Microburst detection with airport surveillance radars
With the advent of fully digital signal processing for new airport surveillance radars (ASR-9), terminal air traffic control displays will be largely free of clutter from precipitation and ground scatterers [1,2]. Early acceptance testing of the ASR-9, however, indicated that working air traffic controllers actually made considerable use of the weather echo information on their displays. To reinsert weather data in a non-interfering manner, the ASR-9's signal processor was augmented with a dedicated channel for processing and displaying six quantitative levels of precipitation reflectivity (i.e. rain rate) [2,3]. This processor does not utilize tile radar's coherency, other than for Doppler filtering of ground clutter echoes. In this paper, we describe processing techniques that would allow airport surveillance radars to extend their weather measurement capability to the detection of microburst-generated low altitude wind shear. The two principal technical challenges are the development of (i) signal processing to suppress ground clutter and estimate the near surface radial wind component in each radar resolution cell; (ii) image processing to automatically detect hazardous shear in the resulting velocity field. The techniques have been evaluated extensively using simulated weather signals and measurements from an experimental airport surveillance radar in the southeastern United States. Overall our analysis indicates that microbursts accompanied by rain at the surface -- the predominant safety hazard in many parts of the U.S. --could be detected with high confidence using a suitably modified ASR. In the following section we describe briefly the background and potential operational role of an ASR-based wind shear detection system. We then discuss the primary technical issues for achieving this capability and our evaluations of processing methods that address these issues.