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ABSTRACT 

In Part I of this report the optimum MTI receiver was derived and 
analyzed for  the case i n  which the radar pulses were emitted from the trans- 
mitter equally spaced n time. For typical long range ATC surveillance radars, 
al iasing of the target  and c lu t t e r  spectra resul ts  i n  detection b l i n d  speeds 
a t  multiples of approx mately 70 knots. I t  i s  well known operationally tha t  
these blind speeds can be eliminated by staggering the transmitter PRF. 
Heretofore, there has been no thorough theoretical analysis of the e f fec t  of 
staggered PRF on the spectral distribution of the target  and c lu t t e r  signals. 
I t  i s  shown i n  Pa r t  I1 that  the c l u t t e r  spectral density continues t o  fold over 
a t  the PRF,  b u t  tha t  the signal spectrum becomes dispersed i n  frequency, some- 
w h a t  l ike  an anti-jam signal. The effect  that  this phenomenon has on the 
performance of the optimum processor i s  evaluated i n  terms of the signal-to- 
interference r a t io  (SIR) cr i ter ion that  was derived i n  Part I .  

I t  i s  further noted tha t  even when the target  Doppler sh i f t s  are  more 
t h a n  one PRF apart ,  the spectra are  distinguishable, suggesting t h a t  unambiguous 
Doppler estimation may be possible. 
the MTI ambiguity function. I t  i s  shown that  good SIR performance can be 
obtained by choosing the stagger parameters t o  minimize the height of the 
subsidiary Doppler side-lobes, 
similar to  that  of obtaining good antenna patterns for  arrays having non- 
uniformly spaced elements. 

This concept i s  explored i n  detai l  using 

The resulting design problem i s  noted to  be 

Accepted for  the Air Force 
Joseph J .  Whel an USAF 
Acting Chief Lincoln Laboratory Liaison Office 
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A Theory f o r  Optimal MTI D i g i t a l  S ignal  Processing 

P a r t  11: Signal  Design 

- 
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I. INTRODUCTION 

I n  P a r t  I o f  

were used t o  deve 

AND SYNOPSIS 

t h i s  r e p o r t  [l], s t a t i s t  

op a r a t i o n a l  bas is  f o r  

c a l  dec i s ion  t h e o r e t i c a l  methods 

comparing t h e  performance o f  MTI 

rece ivers .  

t u r e  t h a t  i s  p r a c t i c a l  t o  implement us ing d i g i t a l  s i g n a l  process ing (DSP) 

techniques and achieves e s s e n t i a l l y  optimum performance. A l l  o f  t h e  r e s u l t s  

i n  P a r t  I were based on t h e  assumption t h a t  pulses leave t h e  t r a n s m i t t e r  

un i fo rm ly  spaced i n  t ime. 

ous range must be 200 n. m i . ,  unambiguous v e l o c i t y  measurements a r e  n o t  poss- 

i b l e  because o f  t a r g e t  spectrum a l i a s i n g  a t  t h e  PRF. Furthermore, t h e  c l u t -  

t e r  spectrum a l so  f o l d s  over  a t  t h e  PRF r e s u l t i n g  i n  " b l i n d  speeds" a t  which 

t h e  de tec t i on  SNR o f  even t h e  opt imal  de tec to r  i s  degraded below p r a c t i c a l l y  

use fu l  l i m i t s .  Th is  e f f e c t  i s  demonstrated i n  F igure  1. I n  the  development 

o f  c l a s s i c a l  MTI processing i t  has been found from i n t u i t i v e  cons idera t ions  

t h a t  i f  t h e  t r a n s m i t t e r  pulses a re  staggered i n  t ime, improved d e t e c t i o n  per-  

formance can be obta ined [Z], [3]. However, t he re  has been no thorough theo- 

r e t i c a l  i n v e s t i g a t i o n  o f  t h e  exact  e f f e c t  t h a t  staggered PRF's have on t h e  

under ly ing  t a r g e t  and c l u t t e r  models. The ana lys i s  developed i n  P a r t  I i s  

genera l ized i n  t h i s  r e p o r t  t o  a l l o w  f o r  t h e  non-uni formly spaced sampling 

pa t te rn .  

The ana lys i s  has l e d  t o  the  development o f  a new r e c e i v e r  s t r u c -  

For en-route L-band radars i n  which t h e  unambigu- 

.- 

I n  Sect ion 11, models a r e  der ived  f o r  t h e  sampled-data t a r g e t  and 

1 
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c l u t t e r  r e t u r n s  t h a t  r e s u l t  when a range r i n g  i s  sampled by r e p e t i t i v e  bu rs ts  

of M non-uniformly spaced pulses.  The r e s u l t i n g  model i s  used i n  con junc t i on  

w i t h  t h e  d e c i s i o n  t h e o r e t i c a l  t e s t  o f  P a r t  I t o  d e r i v e  the  optimum r e c e i v e r  

s t r u c t u r e .  

c l u t t e r  r e j e c t i o n  f i l t e r  and a bank o f  matched f i l t e r s  t h a t  a r e  i n  a sense 

matched t o  t h e  t a r g e t  s i g n a l  over  the  enlarged unambiguous v e l o c i t y  reg ion .  

It i s  shown t h a t  t h i s  enlarged complex o f  matched f i l t e r s  can be r e a l i z e d  

by making approp r ia te  i n te rconnec t ions  o f  f i l t e r s  t h a t  extend over o n l y  

the  o r i g i n a l  ambiguous frequency i n t e r v a l .  

p r a c t i c a l  t o  implement t h e  optimum processor us ing  DSP techniques. 

t o - I n t e r f e r e n c e  (SIR) performance measure i s  used t o  evaluate the  performance 

o f  t h e  optimum d e t e c t o r  and i t  i s  shown t h a t  reasonable d e t e c t i o n  can 

be achieved a t  v e l o c i t i e s  t h a t  p r e v i o u s l y  cou ld  n o t  be seen by t h e  radar .  

