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ABSTRACT 

MIT Lincoln Laboratory (MIT LL) has developed an algorithm, known as the Visibility Estimation 

through Image Analytics Algorithm (VEIA), that ingests camera imagery collected by the FAA Weather 

Cameras Program Office (WeatherCams) and estimates the meteorological visibility in statute miles. The 

algorithm uses the presence of edges in the imagery and the strength of those edges to provide an estimation 

of the meteorological visibility within the scene. The algorithm also combines the estimates from multiple 

camera images into one estimate for a site or location using information about the agreement between 

camera estimates and the position of the Sun relative to each camera’s view. The final output for a site is a 

prevailing visibility estimate in statute miles that can be easily compared to existing automated surface 

observation systems (ASOS) and/or human-observed visibility. This report includes thorough discussion 

of the VEIA background, development methodology, and transition process to the WeatherCams office 

operational platform (Sections 2–4). A detailed software description with flow diagrams is also provided 

in Section 5. Section 6 provides a brief overview of future research and development related to the VEIA 

algorithm. 
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1. INTRODUCTION

For members of the general aviation (GA) community, low ceiling and visibility (C&V) conditions 

significantly influence flight planning and can have dire consequences when encountered unexpectedly. In 

remote regions, such as Alaska, it can be difficult for the GA community to obtain accurate current 

conditions of the C&V. Traditional weather observations are widely dispersed and inadequately forewarn 

of hazardous weather potentially encountered at the remote airstrips, along the desired routes between 

destinations, or through hazardous mountain passes with localized conditions. In response, the Federal 

Aviation Administration (FAA) has deployed a large number of high-quality camera installations, 

beginning in Alaska and expanding outward, to provide pilots with a live view of the current conditions via 

an FAA-maintained website. In 2016, the FAA tasked the Massachusetts Institute of Technology Lincoln 

Laboratory (MIT LL) to develop an algorithm that automatically estimates the visibility from the cameras. 

The algorithm, known as Visibility Estimation through Image Analytics (VEIA), uses the presence 

and strength of edges in the imagery in comparison to a clear day reference to compute a visibility estimate. 

Since most of the FAA weather camera locations have 3–4 cameras pointed in different directions, VEIA 

combines the camera specific estimates into a single prevailing estimate using logic that considers the 

agreement between the cameras and the position of the Sun. The final output for a site is a 

prevailing visibility estimate in statute miles that can be easily compared to existing Automated Surface 

Observation System (ASOS) readings and/or human-observed visibility. 

This report consists of four main sections that document the VEIA algorithm. The background section 

provides the history of the VEIA development from initial concept to present day. The methodology section 

provides a technical discussion on the algorithm and the performance analysis. The operational 

implementation section describes the implementation of the algorithm on the FAA Weather Cameras 

Program Office (WeatherCams) real-time system. Finally, the section on future research activities discusses 

potential algorithm improvements and additional functionality that could be possible through additional 

research. 
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2. BACKGROUND

MIT Lincoln Laboratory began working with the FAA to develop camera derived visibility estimation 

algorithms in 2016. The initial focus was the implementation of the algorithm concepts on an archived 

dataset provided to MIT LL by the National Center for Atmospheric Research (NCAR). This dataset 

consisted of images collected between 2013 and 2015 gathered from the WeatherCams office through the 

public-facing website and application program interface (API) at a 20-minute update rate from the cameras 

available at that time. MIT LL also began archiving all available imagery from WeatherCams in the summer 

of 2017 at a 10-minute update rate, matching the image collection rate performed by WeatherCams. This 

included the latest camera installations in critical mountain pass regions and locations in Canada from an 

agreement between the FAA WeatherCams office and NAV CANADA. 

Prior to 2016, MIT Lincoln Laboratory had developed some of the initial VEIA concepts while also 

working with other government organizations such as the Federal Highway Administration in the lower 48 

states (Hallowell 2005, 2007). The primary focus of the initial effort with the FAA was to evaluate and 

adapt the techniques to the unique Alaska environment with limited daylight hours during the winter and 

the very low Sun angles that are present across the state during the entire year. Throughout 2017, 2018, and 

2019, MIT LL evaluated the translation functions required to convert the edge strength information into 

visibility and developed techniques to combine the multiple cameras available at each site into one estimate. 

This was critical to alleviate issues with the low Sun angle negatively impacting cameras looking directly 

into the Sun during times when clouds or fog do not block the Sun. 

By 2019, evaluations conducted on VEIA performance by MIT LL on a large-scale, archived dataset 

had shown a skill level believed to be acceptable for the user community. Therefore, planning began for an 

operational demonstration to be conducted during the summer of 2020, which would include an evaluation 

by the Forecast Impact and Quality Assessment Branch at National Oceanic and Atmospheric 

Administration (NOAA)/Global Systems Laboratory (GSL). The operational demonstration was 

conducted to provide independent evaluation and focus on two main objectives; a real-time interface for 

review of the operational system and a large-scale data processing effort to provide retrospective runs for 

statistical analysis.   

To accomplish the first objective, MIT LL began working closely with the WeatherCams office to 

transition the VEIA technology into their real-time operational system over the winter of 2020. To 

implement the developmental software on the WeatherCams system, modifications were required to operate 

on the WeatherCams real-time platform due to limitations on environments that could be supported by 

WeatherCams. The developmental software was implemented in the MATLAB environment, so the 

operational environment chosen was an open-source platform known as Octave, which is mostly compatible 

with MATLAB. Modifications were required to adapt the software to accommodate a large-scale dataset, 

to meet the required update rates that were consistent with the image gathering frequency, and to add 

additional system monitoring processes. 

The second objective was accomplished by performing retrospective runs on all imagery gathered 

between 1 September 2019 and 30 September 2020. This required gathering and archiving all imagery 

beginning mid-August 2019 and performing a large-scale reprocessing effort upon completion of data 
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gathering in the early days of October 2020. The MIT Lincoln Laboratory Supercomputing Center (LLSC) 

was utilized for this effort, and processing was completed with distribution of the results to NOAA/GSL on 

15 October. It is important to note that the reprocessing effort was conducted on LLSC with the 

development software in MATLAB, whereas the real-time results produced on WeatherCams were with 

the Octave version. 

Results from the operational demonstration and evaluation conducted by NOAA/GSL confirmed the 

performance of VEIA was similar to the evaluations conducted by MIT LL. The conclusions also 

highlighted the strengths and weaknesses of VEIA. Overall, the results showed VEIA was performing well 

compared to alternative technologies and should move on to the next phase for operational acceptance. 

(Fenton, 2021) 

During the spring of 2021, the FAA Aviation Weather Demonstration and Evaluation (AWDE) 

Services Team conducted a user assessment to determine the suitability and usability of VEIA. MIT LL 

worked with the FAA AWDE to provide training to a range of users who would be provided with access to 

VEIA on the WeatherCams website for a period of six weeks. Upon completion of the six-week period, the 

FAA AWDE team conducted interviews and provided questionnaires to 32 operational users ranging from 

pilots (Part 135 and GA), to dispatchers (Part 121 and Part 135), to meteorologists (Alaskan Aviation 

Weather Unit [AAWU], Center Weather Service Unit [CWSU], and NWS Weather Forecast Offices 

[WFO]). The user assessment concluded that VEIA was both suitable and usable by the aviation community 

with a number of recommendations for ways to improve the product display (currently the responsibility of 

the WeatherCams office). (Miller, 2021) 

Throughout this time, MIT LL also worked with the FAA to explore crowd-sourcing techniques to 

estimate the visibility from the cameras. The crowd-sourcing concept involves asking human workers (both 

trained and untrained) to evaluate the images and provide a visibility estimate. The crowd-sourcing 

algorithms would then combine the set of estimates into a final visibility value based on historical worker 

performance and statistical techniques. The most challenging aspect of crowd sourcing is the sheer volume 

of images from thousands of cameras at a 10-minute update rate. If the worker pool is limited and/or taking 

too long to estimate the visibility, the crowd is unable to meet the demand from the image gathering. MIT 

LL worked with the FAA to provide ‘triggers’ that would flag a site or image to be analyzed by the workers. 

The trigger methodology has evolved throughout the research effort and has settled on monitoring for 

changes in the edge strength ratio and triggering when specific thresholds are crossed. The thresholds 

chosen are a close approximation of the thresholds for the flight categories. Triggers are also generated 

when the crowd should revisit the imagery for a site if after a certain length of time there hasn’t been any 

change detected. 

Finally, MIT LL continues to evaluate VEIA and develop concepts that will improve its performance 

as well as add additional functionality. One such example is functionality to monitor the quality of the 

imagery and report any issues to the system operators. The ability to identify cameras blocked by ice or 

moved by human intervention or the wind was added to VEIA in the summer of 2021. Possible near-term 

performance improvements include the potential to cluster imagery based upon the scene ‘type’ and tune 

the algorithm to optimize performance for each cluster. Additionally, the focus of VEIA has been on 

estimating visibility, but several components of the algorithm are potentially useful in providing estimates 

on cloud cover and/or cloud height. 
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3. METHODOLOGY 

The VEIA algorithm was designed to take advantage of the concepts of edge strength and its 

relationship with visibility. Using this concept, the VEIA algorithm first computes a visibility estimate for 

each camera and then combines them into prevailing estimates for each site. VEIA also computes a 

confidence value for the final site estimate and provides a flag, or “trigger,” when conditions may need 

evaluation by a human observer. Additional details for each step of the VEIA process are discussed in this 

section. 

3.1 THE RELATIONSHIP BETWEEN VISIBILITY AND EDGE STRENGTH 

The main component of the visibility estimation algorithm is the application of an edge detection 

technique to the imagery. An example of a clear day and low visibility day for Chandler Shelf, AK, is 

shown in Figure 1. The human eye has the ability to quickly identify a significant number of missing edges 

in the low visibility example compared to the clear day image. The algorithm does the same by looking for 

the edges that persist over a long period of time within an image and comparing them to a clear day 

reference. Persistent edges consist of the horizon, tree lines, roadways, and permanent buildings.  

 

Figure 1. Clear day and low visibility images from Chandler Shelf, AK, and the resultant edges from a Sobel edge 
detection algorithm. The algorithm uses the number and strength of the edges to estimate the visibility from the 
imagery. 
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The VEIA algorithm is built upon the concept that there is a strong correlation between an edge 

observed in an image (or a marker in a scene) and visibility. This concept is the basis for how National 

Weather Service observers manually estimate the visibility for their hourly observations. Traditionally, 

observers are taught to note the presence of a marker (persistent edge) and the known distance to the marker 

and compare that with many markers in the full 360-degree view. Once a set of markers is identified as 

visible or not, the observers are taught to use the clarity of the marker to estimate the visibility in between 

marker distances.  

