Publications

Refine Results

(Filters Applied) Clear All

Modeling probability of alert of Bluetooth low energy-based automatic exposure notifications

Published in:
MIT Lincoln Laboratory Report ACTA-4

Summary

BLEMUR, or Bluetooth Low Energy Model of User Risk, is a model of the probability of alert at a given duration and distance of an index case for a specific configuration of settings for an Exposure Notification (EN) system.The Google-Apple EN framework operates in the duration and Bluetooth Low Energy (BLE) signal attenuation domains. However, many public health definitions of "exposure" to a disease are based upon the distance between an index case and another person. To bridge the conceptual gap for public health authorities (PHAs) from the familiar distance-and-duration space to the signal attenuation-and-duration space, BLEMUR uses BLE signal attenuation as a proxy for distance between people, albeit an imprecise one. This paper will discuss the EN settings that can be manipulated, the BLE data collected, how data support a model of the relationship between measured attenuation and distance between phones, and how BLEMUR calculates the probability of alert for a distance and duration based on the settings and data.
READ LESS

Summary

BLEMUR, or Bluetooth Low Energy Model of User Risk, is a model of the probability of alert at a given duration and distance of an index case for a specific configuration of settings for an Exposure Notification (EN) system.The Google-Apple EN framework operates in the duration and Bluetooth Low Energy...

READ MORE

Nearfield anechoic chamber and farfield on-site antenna calibration pattern comparison of an S-band planar phased array radar

Published in:
IEEE Annual Conf. on Wireless and Microwave Technology, WAMICON, 27-28 April 2022.

Summary

The Advanced Technology Demonstrator (ATD) is an active, S-band, dual-polarization phased array radar developed for weather sensing. The ATD is an active electronically scanned array (AESA) with a 4-m aperture comprised of 4,864 individual transmit/receive (T/R) modules. The antenna was calibrated at the element, subarray, and array levels. Calibration, validation, and verification testing was completed in two main stages, first in an anechoic chamber and second after it was installed on site in its permanent location. This paper describes the procedure used to collect antenna patterns at each stage and compares three key performance metrics: beamwidth, mean-squared sidelobe level (MSSL), and integrated sidelobe level (ISL).
READ LESS

Summary

The Advanced Technology Demonstrator (ATD) is an active, S-band, dual-polarization phased array radar developed for weather sensing. The ATD is an active electronically scanned array (AESA) with a 4-m aperture comprised of 4,864 individual transmit/receive (T/R) modules. The antenna was calibrated at the element, subarray, and array levels. Calibration, validation...

READ MORE

COVID-19 exposure notification in simulated real-world environments

Summary

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities, but the privacy-preserving aspects of the protocol make it difficult to assess the performance of the apps in real-world populations. To address this gap, we exercised the CovidWatch app on both Android and iOS phones in a variety of scripted realworld scenarios, relevant to the lives of university students and employees. We collected exposure data from the app and from the lower-level Android service, and compared it to the phones' actual distances and durations of exposure, to assess the sensitivity and specificity of the GAEN service configuration as of February 2021. Based on the app's reported ExposureWindows and alerting thresholds for Low and High alerts, our assessment is that the chosen configuration is highly sensitive under a range of realistic scenarios and conditions. With this configuration, the app is likely to capture many long-duration encounters, even at distances greater than six feet, which may be desirable under conditions with increased risk of airborne transmission.
READ LESS

Summary

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities, but the privacy-preserving aspects of the protocol make it difficult to assess the performance of the apps in real-world populations. To address this...

READ MORE

The Simulation of Automated Exposure Notification (SimAEN) Model

Summary

Automated Exposure Notication (AEN) was implemented in 2020 to supplement traditional contact tracing for COVID-19 by estimating "too close for too long" proximities of people using the service. AEN uses Bluetooth messages to privately label and recall proximity events, so that persons who were likely exposed to SARS-CoV-2 can take the appropriate steps recommended by their health care authority. This paper describes an agent-based model that estimates the effects of AEN deployment on COVID-19 caseloads and public health workloads in the context of other critical public health measures available during the COVID-19 pandemic. We selected simulation variables pertinent to AEN deployment options, varied them in accord with the system dynamics available in 2020-2021, and calculated the outcomes of key metrics across repeated runs of the stochastic multi-week simulation. SimAEN's parameters were set to ranges of observed values in consultation with public health professionals and the rapidly accumulating literature on COVID-19 transmission; the model was validated against available population-level disease metrics. Estimates from SimAEN can help public health officials determine what AEN deployment decisions (e.g., configuration, workflow integration, and targeted adoption levels) can be most effective in their jurisdiction, in combination with other COVID-19 interventions (e.g., mask use, vaccination, quarantine and isolation periods).
READ LESS