I n  a d d i t i o n  t o  p r o v i d i n g  b e t t e r  detect ion '  performance over a l a r g e r  v e l o c i t y  

i n t e r v a l ,  t h e  opt imal  processor i s  capable o f  p r o v i d i n g  v e l o c i t y  est imates 

over the  l a r g e r  v e l o c i t y  range. 

unambiguous v e l o c i t y  i n t e r v a l  a t  t h e  expense o f  a decrease i n  t h e  unambiguous 

range i n t e r v a l ,  i t  i s  c l e a r  t h a t  t h e  ambigui ty  sur face o f  t h e  t r a n s m i t t e d  

waveform i s  be ing a l t e r e d .  Therefore,staggering t h e  PRF i s  b a s i c a l l y  

an MTI  s igna l  design problem and hence i s  cha rac te r i zed  by t h e  range-ve loc i t y  

ambigui ty f u n c t i o n .  This  f u n c t i o n  i s  evaluated a long the  Doppler a x i s  

as t h i s  represents  t h e  ou tpu t  o f  t h e  matched f i l t e r s  o f  t h e  opt imal  processor.  

It i s  shown t h a t  t h e  M-pulse staggered waveform reduces t h e  v e l o c i t y  

ambigui ty a t  t h e  average PRF. 

As i n  the  u n i f o r m l y  sampled caseothe processor c o n s i s t s  o f  a 

Hence,it may very w e l l  be 

The S igna l -  

Since s tagger ing the  PRF increases t h e  

3 



11. INTRODUCTION TO MTI SIGNAL DESIGN 
I 

The analysis presented in Part I has led to  the development of a 

quantitative technique fo r  evaluating optimal and suboptimal MTI receivers. 

The resu l t s  show that  a considerable improvement i n  target  detection capa- 

b i l i t y  i s  possible using the matched f i l t e r  receiver. 

tion and receiver synthesis are  based on the assumption tha t  the sampling 

ra te  i s  uniform. In that  case, for  the L-band ARSR [4], an a i r c r a f t  moving 

a t  600 kts. induces a Doppler s h i f t  corresponding t o  3000 Hz. 

needed to  obtain 200 nmi .  unambiguous range i s  360 pulses/sec., a l ias ing of 

the target  and c lu t t e r  spectra will occur w i t h  period 360 Hz. or 72 kts. 

Therefore i f  an a i r c r a f t  i s  moving a t  a velocity - + n x 72 kts. n = 0,1,2, . . . ,  

the Signal -To-Interference-Ratio (SIR) will be seriously degraded due to  the 

c l u t t e r  a l ias ing.  Furthermore i t  will be impossible to  distinguish between 

a target  moving a t  velocity v and another a t  v - + n x 72. 

the PRF has been found to  improve the detection capabi l i t ies  of MTI receivers 

a t  the blind speeds [2] i t  i s  of in te res t  t o  determine the theoretical basis 

for th i s  improvement and t o  explore i t s  implications regarding the question 

of velocity resolution. Since the underlying s t a t i s t i c a l  properties of the 

d a t a  samples will be affected by the non-uniform sampling pattern,  i t  i s  

necessary to  re-examine the basic target  and c lu t t e r  models tha t  were derived 

in Pa r t  I fo r  the uniformly sampled system. 

The problem formula- 

Since the PRF 

I 

Since staggering 

4 , 
I 



Target  Model 

It was shown i n  Sec t ion  I 1  o f  P a r t  I ,  t h a t  i f  t h e  a i r c r a f t  induced a 

Doppler f requency v and was loca ted  a t  az muth @ = TU , then u n i f o r m l y  spacecl 

t ransmi t  pulses l e d  t o  t a r g e t  samples a t  a range c e l l  g iven  by 
S 

I - ( 1 4 ) ,  namely 

P 
j 2TvnT 

s(nT ; a )  =y g(nT -TI e P -  P 

where g ( t )  i s  t h e  two-way antenna vo l tage g a i n  p a t t e r n  and T i s  t h e  un i fo rm 

i n t e r p u l s e  per iod .  

t h a t  t h e  t ransmi t ted  pulses were narrow compared t o  the  Doppler p e r i o d  and 

t o  antenna p a t t e r n  v a r i a t i o n s .  I n  o the r  words,the phys ica l  sampling was done 

by modulat ing a cont inuous phenomenon by a t r a i n  o f  sampling pulses.  A use fu l  

i d e a l i z a t i o n  i s  t o  represent  the  sampled data sequence as t h e  cont inuous t ime 

f u n c t i o n  as f o l l o w s :  

P 
I n  t h e  d e r i v a t i o n  o f  t h i s  t a r g e t  mode1,it was assumed 

m 

h 

where 

( 3 )  

Then t h e  Z-Transform o f  t h e  un i fo rm ly  sampled sequence i s  r e l a t e d  t o  the  

Four ie r  Transform as fo l l ows :  

The n o t a t i o n  I - (14 )  r e f e r s  t o  equat ion (14) i n  P a r t  I. 

5 



where 

Equation (4 )  shows t h e  f o l d o v e r  o f  t h e  t a r g e t  spectrum every 1/T Hz. P 

the t a r g e t  environment a r e  

* 4  Tp, ..., as shown i n  F 

values 

taken a t  t imes 

gure 2. I n  t h  

(4 )  

When a two-pulse staggered PRF sampling p a t t e r n  i s  used, samples o f  

0, * (TP - E ) ,  f 2T * (3Tp - E ) ,  P '  
s case, t h e  sequence o f  samples has 

These numbers correspond t o  sampling s ( t )  a t  t imes . . . 0, 2Tp, 4Tp. 6Tp, ..., 
and sampling s ( t - s )  a t  t imes . . . Tp, 3Tp9 5Tp,s 7Tp 3 ... . 
rep resen ta t i on  o f  t h e  sampled-data waveform f o r  t h e  two-pulse staggered 

a l g o r i t h m  i s  t h e r e f o r e :  

A cont inuous t ime 

I 

6 I 
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For the M-pulse stagger sampling pattern, 

s ( t )  i s  sampled a t  0,  MT 

s( t -El)  i s  sampled a t  T 

s(t-E2) i s  sampled a t  2T 

2MTp, ... 
P’ 

(Mtl) Tp,  (2M+1) Tp,  ... 
(M+2)Tp, (2M+2) Tp,  ... 

