86), again assuming that the peak signal sample is taken.

Then the SIR for suboptimal filters is

l/2T

I ~l,z~ H(eJ2nfTp) G[eJ2m(f - ‘O)Tpl dflz

P~ub(~o) = IY012TP
P

l/2T
. (76)

J

2

p lH(e JzmfTP) \ [Sc(e ‘2 TfTp) t 2NO] df

-1/2T
P

In order to evaluate (75) it is necessary to compute the Z-transform of

the two-way antenna pattern and of its autocorrelation function. This task

can often times be made simpler by relating the Z-transform to the Fourier

Transform, since the latter is usually easier to compute. The desired re-

lationship is deduced by representing the sampled data function g(nTp) as a

continuous waveform using

m

at) = g(t) ~ a(t – nTp)

n=-rn

(77)

where b(t) is an ideal sampling pulse, the Dirac Delta function. Then if

L[$(t) ] denotes the Laplace Transform of ~(t), then it is a fact [15] that

Z[g(nTp)] = L[&(t)]~ = ~
Tlnz .

(78)

P

, Therefore when g(t) is a well-behaved function

G( e
j2rfT‘2nfTP) = Z[g(nTp)lz = e p
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where F[&(t) ] is the Fourier Transform oi ~(t). From (91)

F[&(t)] = F[g(t)] ‘:<
i

b(f –+)

n=-rn P

where F (t) = F[ g(t) ] and “~!~” denotes convolution. Therefore
g

.

G[e
j2~(f – ‘O)TP1= + ~ Fg(f - “.—+) .

p ~=-m P

.
(80)

(81)

In order to make use of (81) in (75) it is necessary to use the term in the sum

that lies in the (-1/2 Tp, 1/2 Tp) frequency interval. This can be made clear

by noting that Fg(t) is narrowband about DC, and then writing

m
v =$t Av

0 0
P

(82)

where Ibvol 5 l/2T
P

j2n(f – v )
G[e Oj”=&F(f– Av) \f\sl/2Tp .

PgO

(83)

Since the spectral density of a discrete time random process is the Z-transform
.

of the sampled correlation ful~ction, then
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S(e
jz~f=p) = z[R(nTp)lz = e j2rfTp

= F[R(t)] ~:<# ~ 6(f -+)

p n=-a P

(84)

.

To evaluate (73) and (76) only those frequency terms out to t 1/2 Tp are of in-

terest, therefore for If I S 1/2 Tp

S( e (85)
J2nfTp) = # FIR(t)l .

P

R(t) is the correlation function of the continuous time clutter process and in

this case is given by

2
Rc(t) = ~ R (t)

Pg

where

m

Rg(t) = ~ g(u) g(u t t) du .
-m

(86)

(87)

Since F[Rg(t) ] = \Fg(f) 12, then using (85) the spectral density of the clutter

process is

j2nfT
Sc(e

[

P)=+ T< lF$f) 12] , Ifl S l/2Tp

Ps

Usil)g (83) and (88) in (75) and (76) the final expressions for the signal-to-

interference ratios are
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1/2 T

popt(vo) = IY012 J
p IF (- AvO)12

df

‘1/2Tp :~ lFg(f) 12 t 2NOT
P

(89)

.

l/2T

I ~l,Z; H(c j2TfTp) Fg(f – A~o) df12

-1 12 ~,2TP~u~(~o)- Y. P (90)

J

2

p lH(e
[

j2”fTp),2 ~ 1lFg(f) 12 t 2NOT df

-1/2T s P

P

m

where V. = #t Avo with IAvOI S l/2T
P.

(91)

P

Therefore to make a performance calculation it is necessary to:

1. Specify the two-way antenna voltage gain pattern as a function of

azimuth (i. e. , G2(8), 161 s~).

2. Compute the time function g(t) = G2(wst), where w is the scan rate
s

of the radar (rad/see, ).

3. Compute the Fourier Transform

T~/2

Fg(f) = ~ g(t) e-J2rft dt W~T~=2T .
-T~/2

(92)

4, Specify the sampled-data impulse response for the suboptimal filter,

h(nT ) and compute its Z-transform, H(z), which is in turn evaluated
p j2nft

atz=e P.

