Estimating a windshear hazard index from ground-based terminal Doppler radar
Summary
In the past decade, a great deal of effort has been invested in developing ground based wind shear detection systems for major U.S. airports. However, there has been a lack of research in developing a quantitative relationship between the wind shear hazards detected by ground based systems and the actual hazard experienced by an aircraft flying through the affected air space. To date, the main thrust of the verification efforts for ground-based systems has been to ensure that the system accurately detect and report the presence of the meteorological phenomena that cause potentially important hazardous windshear. There is a subtle, but potentially important difference between detecting the presence or a microburst and detecting the presence of an aviation hazard. With this in mind, it would seem prudent to rigorously determine what correlation exists between the wind shear warnings that are generated from ground systems and the performance impact on aircraft flying through the impacted airspace. The operational demonstration of the testbed Terminal Doppler Weather Radar (TDWR) in Orlando, Florida along with the testing of airborne Doppler radar systems created a unique opportunity to compare extensively the ground based windshear reports with in-situ aircraft measurements. This paper presents the results from 69 microburst penetrations flown in 1990 and 1991 by the University of North Dakota (UND), the National Aeronautics and Space Administration (NASA) Langley Research Center, and Rockwell Collins under surveillance of the Lincoln-operated TDWR testbed radar. The primary goal of the research was to determine the relative accuracy of several methods designed to generate a numerical microburst hazard index, called the F factor, from ground-based Doppler radar data. It is hope that this work will provide both a qualitative and quantitative basis for the discussion and assessment of microburst hazard reporting for ground-based microburst detection systems. The Integrated Airborne Wind Shear Program is a joint NASA/FAA program with the objective to provide the technology base that will permit low altitude windshear risk reduction through airborne detection, warning, and avoidance. Additionally, the program aims to demonstrate the practicality and utility of real-time assimilation and synthesis of ground-derived windshear data to support executive level cockpit warning and crew-centered information display. Lincoln Laboratory joined this effort and provided the weather radar ground support and some of the post-flight data analysis for NASA's microburst penetration flights in Orlando, Florida.