Figure 2 shows an example of three such markers (or persistent edges) in an image from McGrath, 

AK. The graph shows a strong correlation between edge strength (i.e., clarity of the marker) and surface 

visibility. The strength of three identified markers are plotted vs. the visibility as measured by a nearby 

ASOS. The lines represent the median edge strength over a two-year period that correlated to a given ASOS 

reading. The edge located approximately three miles from the camera shows a roughly linear relationship 

between edge strength and visibility until the visibility reaches five miles, at which point it levels off. The 

edge located 0.50 mile from the camera shows a similar relationship, but is more difficult to categorize 

because it is so close to the camera. The edge located 20 miles from the camera is never visible when the 

visibility is less than 8 miles, which is expected. This is clear evidence that it is possible for the algorithm 

to not only note the presence of an edge, and thus a visibility equal to or greater than the marker distance, 

but also of the usefulness of the edge strength in identifying the visibility between available marker 

distances. The VEIA algorithm uses this concept, but applies it to the entire scene of persistent edges, not 

individual hand-selected markers, as shown in Figure 2. 

 

Figure 2. The edge strength is plotted vs. the observed ASOS visibility for three markers (persistent edges) from the 
northwest-facing camera in McGrath, AK (aggregated for two years of data). The green line is from an edge located 
on the far side of the runway at approximately 0.5 statute miles (SM) from the camera. The red line is from an edge 
located along a tree line located at approximately 3 SM from the camera. Finally, the blue line is for an edge 
located along the horizon on a distant mountain at over 20 SM. The plot shows that the green line is first visible at a 
half mile ASOS observation and increases in intensity as the visibility improves to around a maximum of 5 SM. The 
red line has some signal when the visibility is at one mile and increases to maximum intensity at approximately 
7 SM. 
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3.2 COMPUTING INDIVIDUAL CAMERA VISIBILITY ESTIMATES 

The individual camera estimates in VEIA are computed using a three-phase process: composite image 

generation, edges of interest extraction, and translation to visibility, as shown in Figure 3. 

Figure 3. Overview of how individual camera estimates are computed in the VEIA algorithm. The algorithm uses a 
history of clear images to produce a composite of the persistent edges (i.e., horizon, roadways, buildings, etc.) that 
are expected during times of unlimited visibility. Then, the algorithm compares the overall edge strength of the 
current image to that of the clear day composite image to generate an edge strength ratio. The ratio is then 
converted to visibility in statute miles using a translation function. 

3.2.1 Composite Image Generation 

The first component, composite image generation, involves saving a history of the last several days 

of images and processing a reference composite image. This composite image represents the best estimate 

for what a clear day image would look like given recent conditions. The composite image generation 

filters out images without enough available sunlight (threshold on Sun angle) and those potentially 

influenced by low visibility conditions. The composite is generated using a 10-day sliding window of 

images. The 10-day period was selected because it is long enough to include enough clear days and short 

enough to account for seasonal variation in the scene.  

3.2.2 Edges of Interest Extraction 

The next component is edges of interest extraction. During this process, the Sobel edge detection 

algorithm is applied to both the current image and the reference composite image. Then a technique is 

applied on the composite image edges to identify the edges that are persistent (such as the horizon, fixed 

buildings, etc.). The technique scans each vertical column of the image independently to detect the horizon 

first, followed by one or more strong persistent edges in each column. This technique removes transient 

edges such as people, cars, and clouds. This technique also reduces the impact of strong prominent 
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persistent edges from objects in the foreground that can negatively impact the estimation process by 

overwhelming the translation process.  

The proper selection of the edges used within the estimation of the visibility is a critical aspect of the 

VEIA algorithm. First, it is important to eliminate all transient edges such as vehicles, aircraft, people, 

clouds, etc. If any of these objects break through the processing, they can corrupt the results by 

overestimating the visibility when they are present in the current image or underestimating the visibility if 

they are in the clear day reference image. However, it is also important for the edge selection process to 

select a set of edges that are equally distributed across the entire visibility range of the image. If all the 

edges selected are located at the same distance from the camera, then it will be difficult for the algorithm 

to estimate visibilities through the entire visibility spectrum. For instance, if all edges chosen are 1 SM from 

the camera, then accurately estimating a visibility of 7 SM compared to 5 SM may be impossible. 

As discussed previously, the primary function of creating the composite image is to provide a 

representation of the clear day image for comparison. This allows the generation of an edge strength ratio 

between the composite and current image for visibility estimation. The secondary function of the composite 

image is to identify the non-transient objects. By blending all images over the previous several days, the 

transient edges are washed out of the image and thus eliminated when the edge detection is applied to the 

composite image. This meets the first need of the edge selection process. However, the most challenging 

need in the edge selection process remains, the equal distribution of edges across the visibility spectrum. 

To discuss the method chosen to perform the best edge selection, two example images of different 

scene scenarios are shown in Figure 4. The first image, from Homer, AK, is one typical scene type that is 

observed in the state of Alaska. In this image, the camera is looking out across an open bay to a set of distant 

mountains. The camera is mounted high on a pedestal with the added advantage of being on a hillside. The 

view contains both foreground objects, such as the buildings that are only a short distance from the camera, 

as well as the distant mountains located more than 10 SM from the camera. This image also contains mid-

range features such as the spit (extended stretch of beach that projects out into the sea) that is labeled at 5 

SM and roads and a lake at a range of between 1 and 5 SM. There are limited objects between 5 and 12 

SM due to the open water. The second image, from McGrath, AK, has different characteristics than 

the Homer image. First, the farthest distance to a feature is 2.5 SM to a nearby hillside. Therefore, all 

visible objects are closer than 2.5 SM. The most prominent feature is a tower in very close proximity 

that is less than 20 feet from the camera. 

To evaluate the performance of these two cameras, we can use a receiver operating characteristic 

(ROC) curve. The ROC curve provides a methodology to compare the performance of the algorithm from 

multiple input sources while also varying an algorithmic parameter. For these two cameras, the 

accompanying ROC curve is shown in Figure 4. In this ROC curve, the true positive and false positive for 

detecting the instrument meteorological conditions (IMC) as compared to a co-located ASOS is shown. 

For visibility-only measurements, the threshold between IMC and visual meteorological conditions (VMC 

is  3 SM). The closer the curve is to the top-left corner of the ROC curve, the better the performance. 

A comparison of the two ROC curves is shown in Figure 4 using a very basic edge selection process 

that will be discussed later. The ROC curve shows that the performance of VEIA on the image from Homer, 

AK, is quite good, even with a basic edge selection method. The curve is very near to the top-left corner 

and, depending upon the parameters chosen, the true positive rate can be greater than 90% with a false 
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positive rate under 10%. However, for the McGrath camera, the performance is notably lower. For McGrath 

to obtain a high true positive rate, the false positive rate would be unacceptable. To reduce the high false 

positive rate to an acceptable level, the true positive rate would be unacceptable. This poor performance is 

due to the large quantity of edges that are generated from the antenna using a basic edge selection method. 

The edges from the antenna represent a high percentage of the total number of strong edges. As stated 

previously, if the large majority of edges are at one distance, the algorithm will be unable to estimate 

visibility across the entire visibility spectrum. Also, the proximity of the antenna results in the edges 

associated with the antenna always being present and demonstrating a high edge strength. This results in an 

edge strength ratio that is always near or above 1.0, and thus a high visibility estimate even when the 

visibility is reduced to below IMC values. 

Figure 4. Clear weather annotated images and ROC curves from Homer, AK, and McGrath, AK. ROC curves are 
comparing algorithm performance for a southeast-facing camera from Homer, AK, and an east-facing camera from 
McGrath, AK, varying the multiplier applied to a basic edge selection process. The performance is notably poorer 
from the McGrath camera with a large antenna in close proximity to the camera.  

To improve the performance of images with close-proximity large objects, different edge selection 

techniques were investigated. Ultimately, three methods were fully evaluated over a large set of cameras to 

identify the best performing method. One basic method computes the median edge strength across all the 

pixels in the imagery, applies a multiplier to the mean, then performs thresholding on all pixels to identify 

the strongest edges. This method, using a multiplier of five, is depicted in Figure 5 for the northwest-facing 

camera from McGrath, AK, in the lower left of the figure. The selected pixels for edge strength computation 

are depicted in white. The second method consisted of a sliding scale of percentile calculations. In this 

method, the pixels above a percentile threshold were identified as the pixels for selection in the processing. 

In Figure 5, the pixels that are stronger than the 99th percentile are shown in the bottom middle image. 

Therefore, of the 307,200 pixels in the image, the top 1% by strength, or 3,072 pixels, would be used in the 
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edge selection. The final method evaluated was the called the ‘Horizon Plus’ method. The Horizon Plus 

method begins by finding the horizon using a peak finding process searching vertically (top to bottom) 

through each of the columns of pixels in an image. During this process, it is assumed that the sky does not 

contain any peaks. This is generally true when using a composite image because clouds are removed. The 

first peak is typically a distant mountain range, hillside, or some natural feature along the horizon. In some 

instances, the first peak may be an object that is above the horizon in the image due to the camera viewing 

angle, such as a nearby tree or tall building. The algorithm then finds the next strongest peak in the vertical 

column. In most instances, this may be a nearby non-natural object such as the roofline of a building, a 

‘shoulder’ between a roadway and the adjacent grass area, or a nearby ridgeline that is against a background 

of a more distant mountain range. The algorithm then finds the next strongest peak in a column and 

continues this process until a set number of peaks is reached. The number of peaks to use is defined as a 

parameter in the code. In Figure 5, this parameter is set to horizon plus one additional peak.  

 

Figure 5. Clear weather annotated image, 10-day composite image, and three edge selection techniques for the 
northwest facing McGrath, AK, image. The three edge selection techniques consist of the baseline method (five times 
the median value), a percentile method (99th), and the horizon plus method (horizon plus one). 

The difference in the selection of edges is easily observable in the figure. Many edges are chosen in 

the baseline method. The edges are distributed throughout the image (minus the sky), but are often 

associated with edges that are difficult for the human eye to distinguish. The performance of VEIA using 

the baseline method for this image is quite good, which may be due to the equal distribution of these edges 

through the visibility spectrum. It is also important to note that the flag pole (approximately 100 feet from 

the camera) is selected along with the flag, albeit the movement of the flag creates many edges in a blur 

near the top of the pole, which likely negatively impacts performance. The small close-proximity 

communications building is also easily identifiable in the edges. 

The second method, using a threshold from the edge strength percentile, significantly reduces the 

number of edges selected. Using the 99th percentile as a threshold, of the 307,200 pixels in the image, the 

top 1% by strength or 3,072 pixels would be used in the edge selection. The blur from the flag is less 
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obvious, whereas the edge of the small communications building is retained. It is important to note that in 

this method, significant edges are lost as the percentile threshold is increased. A review of the horizon 

shows that many of the pixels are not selected which may impact performance. 

The last method, horizon plus, once again significantly reduces the number of edges selected. 

Although the percentile method uses over 3,000 pixels, the horizon plus method uses a minimum of 640 

pixels from the horizon and, with a parameter setting of one (shown in figure), it uses 1,280 total pixels. 