Summary

Automated Exposure Notication (AEN) was implemented in 2020 to supplement traditional contact tracing for COVID-19 by estimating "too close for too long" proximities of people using the service. AEN uses Bluetooth messages to privately label and recall proximity events, so that persons who were likely exposed to SARS-CoV-2 can take...

READ MORE

Bluetooth Low Energy (BLE) Data Collection for COVID-19 Exposure Notification

Summary

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities; however, the privacy-preserving aspects of the protocol make it difficult to assess the performance of the Bluetooth proximity detector in real-world populations. The GAEN service configuration of weights and thresholds enables hundreds of thousands of potential configurations, and it is not well known how the detector performance of candidate GAEN configurations maps to the actual "too close for too long" standard used by public health contact tracing staff. To address this gap, we exercised a GAEN app on Android phones at a range of distances, orientations, and placement configurations (e.g., shirt pocket, bag, in hand), using RF-analogous robotic substitutes for human participants. We recorded exposure data from the app and from the lower-level Android service, along with the phones' actual distances and durations of exposure.
READ LESS

Summary

Privacy-preserving contact tracing mobile applications, such as those that use the Google-Apple Exposure Notification (GAEN) service, have the potential to limit the spread of COVID-19 in communities; however, the privacy-preserving aspects of the protocol make it difficult to assess the performance of the Bluetooth proximity detector in real-world populations. The...

READ MORE

Probabilistic coordination of heterogeneous teams from capability temporal logic specifications

Summary

This letter explores coordination of heterogeneous teams of agents from high-level specifications. We employ Capability Temporal Logic (CaTL) to express rich, temporal-spatial tasks that require cooperation between many agents with unique capabilities. CaTL specifies combinations of tasks, each with desired locations, duration, and set of capabilities, freeing the user from considering specific agent trajectories and their impact on multi-agent cooperation. CaTL also provides a quantitative robustness metric of satisfaction based on availability of required capabilities for each task. The novelty of this letter focuses on satisfaction of CaTL formulas under probabilistic conditions. Specifically, we consider uncertainties in robot motion (e.g., agents may fail to transition between regions with some probability) and local probabilistic workspace properties (e.g., if there are not enough agents of a required capability to complete a collaborative task). The proposed approach automatically formulates amixed-integer linear program given agents, their dynamics and capabilities, an abstraction of the workspace, and a CaTL formula. In addition to satisfying the given CaTL formula, the optimization considers the following secondary goals (in decreasing order of priority): 1) minimize the risk of transition failure due to uncertainties; 2) maximize probabilities of regional collaborative satisfaction (if there is an excess of agents); 3) maximize the availability robustness of CaTL for potential agent attrition; 4) minimize the total agent travel time. We evaluate the performance of the proposed framework and demonstrate its scalability via numerical simulations.
READ LESS

Summary

This letter explores coordination of heterogeneous teams of agents from high-level specifications. We employ Capability Temporal Logic (CaTL) to express rich, temporal-spatial tasks that require cooperation between many agents with unique capabilities. CaTL specifies combinations of tasks, each with desired locations, duration, and set of capabilities, freeing the user from...

READ MORE

Fast decomposition of temporal logic specifications for heterogeneous teams

Published in:
IEEE Robot. Autom. Lett., Vol. 7, No. 2, April 2022, pp. 2297-2304.

Summary

We focus on decomposing large multi-agent path planning problems with global temporal logic goals (common to all agents) into smaller sub-problems that can be solved and executed independently. Crucially, the sub-problems' solutions must jointly satisfy the common global mission specification. The agents' missions are given as Capability Temporal Logic (CaTL) formulas, a fragment of Signal Temporal Logic (STL) that can express properties over tasks involving multiple agent capabilities (i.e., different combinations of sensors, effectors, and dynamics) under strict timing constraints. We jointly decompose both the temporal logic specification and the team of agents, using a satisfiability modulo theories (SMT) approach and heuristics for handling temporal operators. The output of the SMT is then distributed to subteams and leads to a significant speed up in planning time compared to planning for the entire team and specification. We include computational results to evaluate the efficiency of our solution, as well as the trade-offs introduced by the conservative nature of the SMT encoding and heuristics.
READ LESS

Summary

We focus on decomposing large multi-agent path planning problems with global temporal logic goals (common to all agents) into smaller sub-problems that can be solved and executed independently. Crucially, the sub-problems' solutions must jointly satisfy the common global mission specification. The agents' missions are given as Capability Temporal Logic (CaTL)...

