Publications

Refine Results

(Filters Applied) Clear All

Shunting networks for multi-band AM-FM decomposition

Published in:
Proc. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, 17-20 October 1999.

Summary

We describe a transduction-based, neurodynamic approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. We show that the transduction approach can be realized as a bank of constant-Q bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of robust AM-FM estimation. Our model is consistent with recent psychophysical experiments that indicate AM and FM components of acoustic signals may be transformed into a common neural code in the brain stem via FM-to-AM transduction. The shunting network for AM-FM decomposition is followed by a contrast enhancement shunting network that provides a mechanism for robustly selecting auditory filter channels as the FM of an input stimulus sweeps across the multiple filters. The AM-FM output of the shunting networks may provide a robust feature representation and is being considered for applications in signal recognition and multi-component decomposition problems.
READ LESS

Summary

We describe a transduction-based, neurodynamic approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. We show that the transduction approach can be realized as a bank of constant-Q bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of...

READ MORE

AM-FM separation using shunting neural networks

Published in:
Proc. of the IEEE-SP Int. Symp. on Time-Frequency and Time-Scale Analysis, 6-9 October 1998, pp. 553-556.

Summary

We describe an approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. Any signal can be written as the product of an AM component and an FM component. There have been several approaches to solving the AM-FM estimation problem described in the literature. Popular methods include the use of time-frequency analysis, the Hilbert transform, and the Teager energy operator. We focus on an approach based on FM-to-AM transduction that is motivated by auditory physiology. We show that the transduction approach can be realized as a bank of bandpass filters followed by envelope detectors and shunting neural networks, and the resulting dynamical system is capable of robust AM-FM estimation in noisy environments and over a broad range of filter bandwidths and locations. Our model is consistent with recent psychophysical experiments that indicate AM and FM components of acoustic signals may be transformed into a common neural code in the brain stem via FM-to-AM transduction. Applications of our model include signal recognition and multi-component decomposition.
READ LESS

Summary

We describe an approach to estimating the amplitude-modulated (AM) and frequency-modulated (FM) components of a signal. Any signal can be written as the product of an AM component and an FM component. There have been several approaches to solving the AM-FM estimation problem described in the literature. Popular methods include...

READ MORE

Noise reduction based on spectral change

Published in:
Proc. of the 1997 IEEE ASSP Workshop on Applications of Signal Processing to Audio and Acoustics, Session 8: Noise Reduction, 19-22 October 1997, 4 pages.

Summary

A noise reduction algorithm is designed for the aural enhancement of short-duration wideband signals. The signal of interest contains components possibly only a few milliseconds in duration and corrupted by nonstationary noise background. The essence of the enhancement technique is a Weiner filter that uses a desired signal spectrum whose estimation adapts to the "degree of stationarity" of the measured signal. The degree of stationarity is derived from a short-time spectral derivative measurement, motivated by sensitivity of biological systems to spectral change. Adaptive filter design tradeoffs are described, reflecting the accuracy of signal attack, background fidelity, and perceptual quality of the desired signal. Residual representations for binaural presentation are also considered.
READ LESS

Summary

A noise reduction algorithm is designed for the aural enhancement of short-duration wideband signals. The signal of interest contains components possibly only a few milliseconds in duration and corrupted by nonstationary noise background. The essence of the enhancement technique is a Weiner filter that uses a desired signal spectrum whose...

READ MORE

Showing Results

1-3 of 3