For this image, the edge selection clearly picks up all the edges along the distant horizon and the roofline 

of the small communications building as well as a clearly defined runway edge. The distribution of the 

edges across the visibility spectrum appears to be quite good while not overwhelming the processing with 

a large number of nonconsequential edges. 

Figure 6 shows the edge selection for the three different methods for the east-facing camera in 

McGrath, AK. As discussed previously, the antenna presents a challenge for the edge selection process due 

to the large number of close proximity edges. As can be seen in the baseline method, there are many edges 

selected from the antenna, with many of them being above the horizon line. These edges are also very strong 

and have been previously demonstrated to reduce the VEIA performance. 

For the second method, using a threshold from the edge strength percentile, there is a significant 

reduction in the number of edges chosen. However, the selected edges are dominated by the antenna and 

many of the desired edges, such as the horizon, are lost. Visually, it appears that this method did not result 

in the desired effect of removing the large, close-proximity antenna. It should be noted (not shown) that by 

decreasing the percentile parameter various desired edges are included; however, that is done at the expense 

of increasing the number of edges associated with the large proximity antenna. 

For the last method, horizon plus again reduces the number of edges selected based upon the desired 

number of strong edges in the vertical column (horizon plus one is shown). For this image, the edge 

selection clearly eliminates most of the edges associated with large close proximity antenna. Meanwhile, 

the method has selected the horizon and the tops of the evergreen trees along with a collection of the 

building rooflines. The distribution of the edges across the visibility spectrum appears to be quite good 

while not overwhelming the processing with a large number of close proximity edges. 
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Figure 6. Clear weather annotated image, 10-day composite image, and three edge selection techniques for the east-
facing McGrath, AK image. The three edge selection techniques consist of the baseline method (five times the 
median value), a percentile method (99th), and the horizon method (horizon plus one). 

A subjective visual evaluation of the edge selection suggests that the horizon plus one method is 

choosing the best edges for processing. The goal, however, is to improve the performance of the algorithm 

for the images with large close-proximity objects while not reducing the performance of images without 

this observed problem. To evaluate the performance, the algorithm was run with multiple parameter settings 

using both the percentile method and the horizon plus method along with the baseline method. For the 

percentile method, the threshold ranged from 50 to 99.9, whereas for the horizon plus method, the parameter 

ranged from 0 (horizon only) to 10. The results for the east- and northwest-facing cameras are shown in 

Figure 7. 
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Figure 7. Clear weather annotated image and ROC curves evaluating the performance of the algorithm to identify 
IMC conditions from the baseline method, percentile method (parameter range is 50 to 99.9), and the horizon plus 
method (parameter range is 0 to 10). 

It can be observed in Figure 7 that the baseline method aligns well with the percentile method when 

the percentile is roughly 90%. Therefore, the edges selected are very similar in quantity and distribution. 

With the increased percentile setting (99th), the performance increases regarding the true positive rate while 

compromising the false positive rate. It can also be observed in Figure 7 that the horizon plus method 

outperforms the percentile method for the true positive rate with little to no impact on the false positive rate 

for the east-facing camera. However, there appears to be a reduced performance as measured by the false 

positive rate for the northwest-facing camera.  

The scoring of multiple cameras was conducted comparing the performance of the baseline method 

and the horizon plus method. The general conclusion by viewing multiple ROC curves is that the horizon 

plus method performs the best overall. To highlight this observation, Figure 8 plots the camera’s true 

positive vs. false positive rate. The horizon plus method (horizon plus one), shown in green, shows a shift 

towards the top-left corner of the plot, indicating improved performance. This is encouraging both from the 

perspective that the visibility estimates for the cameras with large proximity antennas are performing better, 

and the new method has not negatively impacted the results from the other cameras. 
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Figure 8 also contains a plot of each camera’s true positive rate (red) with the baseline method on the 

x-axis and the horizon plus method (horizon plus one) on the y-axis. Similarly, the false positive rate (blue)

is plotted. For the true positive rate, an upward shift (increasing) shows an improvement, whereas for the

false positive rate, a downward shift (decreasing) shows improvement. Therefore, the best performance of

the algorithm is obtained with the horizon method using the horizon plus the next strongest peak (horizon

plus one).

Figure 8. True positive vs. false positive rates comparing the baseline method with the horizon plus method (horizon 
plus one) for 28 cameras in Alaska. 

3.2.3 Translation to Visibility 

Finally, the VEIA algorithm estimates the visibility on a per-camera basis by computing the edge 

strength ratio, which is the sum of the selected edges from the current image divided by the sum of the 

selected edges from the reference composite image. The edge strength ratio is then converted to visibility 

in statute miles using a calibrated translation function. The translation function was developed using 

aggregate statistics that compare the observed true visibility to the edge strength ratio. This was done over 

multiple years and hundreds of cameras. The same translation function is used for all cameras and is not 

individually calibrated to the scene. In the future, VEIA may adopt a variable translation function that is 

tailored by scene type (ocean view, mountain view, city view, etc.).  

The translation function is intended to be a single function that is applied to all camera images 

regardless of the scene or furthest distance in the image. Throughout the development of VEIA, the 

translation function has undergone several significant updates to reflect the latest evaluation of the 

relationship between edge strength ratio and visibility. In the initial stages of the development, the 

translation function was simply a linear function that anchored a ratio of zero to a visibility of zero and a 

ratio of one to the maximum viewable distance in the image. After more study, this was modified to use a 

universal constant for the slope of the line, which made an edge strength ratio of one equal to a visibility of 

six statue miles for all cameras. Eventually, as the archives grew to include a large set of low visibility 

events and the processing capabilities expanded to a much larger camera set, the translation function was 

modified to be a set of contiguous linear functions that were ratio dependent. After the completion of the 

operational demonstration in 2020, the translation function underwent additional changes due to the 



15 

evaluation revealing accuracy issues in the 3- and 5-mile ranges. It was also noted that the algorithm 

required re-calibration in the 5- to 10-mile range. 

The translation function was created by performing an analysis at 20 sites with closely co-located 

ASOS observations provided at a five-minute update rate. This included 80 cameras with a wide range of 

camera views, such as images with distant mountain ranges, to cameras with nearby hill sides or tree lines, 

to cameras with some proximity blockage.  

A notable problem with defining the translation function to an ASOS-like visibility estimate is the 

very different measurement techniques of the VEIA and ASOS instrumentation. The ASOS is looking 

across a 1-meter distance and relating the refraction of light to visibility, whereas VEIA is measuring 

visibility across a wide distance. If the ASOS and cameras are mounted side-by-side, and the true visibility 

is extremely low at the sensors (<1 mile), then agreement between the two methods would be expected. 

However, as the true visibility at the sensor location increases, the difference between VEIA and ASOS 

may become quite large. One example would be a camera looking out a short distance to a mountain range 

that is completely blocked due to low clouds sinking down the side of the mountains. VEIA may be 

reporting a low visibility for the area, whereas the ASOS, sitting in the valley, would be reporting visibility 

at 10+ SM at the sensor location. 

A second notable problem is the ASOS limitation of only reporting visibility out to 10 SM. A human 

observer may document the visibility to be 20+ SM if a distant mountain range is clearly visible at 20 SM; 

however, the ASOS in this scenario would report 10 SM. Since VEIA assesses the scene out to the same 

distances as the human observer, it could potentially go beyond 10 SM. However, since VEIA is calibrated 

to the ASOS, the performance beyond 10 SM would be questionable. 

Figure 9 plots the relationship between the ASOS visibility measurements and the edge strength ratio. 

The filled circles represent the median edge strength ratio for each ASOS visibility increment for each of 

the 80 cameras used in the analysis. The black diamonds represent a median across all cameras. A red line 

depicts the initial translation function, which was a simple linear relationship fixing the zero-edge strength 

ratio to zero statute miles and an edge strength ratio of one to a visibility of six statute miles (the red line 

maintains this linear function above one to infinity). The black line depicts the updated translation function 

that was in use during the 2020 operational demonstration. This function closely mirrors the initial 

translation function to an edge strength ratio of 0.45, and then adjusts the slope of the function for ratios 

greater than 0.45. Therefore, between 0.45 and infinity, the visibility increases at a more significant rate as 

the edge strength ratio increases. This is likely due to a small fraction of the edges that were selected being 

in the range between 3 and 9 SM.  
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Figure 9. Relationship between the edge strength ratio and visibility for 80 cameras across 20 Alaska sites with a 
closely co-located ASOS. The median edge strength ratio for all observations at the specific ASOS visibility is 
plotted for all cameras in the circles. The median edge strength ratio for all cameras is plotted in the large black 
diamond. The original (linear from zero to six statute miles) translation function is plotted as a red line. The 
updated 2020 translation function is plotted as a black line. 

The translation function was updated again after the 2020 operational demonstration. From subjective 

analysis during the evaluation, it was believed that the VEIA estimations were too low when ASOS was 

reporting in the 3 SM to 10 SM range. One commonly observed condition in the camera imagery was a 

backlighting effect when the Sun would be in the imagery and thus washing out the edges, resulting in a 

low visibility estimate and thus a low edge strength ratio during times with a high visibility. Another 

commonly observed condition was very sharp edges when the perfect lighting would occur. This would 

create a very high edge strength ratio associated with very high visibilities (much greater than the ASOS 

10 SM limitation). In order to eliminate issues with the lighting, the cases used in the analysis were limited 

to times when the Sun was behind the camera and there was a cloud cover present with cloud bottoms at or 

below 5,000 feet. By doing this, the most optimal lighting conditions are chosen, much like when a 

photographer uses a ‘flash’ to illuminate the scene to highlight the features. Also, by choosing observations 

with a low cloud cover, this eliminated the perfectly blue-sky conditions where the visibility is most likely 

close to infinite. 
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Figure 10 plots the relationship between the ASOS visibility measurements and the edge strength 

ratio after filtering the cases. This analysis was performed on 28 cameras from 7 sites. The filled circles 

represent the median edge strength ratio for each ASOS visibility increment for each of the 28 cameras 

used in the analysis. The black diamonds represent a median across all cameras. The black line depicts the 

translation function used during the operational demonstration in 2020. The blue line depicts the updated 

translation function used during the 2021 user assessment. This function closely mirrors the previous 

translation functions to an edge strength ratio of 0.45, and then adjusts the slope of the line for values 

between 0.45 and 0.60. The slope is adjusted again above 0.60. Once again, the visibility increases at a 

more significant rate as the edge strength ratio increases. For example, an edge strength ratio of 0.6 would 

have translated to a visibility of 4 SM in the original version, to 6 SM in the summer 2020 version, and to 

9 SM in the final version. It is also important to note that an edge strength ratio of 0.3 would remain virtually 

unchanged in all three versions. 

