Summary
A monetized tornado benefit model is developed for arbitrary weather radar network configurations. Geospatial regression analyses indicate that improvement in two key radar coverage parameters--fraction of vertical space observed and cross-range horizontal resolution--lead to better tornado warning performance as characterized by tornado detection probability and false alarm ratio. Previous experimental results showing faster volume scan rates yielding greater warning performance, including increased lead times, are also incorporated into the model. Enhanced tornado warning performance, in turn, reduces casualty rates. In combination, then, it is clearly established that better and faster radar observations reduce tornado casualty rates. Furthermore, lower false alarm ratios save costs by cutting down on people's time lost when taking shelter.