P’ I 

P’ 

I 

(8)  P’ . * ’  
s(t-EM-l) i s  sampled a t  (M-l)T (2M-1) T , (3M-1) T 

P P 

from which i t  i s  possible t o  deduce the following continuous time representa- 

t i o n  of the sampled-data waveform: 

M- 1 00 

m=O n=-w 

The Fourier Transform o f  this function is2: 

(9) 

The asterisk will denote convolution. I 

8 



Use w i l l  be made o f  t h e  f o l l o w i n g  i d e n t i t y  

W 

iM-k = 
j2 r fmT 

e 6( f  - -1 n 

MTP 
6( f  - -) 

n=-w MTP i=-w k=O 

a, M-1 
iM-k 

i=-a k=O tJ 

I n  add i t i on ,  f o r  t h e  t a r g e t  s i g n a l  o f  i n t e r e s t  

I j ~ I T V T  
where F ( f )  i s  t h e  Four ie r  Transform o f  g ( t )  and Y = Y e 

(12) and (11) i n  ( l o ) ,  t h e  t a r g e t  spectrum becomes 

. Using 
9 

m=O I 

9 



Since the  t a r g e t  i s  sampled o n l y  a t  d i s c r e t e ' i n s t a n t s ,  t h e  de lay  parameter T 

can be est imated o n l y  t o  w i t h i n  an i n t e r p u l s e  per iod .  Therefore,  i t  can be 

assumed t h a t  I 

I 

T = I ( T )  Tp 

where I ( T )  i s  some unknown i n t e g e r .  Then (13) becomes 

I 1 
I 

, 
- j2~f5, ,  

Since t h e  term e 

F ( f - v ) ,  then t o  a good approx imat ion 

changes s low ly  r e l a t i v e  t o  the  w i d t h  o f  t h e  f u n c t i o n  

9 

- j 2nf - j 2 n x m  
F ( f - v )  e Fg (f;v) e 
9 

l and (15) can be w r i t t e n  as 
I 

I I $ ( f ; d  = 

1 10 



I t  i s  appropr ia te  t o  d e f i n e  t h e  c o e f f i c i e n t s  

I 

- 
i 

m=O 

k = 0, 1, a * *  , M-1 

as t h i s  leads t o  the  f o l l o w i n g  convenient express ion f o r  t h e  Z-Transform o f  

t he  t a r g e t :  

C1  u t t e r  Model 

I n  Sec t ion  I 1  o f  P a r t  I ,  i t  was shown t h a t  each c l u t t e r  s c a t t e r i n g  

center  cou ld  be t r e a t e d  as a p o i n t  t a r g e t  having zero Doppler. 

i n  I - (15 ) ,  t he  nth s c a t t e r e r  a t  azimuth $,, i n  t he  p a r t i c u l a r  r i n g  o f  i n t e r e s t  

generates the  c l u t t e r  s igna l  r e t u r n  

Therefore,  as 

1 1  



Four 

aPP1 

h 

where -rn = $,/us - mAT/2, yn = An ejen and tn represents the times the 

samples a re  taken. As before, An i s  related to  the scattering cross-section 

of the nth sca t te re r  and O n  the car r ie r  phase i t  introduces. From scan-to- 

scanathe shift  i n  transmitter phase and the j i t t e r  in the antenna rotation 

render en and A n  random variables, b u t  over any one scan, (20) represents 

a deterministic signal return. Hence, the analysis used to  derive the 

e r  Transform of the non-uniformly sampled target  return i s  d i rec t ly  

cable to  (20) .  The us ing  (15) the transform i s  

Equat ion ( 2 1 )  i s  derived from (15) rather t h a n  (19) because the l a t t e r  

equation has made use o f  the approximation i n  (16) .  Since c l u t t e r  returns 

can be orders o f  magnitude greater than the signal returns,  approximations 

cannot be made unless they can be ju s t i f i ed  on the basis of signal-to-clutter 

ra t ios .  

hence 

The total  c lu t t e r  return i s  due to  a f i n i t e  number of sca t te re rs ,  
I 

12 



and t h e  Four ie r  Transform o f  t h i s  aggregate o f  r e t u r n s  i s  

Therefore, t h e  energy spec t ra l  Gznsi ty  o f  t h e  c l u t t e r  measured over  a s i n g l e  

scan i s  

p 1 2  = 2 1 en ( f )  en*(f) (24) 
1 2 

nl n2 

This  i s  a random process i n  t h e  sense t h a t  a f t e r  each scan t h e  values o f  

An and en change i n  a random fash ion .  

o f  t h e  c l u t t e r  i s  

Then t h e  average power spec t ra l  d e n s i t y  

where Ts i s  t h e  scan t ime and t h e  bar denotes s t a t i s t i c a l  averaging over t h e  

random va r iab les  An and en. 

3 

Since t h e  ampl i tudes, phases and azimuthal  l o c a t i o n s  o f  t h e  s c a t t e r e r s  

a re  independent, each o f  t h e  random va r iab les  i n  (25) can be averaged 

separate ly .  Furthermore, i t  f o l l o w s  t h a t  

6n n 
* 

1, 2 
Ynl Yn2 

13 



and since the frequency extent o f  F ( f )  i s  narrow re la t ive  to  a separation 
g 

k/MTp 5 
, 

6 k  'k 61 ¶ i  
kl i l  * k2 i 

F ( f  + - - - )  Fg ( f  
g MTP TP 

/ F  ( f + - - -  
1 2 1 2  , g  

Substituting (21)  i n  (25) and u s i n g  (26 )  and ( 2 7 ) ,  i t  follows t h a t  

where 

- j 2rf 
Am(f) = e F g ( f )  

In ( 2 9 ) ,  1 / ~ ,  i s  generally much greater thawthe frequency extent of the 

c lu t t e r  and i t  i s  reasonable to  assume that  

Since the c l u t t e r  signals can be many orders of magnitude greater than the 

signal,  this approximation must be undertaken w i t h  care in each application. 

An  example of the analysis needed t o  j u s t i f y ' ( 3 0 )  i s  given in a l a t e r  para- 



graph f o r  t h e  two-pulse staggered case. 

i s  v a l i d  then t h e  average power spectrum o f  t h e  c l u t t e r  process can be 

w r i t t e n  as: 

Assuming t h a t  t h i s  approx imat ion 

3 m M-1 r I M-1 ._ km 

where 

denotes t h e  average c l u t t e r  power per  range r i n g .  