Figure 10. Relationship between the edge strength ratio and visibility for 28 cameras across 7 Alaska sites with a 
closely co-located ASOS. The cases are filtered to only include observations were the Sun is behind the camera and 
there is a cloud cover present with cloud bottoms at or below 5,000 ft. The median edge strength ratio for all 
observations at the specific ASOS visibility is plotted for all cameras in the circle. The median edge strength ratio 
for all cameras is plotted in the large black diamond. The updated 2020 translation function is plotted as a black 
line. The final 2021 translation function is plotted as a blue line. 
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3.3 CREATING A SITE ESTIMATE 

The current installation of the FAA Aviation Weather Cameras consists of between two and four 

cameras at each site. Most sites have the full complement of four cameras. The main purpose of this is to 

allow users to view the weather conditions in multiple directions. Although VEIA is capable of estimating 

the visibility on a per-camera basis, failure mode analysis has shown that solar glare causes false reports of 

low visibility. Furthermore, when solar glare is present in one camera, the accompanying cameras at the 

same site are generally performing quite well. Therefore, the development team designed an algorithm to 

combine the input from multiple cameras at a single site into one visibility estimate, which reduces the 

impact of any cameras experiencing the solar glare issue. Figure 11 is a high-level flow chart for the process 

of combining multiple cameras at a single site into one site estimate. 

Figure 11. High-level flow chart showing the processing camera imagery from the same site into one site estimate 
for display on the WeatherCams system. 

The primary functionality of the site combiner is to weight each camera based upon known limitations 

in the performance due to the position of the Sun relative to the camera lens. Figure 12 depicts the weighting 

scheme for considering the solar elevation and azimuth. A camera facing directly into the Sun will be highly 

impacted by solar glare and its weighting would be zero, whereas a camera with the Sun located behind it 

will have the best lighting and would receive the most weighting. The weighting would be reduced 

proportionally as the Sun angle moved to the left or right side of the camera view. The solar elevation is 

also considered, but only as a threshold at which point to turn the camera on or off (0 or 1) when the Sun is 

too low in the sky to illuminate the scene. The solar elevation threshold is set to 15 degrees above the 

horizon. Since we are combining the estimates for four cameras located at the same site, the solar elevation 
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impacts all cameras equally and is only evident during sunrise and sunset, when the Sun is passing through 

the solar elevation threshold.  

Figure 12. Weighting scheme for a camera when combing multiple cameras into one site estimate. Cameras facing 
toward the Sun are weighted less than cameras with the Sun located behind them. 

Another factor used in the weighting scheme is the edge strength ratios themselves. When all four 

cameras have an edge strength ratio below a certain threshold, they are all equally weighted. This approach 

is chosen because during times of heavy fog, the solar glare is no longer a concern because the Sun is being 

filtered out by the fog and/or low clouds. As suggested by the translation function analysis, with a sharp 

shift when the edge strength ration is greater than 0.45, the threshold chosen to shift to equal weighting is 

0.4. 

To evaluate the combined site estimates, a ROC curve is used to evaluate the results of the four 

camera estimates compared to the site estimate. Figure 13 is a comparison for Homer, AK. Homer is a small 

city on Kachemak Bay on Alaska’s Kenai Peninsula. The camera installation in Homer sits up on the hill 

in the city looking down upon the airport and the bay. A large spit, or long strip of land, extends out into 

the bay and provides excellent data for the visibility estimation. Three of the cameras have distance 

mountain ranges past the bay and one camera looks towards the nearby hillside. The four cameras provide 

excellent high-quality imagery for visibility estimation with some limitations due to the extent of the water 
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and the proximity of the nearby hillside. The ASOS in Homer, AK, is offset by more than a mile from the 

camera site with a significant orographic effect. In Figure 13, the site estimate is shown as a black line, and 

each camera estimate is shown in red (northeast), blue (southeast), green (southwest), or yellow (west). It 

is important to note that the plot is zoomed in to a range of 0.5 to 1 for the true positive rate and 0 to 0.5 for 

the false positive rate. If any of the results fall outside of this range, the data are not plotted. It can be 

observed in the figure that by combining all four cameras into one estimate using a weighting scheme based 

upon the Sun angle and a threshold on the edge detection ratios that the performance is improved. 

Figure 13. ROC curve comparing performance of algorithm to identify IMC conditions for four cameras located in 
Homer, AK, and the combined site estimate (shown in black) along with annotated clear day images. The percentile 
edge selection method is shown varying the percentile for comparison. The four camera-only estimates are below 
the site estimate, indicating that the performance is improved when all four cameras are combined using a 
weighting scheme based upon the Sun’s location relative to the view of each camera. 

Figures 14 is like Figure 13, but for Cordova, AK. Cordova is a small city at the mouth of the Copper 

River, at the head of Orca Inlet in the east side of Prince William Sound. The camera installation in Cordova 

sites at the local airport looking down the runway and at the apron. Three of the cameras have obstructions 

from nearby structures. The ASOS in Cordova, AK, is located close to the camera installation. It is also 

observed that the combined site estimate out performs any of the camera images individually. Of special 

note are the impacts in the east and northwest cameras. The east and northwest cameras are both 

underperforming because their views contain very few mid-range edges. They are dominated by close-

proximity ground clutter in the foreground and the distant mountains that make up the horizon. A simple 

average may allow the east-facing and the northwest-facing camera to negatively impact the site scoring. 
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Figure 14. ROC curve comparing performance of algorithm to identify IMC conditions for four cameras located in 
Cordova, AK, and the combined site estimate (shown in black) along with annotated clear day images. The 
percentile edge selection method is shown varying the percentile for comparison. The four camera-only estimates 
are below the site estimate indicating that the performance is improved when all four cameras are combined using a 
weighting scheme based upon the Sun’s location relative to the view of each camera. 

Figure 15 compares the performance of the combined site estimate for eight sites in Alaska. In all 

instances the overall performance is within an acceptable range. The best performing site is Palmer, AK, 

where the ASOS and camera are near each other and the camera images provide a view that is free of large 

close-proximity antennas and buildings while still having nearby objects to use in edge selection. This is 

combined with views containing distant mountain tops and ridgelines that are excellent for estimating 

higher visibilities. The worst performing sites are Ketchikan, Cordova, and Barrow. Each of these sites has 

challenges that have been previously noted, from large distances between the ASOS and the camera site to 

the overabundance of close proximity objects  to the opposite effect of too few objects in the foreground.  
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Figure 15. ROC curve comparing performance of algorithm to identify IMC conditions for the eight Alaska sites. 
The percentile edge selection method is shown varying the percentile for comparison.  

As a last demonstration of the algorithm abilities using a combined site estimate, two different types 

of events are shown in Figure 16 and 17. The first event was on 17 April 2019, when a snow squall 

approached Homer, AK, and reduced the visibility. Prior to the event, each of the cameras are producing 

very different estimates, albeit all above IMC thresholds. The algorithm correctly merges the estimates into 

a site estimate matching the ASOS of 10 SM (the maximum visibility allowed). As the event approaches, 

the camera estimates begin decreasing prior to the ASOS indicating decreasing visibility. This is consistent 

with the algorithm capturing the prevailing visibility while the ASOS is measuring the visibility over a very 

small domain (1 meter) at the site location. As the squall line moves over the sensor site and begins to 

impact all cameras, the visibility drops below 3 SM.   

The second event was on 4 March 2018 in McGrath, AK. This event began in the morning with a low 

layer of fog sitting over the site. As the heating of the day occurred, the fog burned off and revealed excellent 

visibility with clear skies. As the day progressed, a low cloud deck moved back over the site. Once again, 

the algorithm correctly estimated the visibility matching the ASOS as the Sun rose revealing the layer of 

fog, and it correctly detected the burn off and subsequent impacts on visibility of distant mountain ranges. 
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Figure 16. Comparison of visibility estimates over an eight-hour period from Homer, AK, on 17 April  2019 along 
with the annotated clear day images. The reduced visibility event began in the late afternoon around 01:00 UTC as 
a snow squall moved in from the northeast. The event was captured in the imagery, observed by the ASOS, and 
correctly detected in the combined site estimate. 
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Figure 17. Comparison of visibility estimates over a seven-hour period from McGrath, AK, on 4 March 2018 along 
with the annotated clear day images. The day began with low fog and clouds over the region which burned off 
around 23:30 UTC. The event was captured in imagery and observed in ASOS measurements. The visibility 
estimation algorithm correctly detected the burn off in each of the camera estimates and in the combined site 
estimate. 

3.4 CONFIDENCE MEASURES 

As described above, combining the co-located cameras into one estimate is accomplished by using 

information on the location of the Sun relative to the direction the camera is facing. This information can 

also be used to develop a confidence measure. The VEIA confidence index is intended to provide a user a 

sense of the quality of the site-based visibility estimate when combining multiple cameras. The VEIA 

confidence index also attempts to account for known limitations in the VEIA performance due to the 

number of cameras, lighting from the Sun, and agreement between the available single-camera estimates. 

The confidence index is assigned a value between 0 and 100 and is computed from three separate 

measures of performance. The first measure is based upon the Sun angle—the higher the Sun is in the sky, 

the more reliable the estimate is expected to be and the higher confidence value assigned. For this first 

component, when the Sun is more than 15 degrees above the horizon, the confidence is assigned a value of 

100. When the Sun is at the horizon the confidence is assigned a value of 50. A linear relationship is 
assigned in the range between the two thresholds. The second measure is based upon the relative agreement 
between cameras using the standard deviation. A value of 100 is assigned when the standard deviation is 
zero and decreased as the standard deviation increases. Currently, for each standard deviation the value is 
decreased by 10 points. The final component is the number of cameras available. If all four cameras are
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available the confidence is set to 100; with only three cameras the value is 75; and with only two cameras 

the value is 50. Combined co-located estimates of visibility are not provided if only one camera is available. 

The final step is to combine the three confidence measures into one value. For the VEIA site confidence 

metric, the minimum of all three components is assigned. If the confidence index is below 26, then a 

visibility estimate is not provided for the site. 

It is important to note that these concepts and values were developed and assigned through a 

subjective analysis. 

3.5 TRIGGER INPUT FROM A HUMAN OBSERVER/CROWD  

Another component of the VEIA algorithm is the creation of a ‘trigger’ to support a crowd-sourcing 

effort funded by the Weather Technology In the Cockpit (WTIC) program. The crowd-sourcing concept 

involves asking human workers (both trained and untrained) to evaluate the images and provide a visibility 

estimate. The crowd-sourcing algorithm then combines the set of estimates into a final visibility value based 

upon historical worker performance and statistical techniques. MIT Lincoln Laboratory has contributed to 

this effort by participating in the development of a ‘hybrid’ system between the VEIA algorithm and the 

crowd sourcing. This has included providing VEIA visibility estimates for inclusion in the crowd sourcing, 

performing analysis on the crowd estimates and crowd-sourced results, as well as creating the software and 

implementing a trigger to determine the most appropriate time to send images to the human observers in 

the crowd. 