In the paragraphs that follow, these steps will be applied to a sin x/x
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antenna pattern and several MT I filters that are representative of practical

implementations.

sin x x Antenna pattern

The sin x/x antenna patterti is extremely convenient to manipulate analyti-

cally and is fairly representative of those encountered in practice.
●

It will be

adopted as the basic pattern for the remainder of this study. This means

that

where Ae is related to the antenna half -beamwidth. Then

[

sin(w~t/Ae) 2
g(t) = (w ~ ~e)

s 1

(93)

(94)

It is easily shown that the Fourier Transform of g(t) in (108) is

I
& [l–#\f\]

Fg(f) = S s

o

Let TE denote the time it takes the antenna

W~TE=AO .

lfls~

(95)

otherwise

to scan through A8 radians so that

(96)

Since all of the effective target reports occur only as the main beam of the

antenna is on the aircraft, it is clear that TE measures the effective time on

target. Substituting (96) into (93) and the result into (88) gives for the clutter

spectral density
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j2nfT
Sc(e P) =

.2 +P [1 - TElf 12]
Ifl S l/TE

(97)
o l/TE< Ifl = ]/Tp .

Since C(nTp) represents a sample of the clutter as seen by the two-way an-

tenna voltage pattern, IC(nTp) 12 represents the clutter energy per sample. .’

From sampled-data theory it is known that the average energy per sample is

l/2T

lC(nTp) 12 = Tp ~ p sc(ej2mfTp) df .

-1/2T
P

Using (97) in (98) it follows that the average clutter power at the receiver

input due to clutter in a 360° range resolution ring is

2 ‘E
Pc=$. rr .

s

(98)

(99)

Since T~/TE = 2m/A8 represents the number of azimuth cells, each one

beamwidth in extent, and since the factor 2/3 arises from the assumed sin x/x

beam pattern, then it is clear that U2 represents the average clutter

power that would be received by an omnidirectional antenna due to scatters

throughout the 360° range re solution ring. It is appropriate to define another

parameter .

2
u

c = 02/( T~/TE) (loo)

as this represents the average clutter power inherent in the scatterers located

in one range-azimuth cell as defined by the antenna beamwidth Ae. Since this

is an easier quantity to compute analytically, it will be used in future
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I .

calculations. Therefore (97) becomes

I
U2>[1– T Ifl]z

CT E
If{ S l/TE

j2rfTp) = P
Sc(e . (101)

o l/TE < Ifl S l/2Tp

Since Fg(f) is also needed in the evaluation of the optimum receiver, then in

terms of TE (95) becomes

{

TE[l– TElfl]
Fg( f)

o

Ifl S l/TE

otherwise
(102)

Optimum MTI Performance

Since the structure of the maximum likelihood receiver depends only on

the antenna pattern, (1 02) can be used with (89) to evaluate its performance in

tern~s of the SIR performance index. Some typical results based on the ARSR

system parameters, [16] are shown in Fig. 6 for various values of u:.

Since the PRF is 36o pps the SIR performance curve is periodic with doppler

period 36o Hz. It is also symmetric about DC a result that holds in general

since the two-way voltage gain antenna pattern is real. The target and clut-

ter power returns are calculated on the basis of an aircraft located in a range

ring at 100 nautical miles. For targets at closer ranges the performance

will be significantly improved because target power follows an R
-4

law while

the clutter depends on R
-3

. Therefore the results are conservative for the

near-in ground clutter which has been most troublesome so far as the ARSR

is concerned.

MTI Pulse Cancelers

TO appreciate the significance of the previous results it is necessary to
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compare the performance with MTI techniques that are commonly used in prac-

tice. Classical MTI methods are simply approximations to the clutter rejec-

tion filter; no matched filtering is used. The simplest pulse canceller sub-

tracts successive radar return~. Since a stationary object would produce

identical returns in the same range cell, the clutter would be cancelled a]ld

only moving target returns would remain. The problem is that a scanning

antenna renders all fixed target returns nonstationary, hence much of the

ground clutter must pass through this type of filter. This deficiency in the

two pulse canceller can be made quantitative by defining the appropriate

sampled-data impulse response and then apply (90) to compute the SIR. TO

specify the filter it is noted that if r(nT ) denotes the radar samples COr -
P

responding to a particular range, then the output of the pulse canceller is

?(nTp) = r(nTp) - r[(n– 1) Tp] .

