The Federal Aviation Administration has responded to the steady growth of air traffic and the ensuing increase in delays at airports by initiating new programs for increasing the efficiency of existing air traffic control facilities. The Terminal Air Traffic Control Automation (TATCA) program is intended to increase efficiency by providing controllers with planning aids and advisories to help them in vectoring, sequencing, and spacing traffic arriving at busy airports. Two important algorithms in this system allocate arrivals to multiple runways and set up the best sequences for landing aircraft. This article evaluates the potential for such algorithms to achieve higher throughput with less delay. The results show that, at airports with multiple active runways, the introduction of algorithms for systematic allocation of runways increases throughput considerably. These algorithms are in fact more effective than algorithms that aim at generating optimal landing sequences based on aircraft weight-class inputs. This result is fortuitous because algorithms for optimal sequencing are significantly more difficult to implement in practice than are algorithms for runway allocation. This study also provides a scientific basis for estimating future benefits of terminal automation by using traffic models patterned on actual recorded traffic-flow data, and by proposing a unified method for assessing performance.