Publications

Refine Results

(Filters Applied) Clear All

Airport Wind Observations Architectural Analysis(2.4 MB)

Published in:
Project Report ATC-443, MIT Lincoln Laboratory

Summary

Airport wind information is critical for ensuring safe aircraft operations and for managing runway configurations. Airports across the National Airspace System (NAS) are served by a wide variety of wind sensing systems that have been deployed over many decades. This analysis presents a survey of existing systems and user requirements, identifies potential shortfalls, and offers recommendations for improvements to support the long-term goals of the FAA NextGen system.
READ LESS

Summary

Airport wind information is critical for ensuring safe aircraft operations and for managing runway configurations. Airports across the National Airspace System (NAS) are served by a wide variety of wind sensing systems that have been deployed over many decades. This analysis presents a survey of existing systems and user requirements...

READ MORE

Preliminary UAS Weather Research Roadmap(1.51 MB)

Published in:
Project Report ATC-438, MIT Lincoln Laboratory

Summary

A companion Lincoln Laboratory report (ATC-437, “Preliminary Weather Information Gaps for UAS Operations”) identified initial gaps in the ability of current weather products to meet the needs of UAS operations. Building off of that work, this report summarizes the development of a proposed initial roadmap for research to fill the gaps that were identified.
READ LESS

Summary

A companion Lincoln Laboratory report (ATC-437, “Preliminary Weather Information Gaps for UAS Operations”) identified initial gaps in the ability of current weather products to meet the needs of UAS operations. Building off of that work, this report summarizes the development of a proposed initial roadmap for research to fill the...

READ MORE

Preliminary Weather Information Gap Analysis for UAS Operations(4.88 MB)

Published in:
Project Report ATC-437, MIT Lincoln Laboratory

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report documents a preliminary quick-look identification and assessment of gaps in current weather decision support for UAS operations.
READ LESS

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report...

READ MORE

Preliminary weather information gap analysis for UAS operations, revision 1

Published in:
MIT Lincoln Laboratory Report ATC-437-REV-1

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report documents a preliminary quick-look identification and assessment of gaps in current weather decision support for UAS operations. An initial set of surveys and interviews with UAS operators identified 12 major gaps. These gaps were then prioritized based on the importance of the weather phenomena to UAS operations and the current availability of adequate weather information to UAS operators. Low altitude UAS operations are of particular concern. The lack of observations of ceiling, visibility, and winds near most low altitude UAS operational locations causes the validation of numerical weather forecasts of weather conditions for those locations to be the highest priority. Hazardous weather alerting for convective activity and strong surface winds are a major concern for UAS operations that could be addressed in part by access to existing FAA real time conventional aircraft weather products.
READ LESS

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing. For example, 2017 has seen dramatically increased low altitude UAS usage for disaster relief and by first responders. The ability to carry out these operations, however, can be strongly impacted by adverse weather conditions. This report...

READ MORE

UAS weather research roadmap

Published in:
MIT Lincoln Laboratory Report ATC-438

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing, and the trend is expected to continue as regulations are refined to allow broader access to the airspace. The unique characteristics of UAS (e.g., extensive operations in populated areas at altitudes below 500 feet, speed capability, and control systems) may drive the need for new and unique operational strategies, many of which are highly dependent on weather conditions. The objective of this study is to identify information gaps in the ability of current weather products to meet the needs of UAS operations, and provide a roadmap of research required to fill the gaps. There are several trends in the information gaps that surfaced repeatedly. A key item is the availability of weather observations, and forecasts tailored for on-airport operations are not necessarily sufficient for off-airport operations. Surveyed users indicated that airport-specific weather information (e.g., METAR, TAFs, etc.) do not readily translate to conditions at remote launch locations, which may be 10-30 miles from the nearest airport, and are influenced by local terrain, vegetation, and water sources. Moreover, the results show significantly less weather information available to support low-altitude flight than for typical manned-flight profiles. Beyond Visual Line of Sight (BVLOS) operations are found to have higher need for weather forecasts, uncertainty information, and contingency planning than Visual Line of Sight (VLOS) operations. Furthermore, the study identifies specific gaps related to how the airspace should be managed to mitigate safety and efficiency impacts to UAS operations. The research roadmap is composed of research recommendations that are derived from the aforementioned weather information gaps. In total, there are 14 specific recommendations that define the roadmap. The first two recommendations are not explicitly tied to specific gaps; rather they are based on lessons learned through the course of research in this study. The remaining recommendations are ordered such that their priority is based on their overall significance to the operation, the maturity of the operation, and any dependence among other recommendations.
READ LESS

Summary

Unmanned Aircraft System (UAS) operations in the National Airspace System (NAS) are rapidly increasing, and the trend is expected to continue as regulations are refined to allow broader access to the airspace. The unique characteristics of UAS (e.g., extensive operations in populated areas at altitudes below 500 feet, speed capability...