READ MORE

Correlated Bayesian model of aircraft encounters in the terminal area given a straight takeoff or landing

Published in:
Aerospace, Vol. 9, No.2, 12 March 2022.

Summary

The integration of new airspace entrants into terminal operations requires design and evaluation of Detect and Avoid systems that prevent loss of well clear from and collision with other aircraft. Prior to standardization or deployment, an analysis of the safety performance of those systems is required. This type of analysis has typically been conducted by Monte Carlo simulation with synthetic, statistically representative encounters between aircraft drawn from an appropriate encounter model. While existing encounter models include terminal airspace classes, none explicitly represents the structure expected while engaged in terminal operations, e.g., aircraft in a traffic pattern. The work described herein is an initial model of such operations where an aircraft landing or taking off via a straight trajectory encounters another aircraft landing or taking off, or transiting by any means. The model shares the Bayesian network foundation of other Massachusetts Institute of Technology Lincoln Laboratory encounter models but tailors those networks to address structured terminal operations, i.e., correlations between trajectories and the airfield and each other. This initial model release is intended to elicit feedback from the standards-writing community.
READ LESS

Summary

The integration of new airspace entrants into terminal operations requires design and evaluation of Detect and Avoid systems that prevent loss of well clear from and collision with other aircraft. Prior to standardization or deployment, an analysis of the safety performance of those systems is required. This type of analysis...

READ MORE

Radar coverage analysis for the Terminal Precipitation on the Glass Program

Author:
Published in:
MIT Lincoln Laboratory Report ATC-450

Summary

The Terminal Precipitation on the Glass (TPoG) program proposes to improve the STARS precipitation depiction by adding an alternative precipitation product based on a national weather-radar-based mosaic, i.e., the NextGen Weather System (aka NextGen Weather Processor [NWP] and Common Support Services Weather [CSS-Wx]). This report describes spatial and temporal domain analyses conducted over the 146 terminal radar approach control (TRACON) airspaces that are within scope of TPoG to identify and quantify future TPoG benefits, as well as potential operational issues.
READ LESS

Summary

The Terminal Precipitation on the Glass (TPoG) program proposes to improve the STARS precipitation depiction by adding an alternative precipitation product based on a national weather-radar-based mosaic, i.e., the NextGen Weather System (aka NextGen Weather Processor [NWP] and Common Support Services Weather [CSS-Wx]). This report describes spatial and temporal domain...

READ MORE

Energy resilience: exercises for Marine Corps installations

Published in:
Marine Corps Gazette, Vol. 106, No. 2, February 2022, p. 20-24.
Topic:
R&D group:

Summary

Microgrids are areas that are self-sufficient for power that can controllably disconnect from the incoming utility feed and control generation assets in conjunction with changing load requirements. They are increasingly being touted as a way to improve installations energy resilience because they allow installations to decouple from the larger electric grid if it fails and continue to provide power in the face of growing natural and man-made threats to Marine Corps installations. However, before commanders can put resources toward upgrading infrastructure, they need to identify and understand their vulnerabilities. A key way to do this is by holding exercises designed to simulate grid failures and outages either in a tabletop manner or in realtime. These exercises also help personnel train for disruptions, understand their impact on operations, and identify unknown interdependencies that can be just as important as investing in resilient technology and the physical electric grid. In order for the equipment to work, personnel have to know how to employ it and commands need to understand how outages will affect their installations. These types of exercises are as important as the physical infrastructure or ensuring the energy resilience of Marine Corps installations and the missions that depend on them in the future.
READ LESS

Summary

Microgrids are areas that are self-sufficient for power that can controllably disconnect from the incoming utility feed and control generation assets in conjunction with changing load requirements. They are increasingly being touted as a way to improve installations energy resilience because they allow installations to decouple from the larger electric...

READ MORE