Appendix t h a t  

I t  i s  shown i n  t h e  

hence, t h e  c l u t t e r  spectrum reduces t o  

3 m 
' 1  

Receiver Noise Model 

(34) 

It f o l l o w s  d i r e c t l y  f rom I-(36) t h a t  s tagger ing  t h e  t r a n s m i t t e r  PRF 

has no e f f e c t  on t h e  r e c e i v e r  no ise  process. 

mean wh i te  no ise  process w i t h  spec t ra l  d e n s i t y  2No. 

Therefore,  i t  remains a zero- 

15 



Two-Pul se S tagger ing  

I n  o rde r  t o  g a i n  some phys i ca l  understanding o f  t h e  mathematical 

expressions f o r  t h e  t a r g e t  and c l u t t e r  spect ra t h e  spec ia l  case o f  a two-pulse 

stagger w i l l  be s tud ied.  This  i s  i l l u s t r a t e d  i n  F igu re  2. Using M = 2, 

= 0, = E i n  (18) and (19) t h e  t ransform o f  t h e  t a r g e t  s i g n a l  i s  
€0 

I (35) 

where 

i 

Hence t h e  spectrum o f  t h e  t a r g e t  r e t u r n  i s  

Typ ica l  p l o t s  o f  t h e  t a r g e t  spectrum are i l l u s t r a t e d  i n  F igu re  3. There a r e  

two s i g n i f i c a n t  observat ions t o  be made: 

case a l l  o f  t a r g e t  energy i s  l o c a t e d  a t  PRF m h l t i p l e s  o f  t h e  t r u e  Doppler, 

s tagger ing causes t h e  energy t o  be s p l i t  i n t o  two pieces separated by one-hal f  

(1 )  whereas i n  t h e  uni form?y sampled 
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the PRF, and the pa i r  folds over a t  the PRF,  and ( 2 )  whereas i n  the uniformly 

sampled case targets  moving a t  dopplers greater t h a n  a PRF led to  spectra tha t  

were indistinguishable, now the fundamental ambiguity occurs w i t h  a period 

Z/E. This shows tha t  staggered PRF's  provide a basis fo r  unambiguous velocity 

estimation. 

From (31),  the exact form of the : l u t t e r  spec rum reduces to  

2 

1 i n ( f  + - - T ) ~  
2TP P 

Since the frequency extent of 

reasonably be assumed tha t  

F ( f )  i s  very narrow re la t ive  to  1 / T  i t  can 9 I P '  

I 

(cos'Tlf~) / F g ( f )  /2 = lFg(f) l2 
(sin2.rrfe) ( F g ( f )  1' 

Using these approximations the c lu t t e r  spectralcan be sketched as shown i n  

Figure 4 from which i t  i s  observed tha t  as f o r  the target  spectrum the c lu t t e r  

power also s p l i t s  i n t o  two pieces, one piece being located a t  DC, the other 

a t  - 1 / 2  Tp ,  w i t h  the aggregate folding over a t  the PRF.  The simple sketch 
I 

Y 

18 



J 

118- D0-8366-11 

Fig. 4. Typical clutter spectral density for two-pulse stagger. 
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has been drawn to indicate tha t  the c lu t t e r  power a t  1 / 2  T i s  s ignif icant ly  

smaller than t h a t  a t  DC. 

o f  these terms can be found by integrating (39a) and (39b). This has been 

done for  the s in  x/x antenna pattern and ARSR system parameters and i t  was 

found t h a t  the c l u t t e r  power a t  1/2 T 
P 

10 b i t  A / D  converters correspond t o  a subclutter v i s i b i l i t y  no greater than 

48 dB, the effect  of the c lu t t e r  power a t  1 / 2  T 

fying the assumptions leading to  the c lu t t e r  spectrum in (34).  

P 
I 

A quantitative measure of the re la t ive  power i n  each 

I 

i s  56 dB down from tha t  a t  DC. Since 

I 

i s  negligible, hence justi-  
P 

Therefore, the implications o f  the staggered PRF are now c lear :  

the energy of a moving target  return s p l i t s  into two pieces, the c l u t t e r  power 

continues to  fold over a t  multiples of 1 / T  

also a multiple of 1 / T  

t i o n  o f  the target  energy i s  masked by the DC c lu t t e r ,  the other portion i s  

located i n  a re la t ively c lu t te r - f ree  area a t  172 T 

staggered PRF enhances target  detection. 

t h a t  are  matched to  the target  spectrum are  constructed, then i t  appears 

tha t  Doppler estimation over a frequency interval larger t h a n  one PRF i s  

possible. 

briefly discuss the implementation of the f i l t e r  matched to  the two-pulse 

staggered signal spectrum. 

Whereas 

I 

Hence, i f  the target  Doppler i s  P '  
namely a former blind speed, then although one por- P '  I 

I 

This i s  the reason 
P '  

However, i f  i n  addition, f i l t e r s  

A l t h o u g h  the topic i s  discussed i n  more detail  i n  Section IV we 

/Matched F i l t e r  Realization 

From the preceding discussion i t  i s  shown tha t  the target  spectrum i s  

-.. 

s 

a unique function of the t rue target  Doppler over an interval tha t  can be 

20 , 



many t imes l a r g e r  than t h e  PRF. I f  a matched f i l t e r  bank cou ld  be const ruc-  

t e d  then n o t  o n l y  would the  d e t e c t i o n  performance be op t im ized b u t  unambigu- 

ous es t ima t ion  o f  t a r g e t  Doppler would be poss ib le ,  

L e t  us suppose t h a t  we ' requi re  the  r e s o l u t i o n  o f  v e l o c i t y  t o  w i t h i n  

the  i n t e r v a l  Av = l/NTp. 

sub in te rva l s  and we can then express t h e  t r u e  t a r g e t  Doppler as 

Then each PRF i n t e r v a l  can be quant ized i n t o  N 

0 v = - - + -  
i 

TP NTP 

From (35 )  t he  s igna l  spectrum f o r  t he  two-pulse s tagger  i s  

The i n f i n i t e  sum shows t h e  p e r i o d i c  fo ldove r  o f  t he  t a r g e t  spectrum a t  t h e  

PRF. From a measurements p o i n t  o f  view, na ture  a l lows us t o  observe t h i s  

f u n c t i o n  o n l y  i n  t h e  i n t e r v a l  [0, 1/T 1. 
P 

Then we see o n l y  t h e  f u n c t i o n  

We can r e a d i l y  cons t ruc t  a bank o f  f i l t e r s  t h a t  extend over  the  [0, 1/T ] 
P 

21 



I *  

nge where each f i l t e r  i s  tuned t o  the function F ( f -  ) ,  n=0,1,. . . , N - 1 .  
9 q  

By themselves, these are not  matched t o  the specified signal.  

this,  we combine weighted pairs of f i l t e r s  t h a t  are separated by 1/2T Hz. 