This corresponds to a sampled-data filter whose impulse response is

h(0) = 1

h(Tp) = -1

h(nTp) = O n#O, n#l

The transfer function is therefore

H(z)==

and along I z I = 1

j2rfT -j2rfT

H( e ‘)=]–e P

(103)

( 104)

(105)

(1o6)
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The familiar form for the magnitude function is

lH(e
jZnfTp) 1 = ~sinnf Tp

(107)

Using (101) and (102) in (90), the SIR performance curve can be computed. It .

is plotted in Fig. 7 for a typical clutter power level and compared with the
.

OPtimum SIR possible. One reason the two-pulse canceller performs so

poorly in comparison to the optimum is due to the fact that the actual clutter

spectral density is spread about DC as a result of the antenna motion. Had the

clutter returns been truly stationary this filter should perform quite well

since it locates a null at DC.

Higher Order Pulse Cancelers

In order to further eliminate the higher frequency components in the clut-

ter returns, higher order pulse cancelers are used. With these a broader

rejection notch at DC should result in improved clutter rejection. An upper

bound on the SIR performance of this class of filters can be found by designing

an ideal notch to eliminate all of the clutter. Mathematically this requires

that

I
1 Ifl S l/TE

H(e
j2rfTp) =

o l/TE < Ifl S l/Tp

which corresponds to the sampled-data impulse response

2nnT

()
h(nTp) = ~ sin ~ n=O, tl, i2, .

E

Using (90) the SIR performance of ( 108) can be computed for the sin x/x
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antenna pattern. The results are shown in Fig. 7 in comparison with the

optimum filter and the two pulse canceller. It is clear that although the notch

filter is considerably less than optimum significant improvements in perfor-

mance over the two-pulse canceller is obtained.

Digital MT I radars have recently been constructed which use higher order

pulse cancelers to approximate the ideal notch filter [6]. Using the formula

for the suboptimum SIR, the performance of the proposed filter can be calcu-

lated. The filter of interest is a five-pulse cane.cller that has a frequency

response that is zero at DC and a least squares fit to the ideal notch else-

where. In this case the sampled-data impulse response is

h(-2) = h(2) = az

h(-1) = h(1) = al

In other

h(0) = a
0

h(n) = O

words, if r(kTp)

K(kTp) = a2 r(k +

ln\>2 .

is the received

-2)talr(ktl)

(110)

sequence then the filter output is

taOr(k)t alr(k–l)t a2r(k– 2). (111)

The z-transform of the impulse response is

H (z) = a2 Z2 talztaotalz
-1

+ a2 Z-2

and the function needed in the SIR evaluation is

j2mfT
H (e ‘) = aO t 2a1 cos 2mf Tp t 2a2 cos 4~fT

P.
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Although the filter is non-causal since it requires future inputs to process a

present value, it can easily be implemented by allowing 2T sec.
P

of delay be-

tween input and output. The coefficients aO, al, a2 are chosen so that (1 13)

is a minimum -mean -squared -4rror fit to the ideal notch (108) subject to the

constraint H (f = O) = O. Equation (90) is used to obtain the suboptimum SIR

for this filter. Although the ideal notch and the more practical pulse can-

celers provide some SIR improvement there is at least a 10-dB 10SS relative

to the performance of the optimum filter. The reason for this is due to the

enhanced receiver noise rejection properties of the matched filter bank of

the optimum receiver. If the ideal notch filter is used in cascade with the

matched filter bank, then essentially optimum SIR performance is obtained.
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v. AZIMUTH ESTIMATION ACCURACY

SO far the analysis has been concerned with the ability of an MTI receiver

to estimate target doppler. Another parameter obtainable from the radar

sensor is the aircraft azimuth.’ In the MTI context this corresponds to esti-

mating ~, the center of the two-way antenna pattern. It is well known [5]

that the maximum likelihood estimator generates minimum variance time of

arrival estimates when the SNR is large, In the present context this means

that

where

l/2” T

E=~~ p lF~f)12 df

P -1/2 T
P

(114)

(l15a)

(l15b)

.