The collaboration with WTIC and WeatherCams has led to a hybrid concept consisting of VEIA 

working in conjunction with crowd sourcing to provide the best possible visibility estimates. The backbone 

of the system is VEIA, performing continuous automated visibility assessments using image processing 

techniques on the entire sensor suite operated by WeatherCams. VEIA also monitors for times when the 

conditions are changing rapidly. At those times, VEIA would ‘trigger’ the crowd to perform an independent 

assessment of the visibility conditions. Without VEIA, the crowd sourcing would become overwhelmed 

with the number of images being collected at WeatherCams in a short time period.  

The main component of the trigger is the identification of changes in the imagery that may be 

indicative of changing conditions. As previously discussed, built into the VEIA is a component to compare 

the current image with a clear day proxy generated from several days of images combined into a composite. 

This comparison results in an edge strength ratio that is then converted to the visibility. Changes to the edge 

strength ratio represent changes to the weather conditions in the scene. Therefore, the first component of 

the trigger algorithm is to monitor for changes in the visibility estimates and trigger when specific 

thresholds are crossed. The thresholds chosen are based on the flight categories. The second component of 

the trigger is a timer that solicits crowd input if there hasn’t been any change detected after a certain length 

of time. The timer is currently set to trigger every 24 hours if no change is detected. 

A final contribution to the crowd sourcing effort was participation in the creation and evaluation of 

supplemental information to be collected from the crowd. It was envisioned that the human observers in 

the crowd could inform the VEIA algorithm of conditions that would impact the performance of VEIA, 

such as the Sun directly in the image, thick cloud cover, snow covering the ground surface, and problems 

with the imagery. 
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Evaluation of the trigger mechanism for a nine-day period in September 2021 is shown in Figure 18. 

This analysis has shown that the median number of triggers across all sites at each update (every 10 minutes) 

is between five and eight depending upon the dominant weather conditions on any given day. An early 

morning spike occurs that is associated with the improving performance of VEIA as the lighting from the 

Sun fully illuminates the view and reveals a significant difference between the visibility conditions at 

sunrise as opposed to sunset several hours earlier. This early morning spike is typically between 10 and 20 

triggers per update period. Whether these numbers are acceptable or not is yet to be determined, as results 

from an evaluation conducted by Rockwell Collins were unavailable at time of publication. However, it is 

expected that further reduction may be required. Additional methods to reduce the trigger may require 

developing techniques that better determine when VEIA is underperforming and requires crowd source 

assistance. 

Figure 18. Number of triggers occurring at each VEIA ten-minute update for all available sites. Nominally, there 
are between five and eight triggers at each update depending upon the predominant weather conditions. An early 
morning spike can be observed as the Sun rises and the morning visibility conditions differ from the conditions at 
sunset. 

A potential method to further reduce trigger frequency may be to prioritize the triggers based upon 

the VEIA visibility estimate at the time of the trigger. It may be more important to prioritize low visibility 

triggers vs. high visibility triggers. Figure 19 shows the current visibility for triggers that occurred over the 

nine-day period. Of the 5,183 triggers during this time period, 1,628 are when VEIA is estimating a 10+ SM 

visibility. Since VEIA is very reliable in the highest visibility estimates, these triggers may be of a lower 

priority. These triggers are also when VEIA is transitioning to a higher visibility value, which may be less 
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important than when VEIA is transitioning to lower visibilities. Further analysis on the specific 

circumstances in each of these visibility thresholds may also be required. 

Figure 19. Trigger counts by visibility over the nine-day period between 15 September and 24 September. Of the 
5,183 triggers, almost one third are when the visibility estimate from VEIA is 10 SM or greater. These triggers 
during high visibility conditions may take a lower priority than triggers associated with lower visibility conditions. 
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4. OPERATIONAL TRANSITION AND DEMONSTRATION 

In September 2019, MIT Lincoln Laboratory began coordinating with the FAA sponsor as well as 

WeatherCams to implement a version of the VEIA algorithm on the WeatherCams system. At that time, it 

was determined that the best approach would be to grant MIT LL access to the WeatherCams system for 

software development and evaluation. The main obstacle in this approach was allowing MIT LL access to 

the WeatherCams real-time system, which is hosted on the Google Cloud. MIT LL documented the 

approach and obtained the required Data Security Plan (DSP), allowing approval for MIT Lincoln 

Laboratory to access other organizations’ systems. In the DSP, it was critical that MIT LL only have access 

to the VEIA components and not the operational components of the WeatherCams system. WeatherCams 

was able to meet this requirement and began preparing their system in January 2020. 

Another aspect of the implementation was determining the software platform for the algorithm. The 

VEIA concepts and development occurred in MATLAB, an off-the-shelf development platform that allows 

for flexibility in the testing of analytical concepts. Unfortunately, MATLAB is an expensive tool and would 

require purchase, installation, and maintenance in support of VEIA on WeatherCams. To reduce cost, and 

for ease of installation, an open-source alternative was identified that is compatible with MATLAB called 

GNU Octave. Octave appeared to be capable of running MATLAB-derived software with minimal changes, 

but there were some differences between MATLAB and Octave that required algorithm modifications. 

In March 2020, all approvals were finalized and the process of releasing the MATLAB-based 

software on the WeatherCams system using Octave as the platform commenced. The initial stages required 

setting up a version of VEIA on the WeatherCams Github repository. MIT Lincoln Laboratory obtained an 

account on Github, and access to the VEIA repository was granted by WeatherCams. The initial software 

release did not cycle on the WeatherCams system, but through a series of modifications to the software to 

align with the various function calls specific to Octave, an algorithm was created that cycled on the 

WeatherCams system. 

With the software cycling on the WeatherCams system in April 2020, the focus shifted toward 

validating the results of the Octave version with the MATLAB version. The initial debugging and 

evaluation period consisted of a very small subset of the sites and cameras. This allowed for rapid debugging 

of issues that were specific to the Octave platform. One of the major identified issues was the differences 

in the output of the edge detection calls between Octave and MATLAB. Analysis was required to 

understand the difference in the edge detection functions, perform software modifications to account for 

these differences, and validate that the resulting output was identical. Eventually, all issues were resolved 

and visibility estimates between the two systems were nearly identical. 

In May 2020, with the software cycling and producing acceptable results in the real-time system, an 

additional 120 cameras were added to the processing list. The goal was for a system that would provide 

updates at a 10-minute rate. This would match the nominal update rate of the cameras themselves, albeit 

with a data collection and processing delay. As the number of sites and cameras was expanded, it became 

obvious that the current system was not going to meet the required update rate. One issue with the design 

was that it had one instance of the software running for all sites and cameras, and the software was 

performing the data collection and visibility estimation along with the composite generation. The original 
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software design on the development system envisioned one instance running per camera at the camera site. 

The design on the WeatherCams system gathered all the cameras into one location, then performed the 

processing for all the cameras before providing the results. This caused system latency of greater than 10 

minutes between the start of data collection and the production of results. 

In an attempt to increase the update rate of the current software design, debugging and timing tests 

were conducted, and the lag in the performance was isolated to two functions in the Octave platform: the 

sort and 2D cross-correlation functions. Software modifications were made to reduce the calls to the sort 

functions, which provided a significant increase in performance. However, the latency in the call to the 2D 

cross-correlation function meant that it could not be used in this version of the software, and, as a result, 

the call was disabled. The main usage of this call was to align the current image with the composite image 

and ‘adjust’ the image in cases where the camera is being moved or shaking due to strong winds, etc. This 

algorithm module was a necessary component in the development system due to the poor mounting 

structures used by data providers prior to working with the FAA WeatherCams imagery. After a review of 

the frequency at which the 2D cross-correlation function adjusted the images from WeatherCams, it was 

determined that this module could be disabled with very minimal impact. 

By May 2020, the software was cycling and providing a 10-minute update on nearly the full set of 

camera imagery obtained from WeatherCams. The final problem identified in the collection of camera 

imagery was a set of sites known as ‘remote’ sites. Within the WeatherCams system, remote sites are 

defined as sites where there is a limited source of electrical power. For a limited power source, the 

WeatherCams hardware developers had created a configuration where the cameras would not collect or 

transfer imagery overnight. This was intended to conserve power during the hours when the imagery would 

be completely black. As designed, the VEIA software required the overnight imagery in order to trigger the 

composite generation module, so these remote camera sites could not be supported. 

Throughout the summer of 2020, the VEIA software remained frozen and cycling uninterrupted on 

the WeatherCams system. The daily monitoring of the visibility estimates as compared to a visual review 

of the imagery itself also showed a consistent level of quality performance as anticipated. The few noted 

issues were either related to known limitations in the algorithm or extenuating circumstances. Once such 

example was due to construction on a nearby structure using heavy equipment: the equipment was parking 

directly in front of the camera, resulting in a blocked image. It was also observed that estimating visibility 

in the ASOS ranges between 6 SM and 9 SM was very challenging. The strength of the algorithm was 

estimating in the lower visibility ranges where there are a large set of edges. As a general observation, the 

algorithm over-reported visibilities in the 6 to 9 SM range when the true visibility was greater than 10 SM, 

which led to re-evaluation of the translation function, as noted in Section 3.2.3. 

The main failure in the system was the limited ability to provide rapid updates (faster than 10 minutes) 

during daylight hours due to the single process running all components of the algorithm in series. Increasing 

the number of cameras or sites during the demonstration would have delayed the processing beyond 10 

minutes. The other main finding was limitations in the system design when generating composites. The 

software was designed to create the composite images during the overnight hours when darkness prevents 

the algorithm from providing useful visibility estimates. In theory, this would be acceptable on a per-camera 

basis. However, the software was required to create the composites for all the cameras during the night. 

The data access and composite generation was very time consuming and would often take multiple hours. 
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During the height of summer in Alaska, the Sun does not set at many of the locations or the night hours are 

very limited. This inevitably created time periods when the Sun was illuminating the scene, but the VEIA 

algorithm was still creating composites for all the sites and did not produce visibility estimates during the 

desired time of day. 

In the fall of 2020, the real-time Octave software was re-designed to improve several of the 

deficiencies that were observed during the initial six months of operations on the WeatherCams system. 

The primary change was to convert VEIA to a collection of processes, or threads, that would process 

independently. This required developing a method for these processes to share intermediary results through 

a file sharing process. The algorithm was broken into three separate components: one for data collection, 

one for image processing. and one for composite generation. With the re-design, the algorithm was able to 

meet the expected 10-minute update rate and produce the composites throughout the day without delaying 

the distribution of results to the WeatherCams displays. The redesign also allowed composites to be 

generated for sites that do not provide imagery during the night period. The re-designed software was 

distributed to the WeatherCams system in October 2020 and monitoring of system and algorithm 

performance commenced. In November, it was determined that the CPU resources were being maxed out 

throughout the day, which was still limiting the capabilities of the system. WeatherCams was informed and 

agreed to double the CPU power. 