READ MORE

An applications architecture to support FAA wake turbulence mitigation systems development and deployment

Published in:
MIT Lincoln Laboratory Report ATC-412

Summary

The Wake Turbulence Program within the Federal Aviation Administration (FAA) is considering a number of new procedures for safely reducing the wake vortex spacing requirements between aircraft. One category of procedures investigates wind-dependent procedures, i.e., procedures that can be applied when wind conditions are expected to transport the wake from a lead aircraft away from the path of a trailing aircraft. MIT Lincoln Laboratory developed a Wind Forecast Algorithm (WFA) to determine when conditions allow these wind-dependent procedures to be available to traffic managers. The baseline WFA is used within the Wake Turbulence Mitigation for Departures (WTMD) system, which establishes spacing procedures for departures on closely spaced parallel runways. A number of new procedures are also under consideration, each of which will require a modification and/or expansion of the baseline WFA. With time, the volume and number of disparate data sources used in the development process has steadily increased to the point where the existing development environment has become cumbersome and inadequate. As a result, through support of the FAA Wake Turbulence Program, MIT Lincoln Laboratory has undergone a complete overhaul of the computer processing and storage architecture used for WFA development. This will serve two main purposes. First, it will greatly expedite the development process, which is highly iterative and requires increasingly large volumes of data. Second, an updated architecture design will allow for an expeditious transition of developmental systems into the operational environment within FAA's NextGen framework. A key focus of this report describes how the new design is sufficiently compatible and flexible to serve within this anticipated FAA framework. The unified application architecture and infrastructure being designed and implemented will support continuing development, playback requirements, and real-time deployments. This architecture is composed of several application components including a wind data extract-transform-loaf (ETL) application, the WFA algorithm, and a display interface to accomodate both the development process and for potential use within the FAA operational environment. The Wind-ETL application component acquires, processes, and archives wind data from a variety of NOAA-based hourly forecasts and airport-vicinity weather measurement equipment. This wind data is ingested by the WFA, which computes and disseminates its availability predictions to the WTMx Display application component, which archives these predictions and also allows for presentation to the airport tower supervisor via the WTMx display user interface decision support tool. This architecture is designed to be flexible to accepting new weather data feeds, scalable to the high bandwidth and processing and storage capabilities required, provide sufficient automation and self-healing capabilities, and portable to allow its introduction into alternate facility sites and its integration into other FAA software systems.
READ LESS

Summary

The Wake Turbulence Program within the Federal Aviation Administration (FAA) is considering a number of new procedures for safely reducing the wake vortex spacing requirements between aircraft. One category of procedures investigates wind-dependent procedures, i.e., procedures that can be applied when wind conditions are expected to transport the wake from...

READ MORE

Roadmap for weather integration into Traffic Flow Management Modernization (TFM-M)

Published in:
MIT Lincoln Laboratory Report ATC-347

Summary

This report provides recommendations for aligning new Collaborative Air Traffic Management Technologies (CATM-T) with evolving aviation weather products to improve NAS efficiency during adverse (especially severe) weather conditions. Key gaps identified include 1. Improving or developing pilot convective storm avoidance models as well as models for route blockage and capacity in severe weather is necessary for automated congestion prediction and resolution. 2. Forecasts need to characterize uncertainty that can be used by CATM tools and, explicitly forecast key parameters needed for translation of weather products to capacity impacts. 3. Time based flow management will require substantial progress in both the translation modeling and in predicting appropriate storm avoidance trajectories. Near term efforts should focus on integration of the Traffic Management Advisor (TMA) with contemporary severe weather products such as the Corridor Integrated Weather System (CIWS). 4. Human factors studies on product design to improve individual decision making, improved collaborative decision making in "difficult" situations, and the use of probabilistic products are also essential. 5. Studies need to be carried out to determine how well en route and terminal capacity currently is being utilized during adverse weather events so as to identify the highest priority areas for integrated weather-CATM system development.
READ LESS

Summary

This report provides recommendations for aligning new Collaborative Air Traffic Management Technologies (CATM-T) with evolving aviation weather products to improve NAS efficiency during adverse (especially severe) weather conditions. Key gaps identified include 1. Improving or developing pilot convective storm avoidance models as well as models for route blockage and capacity...