.

The term lyO 12 E/NO represents the clutter-free SNR at the output Of the MTI .

processor due to match filtering all of the signal pulses received in one sweep

2
past the aircraft, while w represents the Gabor bandwidth of the two-way an-

tenna modulation. Equation ( 102) defines Fg(f) for the sin x/x antenna pattern

which can be used in (115) to yield
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(116)

Using the fact that when a detection is made in the m
th

range ring, the azimuth

is given by

~ = W~(T t mAT/2) (117)

then

($–VO)2=w:(4–TO)2 (118)

Using the fact that us TE = Ao where Ao is the defined beamwidth of the two-

way antenna pattern, then the mean-squared azimuth error is

Signal processing therefore

beamwidth when

IY012E ~— 2—

NO - ~2

which corresponds to -3 dB

(119)

leads to azimuth estimates more accurate than a

(120)

received SNR. On theother hand when the re -

ceived SNR is greater than 17 dB 10:1 improvements in the standard deviation

of the azimuth estimate can be obtained.

These improvements do not come for free however, since the ultimate

accuracy is tied to how many points are allowed to pass before another DFT

is taken. It will be necessary to performs trade-off between the desired
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azimuth accuracy and the number of points the data window is allowed to shift

before the next DFT is taken. The point is, that considerable improvements

are theoretically and practically possible; it remains to determine the expense

involved in achieving these gain’s. .

4

.
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VI. ALL-WEATHER MTI

Although the previous discussion has been concerned with the rejection of

ground clutter, the results are actually applicable to the problem of eliminating

clutter due to any source so long as its spectral density does not extend beyond

the rejection band of the notch filter. Therefore it is expected that the detec-

tor should perform well in many adverse environmental conditions except

those in which the overall mass of the clutter !!cloudlf has a significant radial

velocity. Since the scattering centers in a weather cloud will be in motion

relative to one another, the spectral density of the clutter returns will extend

over a larger frequency interval than that of the ground clutter background.

Since the doppler filters are designed on the basis of this latter quantity, the

enhanced velocity resolution will subdivide the power in the weather cloud and

its overall effect on target detection will be reduced. In the time donlain this

effect is explained by noting that the motion of the scatterers causes the weath-

er clutter to decor relate faster than the ground clutter which means that inte-

gration of all of the pulses in a bcamwidth will lead to some improvement in

target detection, Unfortunately it is likely that the power levels in each of

these filters will exceed the receiver noise threshold setting resulting in false

alarms in the low velocity filters, However since weather clutter will probably

cause false alarms in several adjacent IOW velocity filters it can be recognized

as clutter and disregarded. Although this is a simple and attractive scheme

for eliminating false alarms, the detection probability degrades to zero and

clearly an alternate choice is sought. Rather than just recognize and eliminate

false alarms, it is necessary for the receiver to raise the detection threshold

in those velocity cells that are covered by the clutter cloud. Adaptive
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algorithms have been derived [18] that estimate the average clutter power

and usc this value to reset the detection threshold, In this case, the estimate

would be derived by averaging over the clutter returns in a range ring which

had been gathered scan-to-scan. The optimality properties of this algorithm

are based on the assumption that except for an amplitude scale factor the clut-

ter correlation function is known. This is an unrealistic assumption in the

present context since the velocity of the weather cloud and the width of the

associated spectral density will vary on an hour-to-hour basis. However, a

suboptimal algorithm can be deduced by further subdividing the clutter space

into the DFT velocity cells. Since the clutter spectral density is unlikely to

change significantly over the width of one velocity cell, the clutter can be

considered to be white noise of unknow average power. This is easily esti-

mated by the scan-to-scan averaging of the power measured in the velocity

cell. The detection threshold can then be set for the particular velocity cell

of interest by combining the estimated clutter power level with that of the re-

ceiver noise process.

The above algorithms may well prove to be of considerable utility in the

struggle to diminish the effects of weather clutter, but it will be necessary to

build an experimental system before final judgment can be passed. Since the

preceding discussion is based on intuitive considerations, it is of interest to

determine whether or not optimal weather processors can be derived and

what their role might be in a practical deployment of the MT I receiver. The

nefi few paragraphs document the first order study of the latter problem.

