Summary
An adaptive procedure for selecting radar pulse repetition frequency (PRF) has been developed as the primary means of minimizing the occurence of range aliased echoes within operationaly significant coverage aread (e.g., airport runways) of the Terminal Doppler Weather Radar (TDWR) system. This procedure underwent extensive testing at the S-Band TDWR testbed while located in Denver, CO, where it was judged to be highly successful at preserving the integrity of data collected within the vicinity of the Stapleton International Airport runways. The actual TDWR system will operate at a C-Band frequency, and an increase in potential range obscuration is expected over that experience by the S-band testbed. This report discusses the anticipated performance of the PRF selection procedure in the C-Band environment by extrapolating results obtained using S-Band testbed data. The results conclusively demonstrate the efficacy of adaptive PRF selection as a method by which to reduce potential range obscuration. A worst-case scenario, for example, indicates that over 20% of the TDWR radar collected about the airport runways has the potential for being contaminated with range aliased echoes at any given time during TDWR surveillance operations. With adaptive PRF selection, however, the expected obscuration is reduced to only 3%. (The corresponding figures for the S-Band testbed are shown to be 14& rather than 20% and 1% rather than 3%). While adaptive PRF selection can substantially reduce range obscuration, it cannot totally eliminate the problem. An enhancement to the PRF selection strategy, which further reduces the potential range obscuration, is introduced and recommended. Additionally, the complementary use of pulse-to-pulse phase modulation to exact valid velocity measurements in the presence of range contamination is discussed and preliminary experimental results presented.