The last major modifications to the real-time Octave software occurred in July 2021. At that time, the 

trigger functionality to support the crowd-sourcing effort was added to the real-time system and two 

additional components to support the real-time operations and maintenance of the WeatherCams system 

were added. The first component is a daily health check of the cameras to provide rapid identification to 

the system operators of any issues with the cameras, such as blockage from ice or man-made objects (i.e., 

vehicles, heavy equipment, etc.). The second component identifies the ‘best’ image that may represent a 

clear day image for the location allowing the system operators to perform less manual review when they 

wish to update the annotated clear day image accompanying the last image on the website. This was 

accomplished by adding two additional threads to the VEIA Octave software. 

4.1 DAILY CAMERA HEALTH REPORT 

During the deployment of the VEIA software on to the WeatherCams system, the personnel 

responsible for operation and maintenance of the system noted that VEIA was performing several functions 

that had the potential to assist the management in identifying when cameras are out of service or 

experiencing some type of malfunction. When comparing the camera imagery and edge strengths to a 

composite representation of a clear day image, the instances that are considered failure modes of VEIA 

(i.e., estimating visibilities lower than truth) are often associated with when the camera has been moved or 

blocked. Example images of three different scenarios that have been observed in the WeatherCams imagery 

are shown in Figure 20. The first (ice blockage) is very common in the winter time and occurs when the 

heating elements in the camera housing are either malfunctioning or unable to keep up with the icing 

conditions. A similar example would be moisture condensation on the lens. The second example shows that 

the camera has moved due to a mounting failure. A similar example would be the camera being displaced 

due to high wind conditions. The last example is when human activity blocks or interferes with the camera 

equipment. This is much less common, but does occur at sites located near human activity. 
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To assist the WeatherCams system managers, VEIA performs a daily check of all the camera imagery 

to determine whether any of the cameras are experiencing the failures previously described. This is 

accomplished by using the composite image as a reference to compare each of the images against. First, in 

the absence of any reduced visibility conditions, the edge strength ratio used in the estimation of visibility 

should be close to or greater than one for the entire day. For weather impacted periods, it is expected that 

visibility will vary throughout the day. Although it is possible that the visibility will remain near zero for 

an entire day in extreme conditions, it should not persist over multiple days. Therefore, the edge strength 

ratio should not remain at or near zero for extended periods of time. To examine for these conditions, VEIA 

identifies the maximum edge strength ratio observed over a calendar day and saves that information. Next, 

VEIA uses a 2D cross-correlation to measure any offset between the composite image and the image with 

the highest edge strength ratio for the day. In most instances, it is expected that the cross-correlation will 

return an offset of zero, indicating that the composite image and the comparison image are perfectly aligned. 

In these cases, VEIA will flag this camera as having no issues. For instances where the 2D cross-correlation 

is identifying an offset between the two images, VEIA will threshold the offset and label the camera as 

having moved if this value is small. Small offsets may occur when the wind is vibrating the camera or the 

system managers have decided to reposition the camera view. If the offset is outside of acceptable bounds, 

then the algorithm will flag the camera as needing review by the system managers. VEIA will also provide 

information on the absence of new imagery, which may be an indication of communication or power failure. 

Finally, VEIA will flag instances where the composite image is unavailable indicating this camera or site 

may have been offline for an extended period of time. 
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Figure 20. Three examples of issues with camera imagery that the VEIA algorithm can detect and provide an alert 
to the WeatherCams system managers. The first is very common in the winter time and occurs when the heating 
elements in the camera housing are either malfunctioning or unable to keep up with the icing conditions. A similar 
example (not shown) would be moisture on the lens. The second is when the camera has moved due to a mounting 
failure. A similar example (not shown) would be the camera being displaced due to high wind conditions. The last, 
human interference, is less common, but a possibility at sites located near human activity. 

4.2 CLEAR DAY SELECTION 

Another challenge identified by the WeatherCams system managers with the camera maintenance 

procedures is the labor hours needed to identify and update the clear day images. These images accompany 

the current image on the WeatherCams website to provide a reference for pilots and other users of the 

system. The managers noted that when the cameras are repositioned due to requests for different viewing 

angles, or after routine maintenance, the process of identifying the best clear day image could benefit from 

the VEIA algorithms. An example of the clear day image accompanying the current image from Homer, 

AK, on the WeatherCams website is shown in Figure 21. Many of these clear day images also contain 

annotations to identify the distance to various markers in the image. 

 

 



 

34 

Figure 21. WeatherCams web display showing the latest camera imagery alongside an annotated clear day 
example. Users are able to use the clear day image as a reference along with the annotations to estimate the 
visibility from the current images. 

The VEIA software assists the system managers by identifying two images for each camera during 

the daily camera health check. These two images are the image with the strongest edge strength ratio and 

the image most closely matching the composite image. These two images are stored in a separate directory 

to allow the system managers to quickly look at the ‘best guess’ images from the last few days. 
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5. SOFTWARE DESCRIPTION 

VEIA consists of five processes, or threads, that work in parallel to produce the visibility estimates. 

Logic in each thread prevents more than one thread from processing a particular camera or site at the same 

time. Figure 22 depicts these processes as they are called from a shell script within the docker container 

used by WeatherCams for configuration and deployment on the Google Cloud. The first process 

(startSystem) sets up the system at startup and then does the daily check of the system health and cleans up 

old files. The second process (startRetrieve) gathers the camera imagery from the WeatherCams API and 

sends the new images to the third process (startProcess) which processes all the new imagery. The fourth 

process (startOutput) gathers all the camera-based visibility estimates and combines them into site-based 

estimates (combining all cameras at one site) and creates an output file for the graphical user interface 

(GUI) to read. The final process (startComposite) creates a composite of the last several days of images that 

is used by the image processing thread as a representation of a clear day.  

The processes are started with the following calls from a shell script within a docker file. 

• startSystem 

• startRetrieve 

• startProcess 

• startOutput 

• startComposite 

All processes lead to an infinite loop that performs the desired actions on either a set strobe rate or at 

a specific time each day. Currently, the goal is to provide an output file for the GUI every 10 minutes. 

However, due to the required processing power, some of the cycles occur less frequently. All processes also 

open a log file for that process and produce statements in the log file for monitoring and/or debugging 

issues. For all processes, a new log file is opened each day to enable smaller log files for review and a bi-

monthly deletion of the older log files. 
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Figure 22. Top level flow chart of the VEIA processes. VEIA consists of five processes that execute simultaneously 
and are started from a shell script (Run-all.sh) within the docker file. All processes lead to an infinite loop that 
performs the desired actions on either a set strobe rate or at a specific time of day. 

5.1 DESCRIPTION OF PROCESSES 

The first process, setupSystem, begins by making sure all the directories that are required for 

intermediary files to be saved are available, and, if not, it creates the directories. The option is also available 

to flag a fresh start that cleans out all these directories. Otherwise, the old files are available for the system 

to continue to use after a system restart. This allows for a seamless restart without interruption and use of 

the previously generated composite images. Then the process begins an infinite loop. The loop is set to 

execute processing each day at 12 UTC. The loop often takes about 10–12 hours to complete. The infinite 

loop executes an inner loop through all the cameras calling the systemStatus function for each camera. 

Figure 23 depicts the flow chart for the setupSystem process. 

The systemStatus function evaluates all the images for a single camera from the previous day relative 

to the established composite image for that camera. The function will determine the clearest image from 

the day and compare the images to determine whether the camera has moved or is experiencing some type 

of blockage. A text string is generated with statistics about the camera and a flag is created to inform the 

system managers of any potential issues with the imagery. This text string is returned to the setupSystem 

process. The function will also store the clearest image to the cam_clear directory. Figure 24 depicts the 

flow chart for the systemStatus function. 
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Figure 23. Flow chart for the setupSystem process that begins by setting up the system and then executing an infinite 
loop that performs a daily check of the camera and provides potential clear day images. 

Figure 24. Flow chart for the systemStatus function called by the setupSystem process. This function performs the 
daily check on the status of an individual camera and provides both a status message for the daily log and 
determines the clearest images from the day. 
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The second process, retrieveCam, gathers the camera imagery from the WeatherCams API. The 

process cycles once per minute and saves the index to all the available cameras into a binary file that is 

shared with the image processing thread. The process first asks the API for the newest camera image and 

compares that file with the previous file that was gathered from the API. If it is the same file, the process 

continues to the next camera. If the files are different, then the process goes to WeatherCams and gathers 

the image, stores it locally, and adds it to the list of new files in the newFileStatus.mat file. The process 

uses several intermediary files in the data directory. These files are stored in the cam_url, cam_images, and 

cam_file directories where the uniform resource locator (URL) of the image is stored in a text file, and then 

the local name of the file is saved in the cam_file directory. The images themselves are stored in the 

cam_images directory. A lock file is used to prevent other processes from working on the camera if the 

camera image is being retrieved. The process also checks for the image time to be properly read. There are 

also several components of the process to make sure the web retrieval (wget) process is working properly 

by checking for error messages, allowing wget to fail and catching the failed process, as well as allowing a 

read timeout and a specified number of attempts be made before giving up on the camera. Figure 25 depicts 

the flow chart for the retrieveCam process. 

Figure 25. Flow chart for the retrieveCam process that collects the imagery from the WeatherCams API. The 
process begins reading in the camera list and setting up the appropriate files and directories. The process then 
executes an infinite loop that loops through the complete list of cameras, checking for a new image, storing the 
image, and informing downstream processes of the available imagery. 

The third process, processCam, is where the bulk of the VEIA processing occurs. processCam begins 

with an initial setup of log files and reading of the configuration files. It then begins an infinite loop on a 

60-minute strobe. The process gathers the names of all new camera files from the retrieve process and calls 

the computeCam function for each new camera image. A lock file is used to prevent other processes from 

accessing or saving new data related to a camera during the camera processing. Figure 26 depicts the flow 

chart for processCam. 
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Figure 26. Flow chart for processCam where the image processing occurs. The process begins by reading in the 
camera list. The process then executes an infinite loop that loops through the complete list of new camera images, 
sending the image to the computeCam function. 

The computeCam function performs the visibility estimation for each camera image. This is 

accomplished using a composite image created in the startComposite process. The computeCam function 

uses a 'savFile' for each camera to save binary variables in each process loop and share camera variables 

with the computeComp process. Sun angle processing limits and image filtering parameters are set up inside 

this function. The computeCam function loads information on the image from the urlName file and the 

actual image from the cam_images directory and then checks that the information meets specified criteria. 

Once image processing begins, there are checks to verify that the image has enough sunlight and whether 

the image should be saved for composite generation. The process also cleans out old images that are no 

longer needed for composite generation. Once all this data storage is sorted out, the visibility estimation is 

completed by performing the edge detection and edge strength computation for comparison with the 

composite image. The final step is storing the output of the image processing in a text file in the cam_results 

directory. Figure 27 depicts the flow chart for the computeCam function. 
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Figure 27. Flow chart for the computeCam function, where the bulk of the image processing occurs. The function 
begins by loading in the saved camera variables and the composite image. It also computes information on the solar 
angle and performs the edge detection. The function also maintains the history of images for the composite 
generation and performs the crucial function of estimating the visibility from the imagery. 