In the background of ground and weather clutter, the clutter process is

more precisely written as



C(nTp) = Cg(nTp) t Cw(nTp) . (121)

Formerly Cg(nTp) referred to the ground clutter samples, but it will nOw be

taken to denote any clutter due to ground scattering or weather returns that

induce no doppler shift. The new term Cw(nTp) refers to the clutter samples

from a weather cloud that is moving at some non-zero radial velocity. The

optimum receiver synthesized in the preceding sections is directly applicable

to the weather processing problem, except now the clutter Spectral density

is

Se(f) = Sg(f) t Sw(f – fw) (122)

where f ~ is used to indicate the average doppler shift induced by the moving

cloud. It will be assumed that Sg(f) and Sw(f – fw) are non-overlapping spec-

tral densities, so that

Sg(f) . Sw(f – fw) = o (123)

I“rom the analysis of the preceding sections the clutter processing is done by

the clutter rejection filter having transfer function given by,

For convenience the notation Se(f) is used in place of Sc(c
j2rfTp).
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1
‘C(f) = S (f) t 2N

c 0

1
- Sg(f) t Sw(f – fw) t 2N

0

1

[

S (f) t 2N

- Sg(f) t 2N0 Sg(f) t Sw(f – f:) t 2N
0 1

1

[

Sw(f – fw)

= Sg(f) t 2N 1. 1‘Sg(f) t Sw(f–fw) t 2N0 .
(124)

0

Using the assumption in (123) in the last equation results in the following final

form for the ground plus weather clutter filter

[

Sw(f – fw)

He(f) = ~f)l+ 2N
— .

1 – Sw(f – fw) t 2N
~ 0 01 (125)

Therefore the weather clutter is processed by a separate filter that i.s an ad-

junct to the ground clutter notch filter discussed in the previous sections. It

was shown that the optimum clutter filter was well approximated by a notch

filter with an elimination band about DC to reject all signals due to both S1OW

targets and ground clutter returns. Therefore to a good approximation the

output of the ground clutter filter can be assumed to be made up of signals

due to faster moving targets, receiver white noise and weather clutter returns.

In other words the output of the ground clutter filter can be assumed to be
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j2rvOnT
r(nTp) = y. g(nT – To) e p t Cw(nTp) t W(nTp) (126)

P

when a moving target is present and it is

r(nTp) = Cw(nTp) t W(nTp)

b

when the target is absent. In the latter case, the filter having the transf

function

127)

r

S..(f – f..)
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cloud. It is therefore essential that some adaptivity be built into the receiver

to track the gross changes in statistics of the weather clutter process. The

MMSE filter realization provides the basic structure for deriving the desired

adaptivity. Since the key element in the weather clutter processor is a linear

filter that generates the MMSE estimates of the weather clutter waveform

when no target is present, it can be replaced by a tapped delay line whose

taps are up-dated recursively using, for example, the stochastic approxima-

tion algorithm described in [19]. Since any weather cloud can reasonably be

assumed to be a quasi-stationary process in the sense that its statistics do

not change significantly over many scans of the radar, many independent

sample functions are available which can be used to adapt the filter to give

near optimum MMSE estimates of the weather clutter waveform. The compu-

tational problem can be simplified somewhat by postulating a weather clutter

spectral density whOse fOrm is generally knOwn except fOr a center frequency,

a magnitude scale factor, and a spectral spread factOr. The received sample

functions can then be used to adaptively estimate these three parameters.

Once convergence has been obtained the matched filter bank normalization

factor in (56) and (A-1 3) can be computed. This will insure that a constant

false alarm rate. (.CFAR) receiver will result.

