Publications
The 2017 Buffalo Area Icing and Radar Study (BAIRS II)
Summary
Summary
The second Buffalo Area Icing and Radar Study (BAIRS II) was conducted during the winter of 2017. The BAIRS II partnership between Massachusetts Institute of Technology (MIT) Lincoln Laboratory (LL), the National Research Council of Canada (NRC), and Environment and Climate Change Canada (ECCC) was sponsored by the Federal Aviation...
Monetized weather radar network benefits for tornado cost reduction
Summary
Summary
A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement in two key radar coverage parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental...
Weather radar network benefit model for tornadoes
Summary
Summary
A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement of two key radar parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results...
Polarimetric observations of chaff using the WSR-88D network
Summary
Summary
Chaff is a radar countermeasure typically used by military branches in training exercises around the United States. Chaff within view of the S-band WSR-88D radars can appear prominently on radar users displays. Knowledge of chaff characteristics is useful for radar users to discriminate between chaff and weather echoes and for...
Quantification of radar QPE performance based on SENSR network design possibilities
Summary
Summary
In 2016, the FAA, NOAA, DoD, and DHS initiated a feasibility study for a Spectrum Efficient National Surveillance Radar (SENSR). The goal is to assess approaches for vacating the 1.3- to 1.35-GHz radio frequency band currently allocated to FAA/DoD long-range radars so that this band can be auctioned for commercial...
Development of a new inanimate class for the WSR-88D hydrometeor classification algorithm
Summary
Summary
The current implementation of the Hydrometeor Classification Algorithm (HCA) on the WSR-88D network contains two non-hydrometeor-based classes: ground clutter/anomalous propagation and biologicals. A number of commonly observed non-hydrometeor-based phenomena do not fall into either of these two HCA categories, but often are misclassified as ground clutter, biologicals, unknown, or worse...
WSR-88D chaff detection and characterization using an optimized hydrometeor classification algorithm
Summary
Summary
Chaff presents multiple issues for aviation, air traffic controllers, and the FAA, including false weather identification and areas where flight paths may need to be altered. Chaff is a radar countermeasure commonly released from aircraft across the United States and is comprised of individual metallic strands designed to reflect certain...
Velocity estimation improvements for the ASR-9 Weather Systems Processor
Summary
Summary
The Airport Surveillance Radar (ASR-9) is a rapid-scanning terminal aircraft detection system deployed at airports around the United States. To provide cost-effective wind shear detection capability at medium-density airports, the Weather Systems Processor (WSP) was developed and added on to the ASR-9 at 35 sites. The WSP on the ASR-9...