The fourth process, siteOutput, creates the prevailing visibility for a site by combining multiple 

cameras into one estimate and generating an output file for the GUI. The output file contains all the sites 

on a 10-minute strobe. The siteOutput function begins an infinite loop after reading in the configuration 

parameters, making log files, etc. Then, during each loop iteration, it loads the site save file and then gets 

all the per-camera visibility estimates. Next, it applies the weighting scheme to each of the camera visibility 

estimates that is a function of the Sun angle along with the observed edge strength ratios. As each of the 

sites are processed, the results are added to the output file that will be shared with the GUI and any other 

downstream processes. Figure 28 depicts the flow chart for siteOutput process. 
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Figure 28. Flow chart for the siteOutput process, where processing for a site’s imagery occurs. The process begins 
by reading in the site and camera lists. The process then executes an infinite loop that loops through the complete 
list of sites, then loops through each of the cameras for the site and combines all the camera imagery results into 
one site estimate. The process also creates the trigger and maintains the site variables between each process loop. 

The final process, createComp, creates composites for each of the cameras that reflect the closest 

resemblance to a clear day image without the transitory objects that can pollute an image like cars, people, 

planes, clouds, etc. createComp begins with an initial setup of log files and reading of the configuration 

files. Then it begins an infinite loop that is triggered each day at 12 UTC. The process then calls the 

computeComp function for each camera. A lock file is used to prevent other processes from accessing or 

saving new data related to this camera during the camera processing. Figure 29 depicts the flow chart for 

processCam. 

The computeComp function performs the composite generation for each camera. This is 

accomplished by loading a historical collection of images over the previous several days and merging the 

images into one final composite. The function validates the availability of historical images and saves the 

variables associated with the composite image for the image processing functions. Figure 30 depicts the 

flow chart for the computeComp function. 
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Figure 29. Flow chart for the createComp process, where the composite generation occurs. The process begins by 
reading in the site and camera lists. The process then executes an infinite loop that loops through the complete list 
of cameras and executes the computeComp function. 

Figure 30. Flow chart for the computeComp function called by the createComp process. This function performs the 
composite generation of an individual camera by loading a historical collection of images over the previous several 
days and merging the images into one final composite. The function checks to be sure enough historical images are 
available and saves the variables associated with the composite image for the image processing functions. 
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5.2 CONFIGURATION FILES 

VEIA uses a set of configuration files for information on the location of the cameras, the direction 

the cameras are pointed, the maximum viewable distance in the image, and information about whether 

VEIA should process the camera image and with what method. These files exist in the config directory and 

are as follows. 

AKCV_Cameras.txt contains information on each of the sites and cameras. 

 SiteID ID ICAO Name Lat Lon Elev CamID Direction Bearing 

 

SiteID   Numeric site id from WEATHERCAMS id list 

ID   Three letter site id from WEATHERCAMS id list 

Name   Name of the city, town, island, etc., where camera is installed 

Lat   Latitude of camera 

Lon   Longitude of camera 

Elev   MSL elevation of the camera in feet 

CamID   Numeric camera id from WEATHERCAMS id list  

Direction  Direction camera is pointed (i.e., northeast) 

Bearing   Numeric direction camera is pointed (true north) 

 

AKCV_GetList.txt contains information on which cameras to process. 

SiteID CamID EdgeMethod MaxCamRange CameraFlag 

 

SiteID   Numeric site id from WEATHERCAMS id list 

 

CamID   Numeric camera id from WEATHERCAMS id list  

EdgeMethod  Number of edges to use in each column beyond the horizon 

MaxCamRange Maximum visibility annotation in imagery. Clear day images are 

available on WEATHERCAMS and this value will represent the 

max annotation. MaxCamRange is currently not used in the 

algorithm. NOTE: The site estimate is limited to 10S M. 

CameraFlag Flag indicating whether to process camera imagery or not 

(Negative values indicate camera imagery should not be 

processed, positive values indicate camera imagery should be 

processed) 

 

5.3 OUTPUT FILES 

VEIA produces a number of output files for the end users. These files are either ingested by the user 

interface or monitored by the system managers and any downstream process with a need for the VEIA end 

products. The output file naming convention and formatting are as follows. 
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live/output/cam_vis_estimate_YYYYMMDDTHHmmss is the VEIA results file created every 10 

minutes with the visibility estimate for all available cameras. 

Where: 

YYYYMMDD   Year, month, and day 

HHmmss  Hour, minute, and second 

 

 Header string: YYYYMMDDTHHmmss Cnt 

     YYYMMDD  Month, day, and year 

HHmmss Hour, minute, and second 

Cnt  Number of lines to follow, one per site 

 

Data string: SiteID,Vis,Conf,Num,Trigger 

SiteID  Numeric site id from WEATHERCAMS id list 

Vis  Visibility estimate in SM in METAR bins 

Conf   Confidence value between 0 and 100 

Num  Number of new cameras in this estimate 

Trigger  Flag providing a trigger to crowd sourcing (0 or 1) 

 

live/cam_clear/SID_CID_YYYYMMDD_MaxRatio.jpg is a JPEG image representing the highest 

edge strength ratio for this day. 

Where: 

SID   Numeric site id from WEATHERCAMS id list 

CID   Numeric camera id from WEATHERCAMS id list 

YYYYMMDD   Year, month, and day 

 

 

live/cam_clear/SID_CID_YYYYMMDD_NormRatio.jpg is a JPEG image with the edge strength 

ratio closest to the composite image for this day. 

Where: 

SID   Numeric site id from WEATHERCAMS id list 

CID   Numeric camera id from WEATHERCAMS id list 

YYYYMMDD   Year, month, and day 

 

live/status/systemStatus_YYYYMMDD is a daily status file with information on the health of each 

camera. 

Where: 

YYYYMMDD  Year, month and day 

 

Data string: SiteID CamID Cnt LC MC HC MR MRDiff MROffset Status 

SiteID  Numeric site id from WEATHERCAMS id list 

CamID  Numeric cam id from WEATHERCAMS id list 

Cnt  Number of images evaluated for the day 

LC  Number of images with a ratio <= 0.4 

MC  Number of images with a ratio > 0.4 & <= 1.0 

HC  Number of images with a ratio > 1.0 
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   MR  Maximum observed ratio for this day 

   MRDiff  Grayscale difference between MR image and composite 

   MROffset Pixel offset between MR image and composite 

   Status  Status of image 

NO_IMAGES 

FAILED_TO_REVIEW 

CAMERA_UNAVAIL 

CAMERA_OK 

CAMERA_MOVE 

CAMERA_REVIEW 

 

5.4 INTERMEDIARY FILES 

VEIA relies on a number of intermediary files to share data between the five different processes that 

perform the algorithm functions. These files are saved in local directories that are named based on the type 

of files contained within them. Some of the files are empty and serve as lock files, some contain a single 

line with the name of a file or a URL, some contain binary data that are formatted specifically for the Octave 

application, and some are formatted text containing human readable text strings. In each directory, there is 

typically one file per camera containing the images or variables or one file per site. 

live/cam_lock/camera_lock_CID is an empty file present when processing is occurring.   

Where: 

CID   Numeric camera id from WEATHERCAMS id list 

 

live/cam_url/camera_url_CID contains a text string of the URL location for an image. 

Where: 

CID   Numeric camera id from WEATHERCAMS id list 

 

live/cam_file/camera_file_CID contains a filename where the JPEG image is stored. 

Where: 

CID   Numeric camera id from WEATHERCAMS id list 

 

live/cam_var/camera_var_CID is a binary Octave file containing camera variables. 

Where: 

CID   Numeric camera id from WEATHERCAMS id list 

 

live/site_var/site_var_CID is a binary Octave file containing site variables. 

Where: 

SID   Numeric site id from WEATHERCAMS id list 

 

live/cam_images/YYYYMMDDHHmm.SID.CID.jpg is the camera image file. 

Where: 
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YYYYMMDD  Year, month and day 

SID   Numeric site id from WEATHERCAMS id list 

CID   Numeric camera id from WEATHERCAMS id list 

 

live/cam_results/cam_results_CID is a text string of the camera-based visibility estimate. 

Where: 

CID   Numeric camera id from WEATHERCAMS id list 

 

Data string: Date SiteID CamID MV Vis SZ SA ES NES Ratio IDiff CE UrlName 

SiteID  Numeric site id from WEATHERCAMS id list 

CamID  Numeric camera id from WEATHERCAMS id list 

MV  Maximum allowed visibility (SM) output for camera 

Vis  Estimated visibility in statute miles 

SZ  Solar angle of Sun in zenith (0 above, 180 below) 

SA  Solar angle of Sun relative to lens (0 in front, 180 behind) 

ES  Mean edge strength of selected edges 

NES  Mean edge strength of selected edges from composite 

Ratio  Edge strength ratio (translated to visibility in algorithm) 

IDiff  Grayscale difference of image and composite 

CE  Flag indicating if a composite is available 

UrlName Text string of URL from WeatherCams 
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6. FUTURE RESEARCH ACTIVITIES  

The FAA Weather Cameras platform is an excellent resource for the aviation community to view 

real-time weather conditions and continue the development of the VEIA concepts as well as future potential 

weather products. The current concept of providing automated observations from the camera image has 

focused solely on visibility and using a single translation function that does not account for variations in 

the scenes that may be captured by the imagery. This section will briefly describe potential areas for 

enhancing VEIA through algorithm modifications to improve performance and expand the weather features 

that are important to the aviation community. 

6.1 SCENE CLUSTERING AND UPDATED TRANSLATION FUNCTION 

Throughout the development of VEIA, several performance issues have been observed that are 

associated with the specific characteristics of the scene that is captured by the camera. One such 

characteristic, previously discussed in Section 3.2.2, was the presence of large antenna or tower structure 

that is close to the camera. This issue was largely mitigated through the development of an edge selection 

process that reduces the number of edges selected that are associated with the tower or structure. Other 

scene characteristics of concern are the lack of edges due to open water sources over a large range of the 

visibility spectrum and scenes with a very limited view range. 

To illustrate how siting conditions can affect VEIA performance, new camera installations in 

Colorado were studied and compared to the performance of VEIA across Alaska. Beginning in 2020, a set 

of cameras was installed in the mountains of Colorado by the FAA WeatherCams office. A total of 12 sites 

were available in Colorado beginning in mid-July 2020, and MIT Lincoln Laboratory began archiving data 

from these sites to allow a review of any potential issues that may be identified in this environment. By the 

end of August 2021, enough data had been collected, including a sufficient number of low visibility events, 

to facilitate further analysis. 

Overall, the performance of VEIA across the Colorado sites was very similar to the Alaska network. 

