Summary
Airport surveillance radars (ASR) utilize a broad, cosecant-squared elevation beam pattern, rapid azimuthal antenna scanning, and coherent pulsed-Doppler processing to detect and track approaching and departing aircraft. These radars, because of location, rapid scan rate, and direct air traffic control (ATC) data link, can also provide flight controllers with timely information on weather conditions that are hazardous to aircraft. With an added processing channel, an upgraded ASR can automatically detect regions of low-altitude wind shear. This upgrade can provide wind shear warnings at airports where low traffic volume or infrequent thunderstorm activity precludes the deployment of a dedicated Terminal Doppler Weather Radar (TDWR). Field measurements and analysis conducted by Lincoln Laboratory indicate that the principal technical challenges for low-altitude wind shear detection with an ASR-groundclutter suppression, estimation of near-surface radial velocity, and automatic wind shear hazard recognition--can be successfully met for microbursts accompanied by rain at the surface.