For the f i l t e r s  tuned t o  ‘/NT and (n-l/2)/NT we apply the weights 
P P 

C o ( ~ ,  * i  + q) n , C l ( ~ , r  * i  + #) fo r  i=O,+1,+2, ..., +M. For each value o f  

i ,  t h i s  gives r i s e  t o  another f i l t e r  w i t h  t ransfer  function 

To accomplish 

I P 

- -  - 
P P 

+ c1 * i  ( T ;  - + -)F n *  ( f -  - n -  - 
Tp NTp 9 NTp 

i=o,+, ..., +M, n=O,l, ..., N-1 - - 

1 

When i= io ,  n=no ,  this f i l t e r  i s  matched-to the,two-pulse staggered signal.  

From a practical point of view, 

[ F i ( f -  L)IN-’ can be formed by taking 
NTp n=O 

form (DFT) of the received signal.  The 

he sub-bank of f i l t e r s  

an N-point Discrete Fourier Trans- 

super-bank-of f i l t e r s  i s  then ob- 

I 

tained by multiplying the nth DFT coeff c ient  by C o ( ~ ;  * i  - + n) and the 

N t h  * i  n TP NTP 
( n -  7) DFT coefficient by C 1 ( ~ ;  - + -) for  i = O ,  + 1 , . . . ,  +M. Therefore, - - 

Tu NTu 

s 

an N-point DFT gives rise t o  a bank’of 2MN matched f i l t e r s  that  extend over 

the frequency interval [- 5.51 simply by combining the outputs of the DFT 

coefficients i n  the r ight  way. 

22 



t- 

In Section I V  we return to..thjs discussion in more detail when we 

consider the MTI ambiguity function. 

of the improvement in detection performance will be evaluated using the 

In Section II1,a quantitative measure 

Signal-to-Interference Ratio (SIR) that was derived in Part I. 
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111. S I R  PERFORMANCE ANALYSIS FOR STAGGERED PRF 

The S I R  f o r  an a r b i t r a r y  l i n e a r ,  sampled-data f i l t e r  when sampled a t  

t ime T was g iven by 1-(72),  v i z .  
”) 

‘-1/2T, 
I 

Even though the  t r a n s m i t t e r  PRF i s  staggered, t he  sampled-data processor 

operates on t h e  samples o f  t h e  s igna l  and no ise  and i t  mat te rs  n o t  when those 

samples were taken. Therefore,  (40) app l i es  t o  the  present  problem, a l though 

i t  i s  noted t h a t  t h e  s igna l  spectrum w i l l  be d i f f e r e n t ,  due t o  t h e  non-uni form 

sampling. As before,  -It i s  noted t h a t  o n l y  those frequency terms i n  t h e  i n -  

t e r v a l  (-1/2T 1/2T ) a re  o f  i n t e r e s t .  Th is  i s  cons i s ten t  w i t h  (19) s ince  

the  frequency dependence shows up o n l y  i n  terms l i k e  F ( f - v  + - - -) 

which i s  f o l d e d  over  every 1/T hz. 

P I 

k i  
P ’  

9 MTP TP 
P 

I i 

Using the  Schwarz i n e q u a l i t y  i t  i s  easy t o  show t h a t  (40)  i s  maximized 
3 

by choosing 

j 2 ~ f T  
Hte p, = 

24 



which i s  the c lu t t e r  f i l t e r ,  matched f i l t e r  cascade combination. When th i s  

i s  done, the resulting maximum value of the SIR is  

Y 

The aliased c lu t t e r  spectrum i s  given by (34),  b u t  since the integration ex- 

tends over the ( -  1/2T 

need be taken. 

tion in ( 2 7 ) ,  the target spectral density reduces to  

1/2T ) frequency interval ,  only the term a b o u t  DC 
P' P 

Taking the squared magnitude of (19) and using the approxima- 

Using these resul ts  and the f ac t  that  

which follows from (18), then the SIR i n  (42)  becomes 
M 

2 

(43) 

(45) ' 

25 



Rather than attempt a rigorous evaluation of (45), i t  is  easier  t o  draw upon 

the physical understanding of the target  and c l u t t e r  spectra t o  simplify the 

SIR expression. I t  was shown i n  the l a s t  section tha t  the M-pulse staggered 

PRF causes the target  energy to  s p l i t  i n t o  M components h a t  are  folded over 

into the (-1/2T 

DC.  

l /MTp, there are  values of vo for  which there i s  no interaction between the 

c lu t t e r  and target  spectra. 

1 /2T  ) interval ,  while the c l u t t e r  was distributed about P’ P 
Since the frequency extent of F ( f)  i s  narrow r e l a t  ve to  the window 

9 

In th i s  case, fo r  each vo there i s  a value of i 

k) within the (-1/2T t h a t  puts F (f - vo + MT - 1/2T ) interval and P’ P P P  9 

00 

df  N - 
P P  

where 

-1 /2Tp 
(47 1 

c. 



I n  the  Appendix i t  i s  shown t h a t  

M- 1 

whence i t  f o l l o w s  t h a t  

This i s ,  o f  course, j u s t  t he  coherent i n t e g r a t i o n  ga in  prov ided by matched 

f i l t e r i n g  t h e  t a r g e t  o u t  o f  t h e  wh i te  no i se  background. 