Figure 31 plots the median VEIA visibility for each Meteorological Terminal Aviation Routine Weather 

Report (METAR) visibility bin for all the Colorado sites. There are 18 visibility bins in METAR, beginning 

at 0 SM and ranging up to 10+ SM. In the figure, the median values are plotted with circles and a median 

of all sites is also calculated and shown with a black diamond. The median of all sites compares very well 

with the METAR visibility as shown in the black line. However, there is significant spread across all the 

sites. This suggested that although the median across a large set of sites produces a very good comparison, 

individual sites may require a closer look to determine a cause as well as a potential solution to these 

differences. 

 

 

 

 



 

48 

Figure 31. Comparison of the METAR visibility measurements and the VEIA visibility estimates for all Colorado 
sites. The median of all the VEIA visibility estimates at each METAR visibility bin is shown for each site (colored 
dots) and an overall median (black triangle) is computed using all the sites. The median of all sites compares very 
well with the METAR truth. However, individual sites show significant variability. 

A similar analysis can be conducted at the camera level. This analysis has been the historical method 

used both to score and calibrate the translation function used within the VEIA algorithm. Figure 32 is a plot 

of all the cameras (colored dots) in the Colorado domain as compared to the co-located METAR sensors. 

At the camera level, the median computed across all cameras, as shown in the black diamond, compares 

very well with the METAR truth at visibility values less than 3 SM. However, in the range from 3 SM to 

7 SM, the camera-based median is showing an underestimation of the visibility. Although this may look 

concerning, it may also be suggesting that the weighting function applied in VEIA that is dependent upon 

the Sun angle and agreement between cameras is doing a very good job of generating the VEIA site 

estimates. 
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Figure 32. Comparison of the METAR visibility measurements and the camera-based visibility estimates for all 
Colorado cameras. The median of all the camera-based visibility estimates at each METAR visibility bin is shown 
for each camera (colored dots identified by cameraId) and an overall median (black triangle) is computed using all 
the cameras. The median of all cameras compares very well with the METAR reading when the METAR is below 
3 SM, whereas the estimate is low in the range of 3 SM to 7 SM. The results show an excellent comparison at 10 SM 
and above. However, individual cameras show significant variability. 

Further analysis on the large variability across cameras leads to a comparison of the site estimate with 

the individual camera estimates for the sites and/or cameras with the highest error. In Figures 33 through 35, 

the median VEIA site estimate is shown in the black diamond and compared to the four median camera 

estimates for three sites with the highest error. Each of the four cameras is plotted with a colored circle and 

the view angle of the camera is noted in the legend. A perfect match with the METAR is shown in the black 

line. Accompanying the plot are the ‘clear day’ images for each of the four cameras.  

Figure 33 shows a site with relatively good performance, at least in the range between 0 SM and 

2 SM. At ranges greater than 2 SM, the visibility is underestimated, but there is a general agreement 

between the cameras. A review of the clear day images for Kremmling, CO, shows four images with similar 

camera views. All four cameras have clear views of the horizon. However, for this site, the horizon is 

generally at a distance of 1 SM. Also, the foreground of these images is lacking in available markers, which 

may have an impact on the VEIA performance. It should also be noted that this camera site is close to the 
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surface, which may also impact the viewing angle of the images when looking across landscapes. The 

results of these images and the observed performance and associated errors at ranges greater than 1 SM 

may suggest this site could benefit from a modified translation function. 

Figure 33. Comparison of the METAR visibility measurements and the VEIA visibility estimates from Kremmling, 
CO, for both the site estimate and each of the individual camera estimates. The median of the site and all cameras 
compares very well below 2 SM and is underestimated between 2 SM and 10 SM. Also shown is the ‘clear day’ 
reference image for each of the cameras. 

In contrast to the performance at Kremmling, the performance of VEIA in Figure 34 is notably much 

poorer. For this site, Walton Peak, there is a significant overestimation of the visibility from VEIA. Two of 

the cameras, the west-looking camera and the northeast-looking camera, are contributing to this 

overestimation in all visibility ranges, whereas the south- and southeast-looking cameras are contributing 

to this in visibility ranges greater than 3 SM. A review of the clear day images for the west and northwest 

cameras clearly shows that the horizon is blocked by a nearby tree line where the tops of the trees extend 

above the distant horizon in the image. In these instances, the camera-based estimation algorithm is 

selecting the tops of the trees as the horizon and, as long as the trees are detectable, is assuming a high 

visibility. Of course, these trees are visible in the imagery through all visibility ranges down to less than 

0.25 SM. 

Finally, in Figure 35, for La Veta Pass, the problem of all four cameras overestimating the visibility 

due to nearby tree line and other objects is obvious. At this site, the north camera has been turned off, as it 

was identified as a camera image with high tension wires and nearby towers that would have negative 

effects on VEIA. Despite that, the other three cameras are also impacted by the nearby tree line. In the clear 
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day images, the trees have lost their foliage due to a forest fire; however, the impact is still present as the 

trees have recovered.  

Figure 34. Comparison of the METAR visibility measurements and the VEIA visibility estimates from Walton Peak, 
CO, for both the site estimate and each of the individual camera estimates. The median of the site and all cameras is 
overestimated for all visibility ranges. Also shown is the ‘clear day’ reference image for each of the cameras. 
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Figure 35. Comparison of the METAR visibility measurements and the VEIA visibility estimates from La Veta Pass, 
CO, for both the site estimate and each of the individual camera estimates. The median of the site and the cameras is 
overestimated for all visibility ranges. Also shown is the ‘clear day’ reference image for each of the cameras. 

To improve the performance of VEIA, future research should focus on clustering scenes with similar 

characteristics together and then applying a modified translation function to the cluster. For instance, the 

cameras in Walton Peak and La Veta Pass that have a close proximity tree line could be clustered together 

and then a translation function that recognized the rapid increase in visibility as the edge strength ratio 

increases would be applied. Another approach could be to develop a different edge selection process for a 

cluster without a distance horizon due to a close proximity tree line. In this instance, perhaps only using the 

horizon (eliminating the next strongest edge) would provide the best selection of edges for a modified 

translation function. If this concept proved successful, then additional research could focus on developing 

a machine learning algorithm to perform the clustering. This would be critical as the network of cameras 

expands and it becomes too time consuming to manually associate a new image with a pre-defined cluster. 

6.2 CLOUD ESTIMATION THROUGH IMAGE ANALYTICS 

The image processing techniques applied to date have focused on the estimation of visibility with an 

emphasis on accurately detecting low visibility events to allow awareness of trends towards lower visibility 

during the critical transition time from VMC to IMC. The camera imagery also contains valuable 

information on the cloud characteristics that could be extracted. Important cloud features are the cloud 

coverage, cloud height, and even the cloud type. The image processing in VEIA lends itself well to 

performing cloud estimation in conjunction with visibility estimation. Additional research could lead to a 

cloud estimation through image analytics (CEIA) algorithm. 
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One of the techniques applied within VEIA is a horizon detection process used in defining markers 

in the image. Using this technique, a future CEIA algorithm could easily identify the sky and begin 

performing feature extraction of cloud features. Edge extraction could potentially determine the texture in 

the sky. Another potential feature that could be extracted from the sky is its natural hues. Hues that are in a 

range that is common to blue sky could be used to measure the overall ‘blueness’ of the sky potentially 

being indicative of a clear sky. Various machine-learning techniques could also be investigated using a 

high-quality truth set and the horizon detection to provide a training and test set for the development of a 

cloud cover estimation. 

6.3 SELECTIVE WEIGHTING FOR OBSTRUCTED IMAGES 

One final, potentially near-term research effort could be selectively changing the weighting function 

between the four images based on the determination of image obstruction. The functionality built into VEIA 

to monitor the cameras for the system managers is identifying cameras that are potentially blocked with ice 

or moisture on the lens as well as human interference. Modifications might be possible to automatically 

eliminate cameras from the weighting process during these times of questionable camera performance. 
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7. SUMMARY 

This document provides a detailed documentation and history of development for the VEIA algorithm 

developed by MIT Lincoln Laboratory, funded by the FAA AWRP, and implemented on the FAA Aviation 

WeatherCams system. 

VEIA provides an inexpensive and robust way to extract meteorological visibility from cameras—

thus transforming weather cameras into weather sensors. With the proliferation of web-based camera 

imagery for monitoring conditions near airports and other remote locations, there is an opportunity to 

significantly expand the density of visibility observations, especially in areas where low visibility can have 

dire consequences.  

The VEIA algorithm uses the presence and strength of edges in an image to provide an estimation of 

the meteorological visibility within the scene. The algorithm compares the overall edge strength of the 

current image to a clear day representation to generate an edge strength ratio. The ratio is then converted to 

visibility in statute miles using a translation function derived from a historical relationship between edge 

strength and visibility. VEIA uses a multiple-day composite of clear day images for the representation of a 

clear day to ensure that only permanent edges are considered (i.e., the horizon, roadways, buildings, etc.).  

The algorithm also combines the estimates from multiple camera images into one estimate for a site 

or location using a weighted average. The weighting applied for each camera is based on the agreement 

between camera estimates and the position of the Sun relative to each camera’s view. The final output for 

a site is a prevailing visibility estimate in statute miles that can be easily compared to existing ASOS and/or 

human-observed visibility. 

MIT Lincoln Laboratory began working with the FAA in 2016 and implemented VEIA on the FAA 

Weather Cameras cloud during the spring of 2020. To implement the developmental software on the 

WeatherCams system, modifications were required in order to operate on the WeatherCams real-time 

platform. This included converting VEIA to the appropriate software environment that is supported by 

WeatherCams. GNU Octave was chosen as an environment that is compatible with MATLAB, the original 

development environment. 



 
 
 
 
 
 
 
 
 
 
 

This page intentionally left blank. 
 



 

57 

GLOSSARY 

AAWU Alaskan Aviation Weather Unit  

API Application Program Interface  

ASOS Automated Surface Observation System  

C&V Ceiling and Visibility  

CEIA Cloud Estimation through Image Analytics  

CWSU Center Weather Service Unit  

DSP Data Security Plan  

FAA Federal Aviation Administration  

GA General Aviation  

GSL Global Systems Laboratory  

GUI Graphical User Interface  

IMC Instrument Meteorological Conditions  

LLSC Lincoln Laboratory Supercomputing Center  

METAR Meteorological Terminal Aviation Routine Weather Report  

MIT LL Massachusetts Institute of Technology/Lincoln Laboratory  

NCAR National Center of Atmospheric Research  

NOAA National Oceanic and Atmospheric Administration  

ROC Receiver Operating Characteristic  

URL Uniform Resource Locator  

VEIA Visibility Estimation through Image Analytics  

VMC Visual Meteorological Conditions  

WeatherCams FAA Weather Cameras Program Office  

WFO Weather Forecast Offices  

WTIC Weather Technology In the Cockpit  
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