Role of the aviation weather system in providing a real-time ATC volcanic ash advisory system
Summary
Inadvertent engine ingestion of volcanic ash has caused expensive damage to a number of aircraft recently and could have caused accidents in at least two cases [Casadevall, 1993]. Consequently, there is great interest in a real-time air traffic control (ATC) volcanic ash advisory system which could provide timely warnings of operationally significant ash concentrations to planes in flight as well as information for flight planning. The current system (see figure 1) is characterized by non-automatic determination of ash eruption characteristics (especially altitudes) with trajectory analysis based on the National Meteorological Center (NMC) forecast winds being used to provide warnings of future locations. SIGNETS and Airport Weather Advisories are the principal means of providing information on the ash locations to pilots and controllers. After one to three days, volcanic ask from Alaska can be transported over major portions of the US aviation system (figure 2) [Heffter, et al. 1990]. The operational use of the ash trajectory predictions which do not provide information on hazard associated with the ask density has resulted in more frequent disruption of air traffic. The most recent example was an incident on 19 September 1992 where a 17 September eruption from Mt. Spurr in Alaska resulted in a significant disruption of air traffic in the Upper Midwest. A workshop in Washington, DC [Machol, 1993] discussed many of these issues associated with the Spurr disruption and the operational response to ash clouds which had been drifting for several days.