READ MORE

Investigating a new ground delay program strategy for coping with SFO stratus

Author:
Published in:
89th AMS Annual Meeting, ARAM Special Symp. on Weather - Air Traffic Management Integration, 11-15 January 2009.

Summary

Dozens of Ground Delay Programs (GDPs) are implemented each summer for San Francisco International Airport (SFO) in order to cope with reduced capacity caused by the presence of warm-season stratus in the approach zone. The stratus prevents the use of dual approaches to SFO's closely-spaced parallel runways, which essentially reduces the arrival capacity by half. In 2004, a prototype system for providing probabilistic stratus forecast guidance was transitioned from the research community to NWS Monterey. This system was intended to be used as a tool for improving the daily forecast of stratus clearing time from the approach zone, and correspondingly improve the efficiency of GDP implementation strategy. Since its transition to the NWS in 2004, the automated forecast guidance system has continued to produce reliable forecasts of daily stratus clearing time. However, this success has not adequately translated to a marked improvement in GDP efficiency. Analysis by the NWS indicates that the existing mechanisms for introducing the forecast guidance information into the GDP decision process, as well as the GDP implementation strategy itself, are not suited for taking full advantage of the forecast skill demonstrated by the system. A historical examination of SFO GDP implementation based on the probabilistic forecasts provided by the automated forecast guidance system is currently in process, with the objective being a recommendation for a more effective GDP strategy. An important consideration is understanding the risk/reward associated with the decision process. In this instance, the reward is increased efficiency seen as reduced aircraft delays, at the risk of creating increased delay, aircraft diversions, and controller workload in the event that an incorrect optimistic forecast results in the premature release of ground-held aircraft. This investigation is being performed in concert with the weather-integration objectives of the current FAA modernization program, particularly the integration of weather information that is delivered in a probabilistic format. Shortcomings within the current GDP strategy are described to provide context for potential improvements that exploit the probabilistic forecasts currently emerging from the research community.
READ LESS

Summary

Dozens of Ground Delay Programs (GDPs) are implemented each summer for San Francisco International Airport (SFO) in order to cope with reduced capacity caused by the presence of warm-season stratus in the approach zone. The stratus prevents the use of dual approaches to SFO's closely-spaced parallel runways, which essentially reduces...

READ MORE

A wind forecast algorithm to support Wake Turbulence Mitigation for Departures (WTMD)

Author:
Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

Turbulence associated with wake vortices generated by arriving and departing aircraft poses a potential safety risk to other nearby aircraft, and as such this potential risk may apply to aircraft operating on Closely Spaced Parallel Runways (CSPRs). Aircraft separation standards are imposed to mitigate this potential risk. The FAA and NASA are investigating application of wind-dependent procedures for improved departure operations that would safely reduce spacing restrictions to allow increased airport operating capacity. These procedures are referred to collectively as Wake Turbulence Mitigation for Departures (WTMD). An important component of WTMD is a Wind Forecast Algorithm (WFA) developed by MIT Lincoln Laboratory. The algorithm is designed to predict when runway crosswind conditions will remain persistently favorable to preclude transport of aircraft departure wakes into the path of aircraft on parallel runways (Figure 1). The algorithm has two distinct components for predicting the winds at the surface (33 ft) and aloft up to 1000 ft (the altitude by which an alternate form of separation would be applied by Air Traffic Control to aircraft departing the parallel runways, typically 15 degree or greater divergence in aircraft paths). The surface component forecast applies a statistical approach using recent observations of winds from 1-minute ASOS observations. The winds-aloft component relies on the 2 to 4 hour wind forecasts from NCEP's Rapid Update Cycle (RUC) model. The baseline version of the algorithm was developed and tested using data from St. Louis Lambert International Airport (STL). Algorithm performance was evaluated using 1-minute ASOS observations and crosswind component measurements taken from a dedicated Light Detection and Ranging (LIDAR) system. The algorithm was also demonstrated and evaluated at Houston George Bush International Airport (IAH). Use of the WFA is planned for 8 other airports deemed likely to derive significant benefit from WTMD procedures. The operational concept of WTMD for use by Air Traffic Control (ATC) includes additional decision levels beyond the WFA forecast. These include a check for VFR ceiling and visibility conditions, and final enablement by a human controller. More details concerning WTMD can be found in Lang et al. (2005) and Lang et al. (2007). A more complete description of the WFA is given in Robasky and Clark (2008). The early history of WFA development is detailed in Cole and Winkler (2004).
READ LESS