This area of research is’highly speculative since the ideas, originally

suggested in [9 1, have never been applied to a practical problem. However

it does show what must be done to perform optimum weather and ground clut-

ter processing and it may very well prove useful in the MT I processor of the

future.
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VII. INTRODUCTION TO PART II

If the doppler frequency caused by the m;iximum target velocity is lCSS

than l/2Tp in magnitude then the digital MT I processor described in the pre-

ceding paragraphs comes very close to achieving optimum performance and

can be implemented using current digital technology. If on the other hand,

the induced doppler shifts are larger than l/2T as is the case with the ARSR,
P’

then the broad clutter notch at DC effectively folds over to eliminate from dc -

tection targets whose dopplers correspond to some multiple of l/T In such
P“

a case the performance of the filter is quite unsatisfactory. The reason for

the aliasing is of course due to the uniform sampling pattern. It is well

known in classical MTI that staggering the PRF, which means non-uniform

sampling, eliminates the so-called blind velocities so that targets moving

with dopplers at n/Tp can once again be detected [ 17 ]. Although this techni-

que has been used for many years in practice no theoretical analysis of the

phenomenon has been presented. As a result the classical investigators

failed to realize that non-uniform sampling not only enhances target detection

capability but also permits the unambiguous resolution of target velocity. In

Part 11 of this paper it is shown that designing the staggered sampling pattern

is equivalent to shaping the ambiguity finction of a pulse train. Hence stag-

gering the sampling pattern reduces to a signal design problem which in con-

junction with the optimum processor described in this paper leads to an MTI

receiver that has never before been proposed for moving target indication

It is the first time that this author has seen the maximum likelihood method

lead to a receiver that some intuitive engineer had not discovered a decade

earlier.
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APPENDIX

In Section 111 the likelihood function for the optimum MTI receiver was

derived in terms of whitened versions of the transmitted and received signal

sequence. Since this is an inconvenient receiver structure to implement

alternate realizations are sought. It will now be shown how the likelihood

equation can be manipulated to suggest the clutter filter, matched filter real-

ization. The following notation is needed:
.

Rw(z) = Z[rw(nTp)] (A-la)

Sw(z; g) = Z[Sw(nTp; g)] (A-lb)

~w(z; g) = Z[S~ (nTp; g)] . (A-lc)

Using the complex convolution theorem for sampled-data sequences [ 111, the

term in the numerator of (56) can be written as

where the integral is to be evaluated along some suitably defined path in the

z-plane. The denominator in (56) can be considered a normalization factor
.

‘~$ sw(z; g)~ (L; a) z-ldzw z—
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For the input signals, the following notation is needed:

R(z) = Z[r(nTp)] (A-4a)

S(z; g) = Z[S(nT p; g) 1 (A-4b)

S(z; g) = Z[#K(nT ~;g)l . (A-4c)

These functions are related to those in (A-1) according to

Rw(z) = Hw(z) R(z) (A-5a)

Sw(z; ~) = H~z) S(Z; ~) (A-5b)

~w(z; ~) = Hw(z) $(z; ~) . (A-5c)

The last expression uses the fact that the impulse response of the whitening

filter is real. Then (A-2) becomes

1R(z) g(:; g) Z-l dz

= ~ x(nTp) S“(nT ; a)
P–

(A-6)

n= -m

where
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x(nTp) = Z-l

Similarly (A-3) becomes

where

For the

1
E(~ = ~

$[
1

Hw(z) Hw(>) S(Z; @ ~(~; @ z-ldz

= ~ y(nT ) S*(*IT a,
P

p, –
n= -m

y(nTp) = Z-l
[ 1Hw(z) Hw(:) S(Z; ~) .

problem at hand g = (v, ~) and

1Hw(z) Hw(:) R(z) .

(A-8)

(A-9)

j2nvnT

S(nTp; ~ = g(nTp – ~) e
P. (A-1O)

Since g(nTp) is real,

-j2rvnT

S’:<(nTp; ~ = g(nTp – T) e
P (A-n)

hence
8

S(Z; ~) = eJ2T”’ z-” TP G(e-j2n VTpz) (A-12a)

-j2mvT -T/Tp G(e

S(z; g) = e z
J2mv TPz) (A-12b) .

where G(z) = Z[g(nTp)]. Using (66) and (A-12) in (A-8) the denominator of the

test statistic becomes

8
T is assmed to be a multiple of T .

P
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= E(v) . (A-13)

Equation (A-1 3) shows that the energy normalization factor depends only in

the doppler frequency under test.
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