The S I R  degrades from t h i s  optimum value when any one o f  t he  M 

components o f  t h e  t a r g e t  spectrum i n t e r a c t s  w i t h  t h e  c l u t t e r  spectra.  

worst  case occurs when, f o r  some k and i, ko and io say, 

The 

i 
-'o MT T + - - A =  kO 0 

P P  

In t h i s  case, s ince  t h e  c l u t t e r - t o - w h i t e  no ise r a t i o  i s  very l a rge ,  

l / Z T p  IFg( f  - u0 + 
TS 

= 2  
-1/2Tp 1 2  f / F g ( f ) / 2  + 2NoTp 0 

For the  remaining M-1 components o f  the t a r g e t  spectrum t h a t  a r e  l o c a t e d  

w i t h i n  the (-1/2T 1/2T ) i n t e r v a l ,  t he re  i s  l i t t l e  i n t e r a c t i o n  w i t h  the  

c l u t t e r  spectra.  
P '  P 
Hence, f o r  those values o f  k # ko (46) holds and the  S I R  
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can be w r i t t e n  as 

k f  ko 

+ T S l b  ( v  )I2] 7 ko O 

where t h e  l a s t  approximat ion fo l l ows  from the  f a c t  t h a t  t h e  c l u t t e r  t o  

r e c e i v e r  no i se  r a t i o  i s  >> 1. 

o f  'Jo g iven by 

This  expression f o r  t he  S I R  holds f o r  values 

where f i r s t  a value o f  mo i s  chosen and then f o r  each mo, ko = OY1,2,*..,M-1. 

Then the optimum SIR performance curve can be sketched by us ing  t h e  formula 

2 mo ko 

MTP kO P 
t -  b o l l  if vo = T  1 - / b  

1 I o therwise 

I 
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For the  case o f  a two-pulse stagger, M = 2, ko = 0 o r  1 and 

so t h a t  

2 = cos TV0E 
2 I bo(vo) I 

I b l  bo) I 2 = s i n  T V ~ E  
2 

1 2No Tp J 

2 s i n  ITV E 
0 

cos 2 TVO& 

0 
m 

-- 
vo -Tp  

vo - T p  
0 1 

m 
+ -  _ -  

2TP 

1 otherwise 

(56) 

Whereas when no pulse s tagger ing i s  used (E = 0),  t he  S I R  i s  e s s e n t i a l l y  

zero a t  m u l t i p l e s  o f  t h e  PRF, staggered pulse t ransmissions l e a d  t o  mean- 

i n g f u l  d e t e c t i o n  performance, e s p e c i a l l y  a t  h igher  Doppler v e l o c i t i e s .  The 

p r i c e  p a i d  f o r  t h i s  enhanced performance a t  t h e  b l i n d  speeds i s  a degradat ion 

i n  t h e  S I R  performance a t  i n te rmed ia te  Doppler f requencies.  These r e s u l t s  

a r e  summarized i n  t h e  S I R  performance curve p l o t t e d  i n  F igu re  5. 

worth n o t i n g  t h a t  s i m i l a r  r e s u l t s  can be obta ined f o r  t h e  pu lse  c a n c e l l e r  

c l u t t e r  f i l t e r s  by working d i r e c t l y  from (40) us ing  the  approp r ia te  f i l t e r  

t r a n s f e r  funct ions.  The S I R  performance o f  t he  ASR-7 t h a t  uses a 6-pulse 

stagger a l g o r i t h m  i s  shown i n  F igure 6. 

It i s  
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IV. STAGGERED PRF AMBIGUITY FUNCTION I 

I n  Section 11, the target  spectrum result ing from a staggered PRF 
, 

transmission sequence was derived and, for  the1 two-pulse case, i l l u s t r a t ed  i n  

Figure 3 .  

greater than one PRF were not identical as was the case when uniform sampling was 

used. 

unambiguously, 

ambiguity function of the staggered PRF pulse t r a i n .  

conceptually d i f f i c u l t  b u t  i t  can become tedious. 

intuit ion,the c lu t te r - f ree  ambiguity function wi l l  be computed f i rs t  and then 

generalized t o  the s i tuat ion i n  which the c lu t t e r  f i l t e r  i s  present. 

former case the ambiguity function i s  the delay-Doppler dis t r ibut ion of the 

I t  was noted tha t  the spectra fo r  targets  separated by Doppler s h i f t s  

This indicates that  i t  may well be possible to  estimate target  Doppler 

This question i s  most easi ly  examined by evaluating the 

The calculation i s  not 

In order t o  develop some 

In the 

o u t p u t  of the matched f i l t e r .  I t  i s  denoted by I((g,cx+,)l where 

Rather than attempt to  evaluate (57)  by d i rec t  subs t i tu t  

(57)  

on i t  i s  easier  and 

more instructive t o  draw heavily upon the physical interpretation of the 

correlation operation implied by this equation. 

be developed by studying the transmitted signal fo r  the three-pulse staggered 

The necessary intui t ion can 

3- 

- 
Y 

Y 

case. From (18) and (19)  the transform o f  the target  signal i s  
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c 

Zs (f;a+,) = r e  yo -jZTfTo 2 [ a o ( ~ o ) b o ( v o ) F g ( f  - vo - b) i 

P i =-Q) 

i -1 + al(~o)bl(vo)Fg(f - vo + - - 

+ a2(To)b2(vo)Fg(f  - vo + - - r)] 

1 

3TP TP 

3TP P 

2 i  
(58) 

The magnitude c h a r a c t e r i s t i c  o f  t h i s  f u n c t i o n  i s  i l l u s t r a t e d  i n  F igure  7a. 

