Summary
Microwave photonic (MWP) links with a low noise figure and high dynamic range are required for antenna remoting, radio-over-fiber (RoF), and other advanced applications. MWP links have recently been demonstrated with noise figures approaching 3 dB, without any electrical preamplification, by using low-noise high-power laser sources in conjunction with efficient optical intensity modulators and high-power photodetectors. An alternate approach to noise figure reduction, suitable for sub-octave links, is based on using a high-power laser source and shifting the bias point of an external optical intensity modulator to reduce the average photocurrent and suppress excess link noise. Here, we report the performance of a novel slab-coupled optical waveguide external-cavity laser (SCOWECL) in a suppressed bias MWP link. We compare the performance of this link with a suppressed-bias link using a source comprising a commercial-off-the-shelf (COTS) laser and erbium-doped fiber amplifier (EDFA) and show that MWP links built using SCOW-based emitter technology offer superior performance due to the small-form factor, high-efficiency, low-noise, and high power laser source.