Summary

Turbulence associated with wake vortices generated by arriving and departing aircraft poses a potential safety risk to other nearby aircraft, and as such this potential risk may apply to aircraft operating on Closely Spaced Parallel Runways (CSPRs). Aircraft separation standards are imposed to mitigate this potential risk. The FAA and...

READ MORE

Comparison of Rapid Update Cycle (RUC) model crosswinds with LIDAR crosswind measurements at St. Louis Lambert International Airport

Published in:
13th Conf. on Aviation, Range and Aerospace Meteorology, ARAM, 20-24 January 2008.

Summary

Turbulence associated with wake vortices generated by arriving and departing aircraft pose a potential safety risk to other nearby aircraft, and as such this potential risk may apply to aircraft operating on Closely Spaced Parallel Runways (CSPRs). To take wake vortex behavior into account, current aircraft departing/landing standards require a safe distance behind the wake generating aircraft at which operations can be conducted. The Federal Aviation Administration (FAA) and National Aeronautics and Space Administration (NASA) have initiated an improved wake avoidance solution, referred to as Wake Turbulence Mitigation for Departures (WTMD). The process is designed to safely increase runway capacity via actively monitoring wind conditions that impact wake behavior (Hallock, et al., 1998; Lang et al., 2005). An important component of WTMD is a Wind Forecast Algorithm (WFA) being developed by MIT Lincoln Laboratory (Cole & Winkler, 2004). The WFA predicts runway crosswinds from the surface up to a height of approximately ~300 m (1000 ft) once per minute and thus forecasts when winds favorable for WTMD will persist long enough for safe procedures for a particular runway (Lang et al., 2007). The algorithm uses 1–4 hr wind forecasts from the Rapid Update Cycle (RUC) model operated by the National Oceanic and Atmospheric Administration/National Centers for Environmental Prediction (NOAA/NCEP) for upper atmospheric wind profiles. Detailed description of the RUC model can be found elsewhere (Benjamin et al., 1994; 2004a; 2004b). Briefly, the RUC model inputs are assimilations of high frequency observations from a suite of meteorological sensors, including Automated Surface Observing System (ASOS), rawinsonde profiles, satellite, airborne sensors from commercial aircraft, etc. The vertical layers of the atmosphere are resolved approximately isentropically. The model is run hourly, producing hourly forecasts out to 24 hours. The coverage of the RUC grid includes the continental United States, southern Canada, northern Mexico, and adjacent coastal waters. Here we evaluate the performance of RUC in predicting crosswinds with reliability sufficient to support WTMD. For RUC validation, in situ wind profile data were obtained from a Light Imaging Detection and Ranging (LIDAR) deployed at St. Louis Lambert International Airport (STL). The focus of this study is to provide a general quantitative characterization of the difference between RUC predictions and LIDAR measurements of the runway crosswinds. Particular attention was given to cases with inaccurate RUC crosswind forecasts, and cases when significant horizontal and vertical shears occur during situations of convective weather or proximity to large scale weather features, e.g., air mass fronts. (In practice, WTMD procedures and existing weather sources in the Control Tower will manage, to an acceptable level of risk, the hazard exposure associated with the extreme wind shift examples presented here.) Also included was examination of performance degradation with longer RUC forecast horizons and coarser horizontal resolutions, which may be relevant with regard to actual operational forecast data availability, or future applications of the operational concept to include arrival operations. A detailed report for this study is also available (Huang et al., 2007).
READ LESS

Summary

Turbulence associated with wake vortices generated by arriving and departing aircraft pose a potential safety risk to other nearby aircraft, and as such this potential risk may apply to aircraft operating on Closely Spaced Parallel Runways (CSPRs). To take wake vortex behavior into account, current aircraft departing/landing standards require a...

READ MORE