It w i l l  be assumed t h a t  T ,  T~ and vo a re  f i x e d  so t h a t  t he  c o r r e l a t i o n  opera- 

t i o n  i n  (57) can be s tud ied  as a f u n c t i o n  o f  v. Making use o f  t h e  1/T 

p e r i o d i c i t y  i n  the  t a r g e t  spectrum, the  i n t e g r a l  i n  (57) can be evaluated 

us ing  

P 

The f i r s t  s i t u a t i o n  of i n t e r e s t  occurs when v = vo i n  which case the  Doppler 

c o e f f i c i e n t s  l i n e  up exac t l y .  Equation (59) becomes 

33 



Fig. 7. (a) Typical target spectrum for three-pulse stagger; (b) Shifted target 
spectrum for three-pulse stagger. 
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vo) - - M 
Tp2 

0 
v 

P 
vo- l /T  

j 2 r f  ( T - T ~ )  
2 e  d f  

vO-l  /TP 

vO 

v - l /Tp  
0 

Assuming t h e  T takes on o n l y  i n t e g r a l  values o f  T then f rom (18a) 
P '  

a k ( i )  = e 

It then f o l l o w s  t h a t  

k.r - j 27~- 
MTP 

k I  ( T )  
M = e  

- j 2 ~  

j 2 ~ u  0 (T-T~) 
= e  Rg(T-To) 
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where 

1 /2Tp 

R g W  = J 
-1/2Tp 

I n  P a r t  I i t  was shown t h a t  t h i s  f u n c t i o n  was p r e c i s e l y  t h e  a u t o c o r r e l a t i o n  

f u n c t i o n  o f  t h e  two-way antenna p a t t e r n .  

t he  s igna ls  a r e  matched i n  Doppler i s  

Then t h e  ambigui ty  f u n c t i o n  when 

where from (18b) 

M- 1 
- j 2~~ km -j2.rrvEm 

bk (v )  = 2 e e 

m=o 

It i s  shown i n  t h e  Appendix t h a t  

M- 1 

1 / b k ( v ) I 2  = 1 
k=o 

hence 

'P  
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a r e su l t  which i s  in tu i t i ve ly  sat isfying.  

c 
In order t o  evaluate the ambiguity function a t  other values of v ,  i t  

i s  useful t o  t h i n k  of gradually increasing v from i t s  value a t  vo. 

example, when uo < v < 1/3 T 

Figure 7b. 

fo r  these values, there will be no 

will essent ia l ly  be zero. No s igni f icant  contribution will be made t o  the 

ambiguity function unt i l  v = vo + 1/3Tp. 

coeff ic ients  1 ine u p  and (59)  becomes 

For 

the absolute value of Zs(f;r,v) i s  shown i n  
P '  

When the correlation operation i s  performed t o  evaluate (59)  

spectral overlap and the ambiguity function 

In this  case, d i f fe ren t  frequency 

vb * j 2 r f  (T-T,) 
df 

P 
v0-l / T  

F 
v0-l /T 

From (61) i t  follows tha t  
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and t h e r e f o r e  

- - R ( T - T ~ )  

The ambigui ty  f u n c t i o n  

Ibl*(vo + -)bo(vo) 1 

T j 2 ~ -  j2.rrv ( T - T ~ )  
MTP R ( T - T ~ )  

9 
e 0 e 

i s  then 

* 

Y 

Y 

2 The nex t  s tep  i s  t o  s e t  v = vo + -and repeat  the  above opera t ions .  I n  t h i s  

case, t he  c o e f f i c i e n t s  a re  d isp laced by two and t h e  ambigui ty  f u n c t i o n  becomes 
TP 
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This  process cont inues ad i n f i n i t u m  and i t  i s  poss ib le  t o  deduce 

generat ing the  ambigui ty  f u n c t i o n .  I n  t h e  M-pulse stagger case, 

M-1 

J 

a r u l e  f o r  

i t  becomes 

where f o r  p o s i t i v e  values of n = 0,1,2,"', m takes on t h e  values 

m = 0,1,2,"',M-1, and f o r  negat ive  values o f  n = -1,-2,..., m = M-1, M-2, 0. 

I n  (73) use has been made o f  t he  f a c t  t h a t  

bk+m(v) = b( k+m) (4 
modulo M 

(74) 

which f o l l o w s  d i r e c t l y  f rom (65) .  

reduced t o  

It i s  shown i n  the  Appendix t h a t  (73) can be 
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m+nM 
m+nM 

S(T’TOYVO + T ’ V O  
k=o 

(75) 
n 
- 

which i s  a function only of  the differences, T - T ~  and v-vo, and the stagger 

parameters coy  c1 , 

function i s  unchanged i f  co = 0, hence for  an M-pulse stagger there are  M-1 

parameters that  can be chosen to  shape the ambiguity surface. 

, cM-l. I t  can be deduced immediately t h a t  the ambiguity ... 

For the special case of a two-pulse stagger (75) reduces to  

n 1  i f v = v o + -  - -  
TP 2TP 

(76) 

and t h i s  i s  sketched i n  Figure 8a and compared w i t h  the ambiguity function 

f o r  the uniformly sampled case i n  which E = 0, i n  Figure 8 b .  

therefore t h a t  Doppler resolution i s  theoretically possible. 

n o t  the stagger parameters can be chosen t o  force the subsidiary side-lobes 

below a practically useful level i s ,  however, a separate question. I t  i s  of 

in te res t  to  examine the ambiguity function of higher order stagger sequences 

t h a t  are  currently used i n  practice. 

uses a 6-pulse stagger are shown i n  Figure 9 .  

I t  i s  c lear  

Whether or 

The resul ts  fo r  the ASR-7 radar, t h a t  

40 



J . 

1 8 - 4 - 1 3 2 1 4 - 1  

-5 -9 -4 -7 -3 -5 -2 -3 -1 -1  0 1 1 3 2 5 3 7 4 9 1  
Tp 2Tp Tp 2Tp Tp 2Tp Tp 2Tp Tp 2Tp 2Tp Tp 2Tp Tp 2Tp Tp 2Tp Tp 2Tp 

u - uo 

(a) Two-pulse staggered PRF. 

118-4-13180-1 1 

v - vo 

(b) Uniform PRF. 

