The Integrated Terminal Weather System (ITWS) development program was initiated by the Federal Aviation Administration (FAA) to produce a fully automated, integrated terminal weather information system to improve the safety, efficiency and capacity of terminal area aviation operations. The ITWS will acquire data from FAA and National Weather Service (NWS) sensors as well as from aircraft in flight in the terminal area. The ITWS will provide air traffic personnel with products that are immediately usable without further metorological interpretation. These products include current terminal area weather and short-term (0-30 minute) predictions of significant weather phenomena. The Terminal area-Local Analysis and Prediction System (T-LAPS) is being evaluated as a possible provider of the Terminal Winds Product for the ITWS. T-LAPS is a direct descendant of the Local Analysis and Prediction System (LAPS) developed at the National Oceanic and Atmospheric Administraiton's (NOAA's) Forecast Systems Laboratory (FSL). T-LAPS takes meteorological data from a wide variety of data sources as input and provides a gridded, three-dimensional (3-D) analysis of the state of the local atmosphere in the terminal area as output. For the 1992 system, the output was a gridded 3-D analysis of the horizontal winds. This information is intended to be used by the Terminal Air Traffic Control Automation (TATCA) program to estimate the effects of winds on aircraft in the terminal area. The 1993 and 1994 T-LAPS systems will incorporate more sophisticated wind analysis algorithms. The T-LAPS '92 demonstration at the Lincoln Laboratory Terminal Doppler Weather Radar (TDWR) FL-2CC field site in Kissimmee, Florida, during August and September was quite successful. The primary area of coverage was a 120 km by 120 km box centered on the Orlando International Airport. The T-LAPS system was able to utilize radar information from both the TDWR testbed and the operational NEXRAD/WSR-88D radar in Melbourne, Florida. This report documents the implementation of the T-LAPS system that was run during the 1992 summer demonstration and discusses the design and some implementation details of the system.