Results of simulation studies of precision runway monitoring of independent approaches to closely-spaced parallel runways
Summary
Increased air travel in recent years has resulted in a steady increase in the number and duration of flight delays. In an attempt to increase airport capacity, MIT Lincoln Laboratory, under the sponsorship of the Federal Aviation Administration (FAA), has supported the development of a Precision Runway Monitor (PRM). The PRM is an advanced radar monitoring system designed to increase utilization of closely-spaced, multiple, parallel runways during adverse weather conditions. The PRM consists of radar which has higher accuracy and a faster update interval than the current system, and a high resolution, color display that informs the Monitor Controller of the occurrence of hazardous flight path deviations by means of automated visual and vocal warning alerts. Studies of air traffic controller reaction to the PRM were conducted at Memphis Airport and Raleigh-Durham Airport in order to evaluate system effectiveness and to assess the effects of key variables on controller reaction time. This paper documents the results of the controller studies conducted at Memphis by MIT Lincoln Laboratory. The testing consisted of the presentation of real-time simulations, and measurement of air traffic controllers were surveyed regarding the acceptability of the PRM.