Fig. 8. MTI ambiguity function. 
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The Matched F i l  t e r - C l u t t e r  F i l t e r  Ambigui ty Funct ion 

c 
- I n  the  preceding sec t ion ,  t he  ambigui ty  f u n c t i o n  f o r  t he  c l u t t e r - f r e e  

case was der ived.  This  i s  a use fu l  c h a r a c t e r i z a t i o n  when t h e  s igna l  i s  

designed t o  f u n c t i o n  i n  o n l y  a whi te-noise environment as i t  i s  then c l e a r  

t h a t  a l l  o f  t he  s ide- lobes should be made u n i f o r m l y  low. The more t y p i c a l  

s i t u a t i o n  f o r  M T I  requ i res  a c h a r a c t e r i z a t i o n  t h a t  inc ludes  t h e  c l u t t e r  i n  

the  ana lys is .  

energy d i s t r i b u t i o n  o f  t h e  s igna l  o u t  o f  t he  optimum processor, then i t  i s  

c l e a r  t h a t  t he  e f f e c t  o f  t he  c l u t t e r  i s  t o  add notch f i l t e r s  a t  m u l t i p l e s  

o f  the  PRF’s. 

I f  t h e  ambigui ty  f u n c t i o n  i s  viewed as t h e  delay-Doppler 

Then the  more general  ambigui ty  f u n c t i o n  i s  g iven  by 

-1 /2Tp 

As i n  the  c l u t t e r - f r e e  problem t h e  general r e s u l t  w i l l  be obta ined by extending 

the  arguments made f o r  t h e  three-pulse staggered case. 

done by w r i t i n g  a general expression f o r  (60) and (68) f rom which t h e  

ambigui ty  f u n c t i o n  i s  deduced. 

This  i s  most e a s i l y  

This  expression i s  

m+nM 
S(?’TO’V0 + - M T ~ ~  = 
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For the purpose of t h i s  discussion i t  i s  reasonable t o  assume t h a t  the 

c l u t t e r  f i l t e r  t ransfer  function changes slowly over the width of the signal 

spectrum, hence allowing the following approximation for  the l a s t  term in 

(78) 
I 

mT j 27~- j2-rv ( T - T ~ )  
MTP R ( T - T ~ )  

9 
e k 0 

= Hc(vo-T)e 
where the l a s t  equation follows from a genera 

the ambiguity function i s  

m+nM 

M- 1 

(79) 

i z a t i o n  of (60) and (68) .  Then 

To evaluate (80) i t  i s  assumed t h a t  the c lu t t e r  f i l t e r  i s  well modelled by a 

notch a t  DC as well as a t  a l l  multiples of the PRF. The approximation was 

developed i n  conjunction with the eva uation of the SIR fo r  staggered PRF's.  

, 

3 
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Suppose now t h a t  

k n  v ---+ 
P 

o MTP 

holds f o r  every n, then 

Hc(v0 - -1 k 1 

MTP 

k = O, l , " ' ,M- l  

and (80) reduces t o  t h e  c l u t t e r - f r e e  ambigui ty  f u n c t i o n .  

o f  k, k '  say, 

I f  f o r  some value 

f o r  some value o f  n, then 

k '  Hc(vo - -) 0 
MTP 

and (80)  reduces t o  

k f k '  
(85) 

This  f u n c t i o n  i s  much more d i f f i c u l t  t o  p l o t  as i t  depends on t h e  t r u e  t a r g e t  

Doppler r a t h e r  than j u s t  t he  d i f f e r e n c e  between the  t r u e  and t e s t e d  values. 
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I n  f ac t ,  for  an M-pulse stagger, (M+l) cuts of ~ the ambiguity function a re  

needed t o  describe i t  completely. 

MTI Signal Design 

In the clut ter-free case, i t  i s  c lear  tha t  the stagger parameters 

should be chosen to  produce an ambiguity surface w i t h  uniformly low Doppler 

side-lobes. 

parameters E ~ ,  , 

From ( 7 3 )  t h i s  reduces t o  the problem of picking the stagger 
I 

, so tha t  ... 

k=o 

where fo r  20dB sidelobes 6 would be - 1 ,  e tc .  This signal design problem 

has much 

uniformly spaced elements. 

expected t h a t  when the c lu t t e r  f i l t e r  i s  added, i t  would be even more d i f f i c u l t  

t o  simultaneously design the (M+l) folds of the cluttered ambiguity function. 

A simpler design strategy can be obtained from the SIR analysis i n  Section I11 

where i t  was shown t h a t  the degradation i n  the performance was given by (50) .  

From this expression i t  i s  c lear  tha t  the stagger parameters could be chosen 

to  minimize the depths of the notches by minimizing the functions 

I 

n common with design of antenna patterns using an array w i t h  non- 

This i s  a d i f f i c u l t  problem to  solve and i t  i s  

I 
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which fol lows from the def ini t ion of bm(v) i n  (65) .  

easi ly  be manipulated to  take exactly the same form as  tha t  i n  (86) .  

interesting as  i t  shows tha t  the simple c r i te r ion  of uniformly low sidelobes 

i s  a good signal design strategy i n  the c lut tered as well as the white noise 

environments. 

T h i s  expression can 

This i s  

Unfortunately, time did not permit the thorough examination o f  these 

signal design problems. 

remains an unanswered question and i t  will be necessary t o  be content t o  use 

the MTI ambiguity function as  a tool f o r  signal analysis,  and only indirect ly  

for signal synthesis. 

Therefore, as of this  w r i t i n g ,  t h e i r  solution 
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I f  a, v> - -  

a 

denotes t h e  i n n e r  product  

m+nM m 
'0 + -  MTp YV0) = <.'X (vo + 

n C', then 

m+nM - 1 9  x0(v0) 
MTP 

where * denotes conjugate t ranspose. Now l e t  

* 
o m  Q ~ = M  M 

Then 

p=o 

p=o 

(p+m> R M- R j 2 r M  pk - j 2 r  M 
- e  1 

= x k e  M 

(A-1 0) 

(A-1 1 ) 

p=o 
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(A-1 2 )  

I f  k = R ,  then 

(A-1 3)  

For t h e  case when k # %  t h e  second term i n  (A-12) can be evaluated by s e t t i n g  

and n o t i n g  t h a t  

p=o p=o 

Hence Qm 

Using t h i s  r e s u l t  i n  (A-10) y i e l d s  

= O  when kft and the re fo re  the  m a t r i x  Qm i s  d iagonal  f o r  a l l  m. k t  

M-1 r 1 

(A-14) 

(A-1 5) 
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k=o 

m+nM M-1 j2~r-(kT + &k) 
MTp P 

k=o 

(A-1 6)  

as required. 
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