Publications

Refine Results

(Filters Applied) Clear All

Update on COSPA storm forecasts

Summary

Air traffic congestion in the United States (US) is a serious national problem resulting in a critical need for timely, reliable and high quality forecasts of precipitation and echo tops with forecast time horizons of up to 8 hours. In order to address the short-term needs of the Federal Aviation Administration (FAA) as well as the long-term goals of the US's Next Generation Airspace System (NextGen), MIT Lincoln Laboratory, NCAR Research Applications Laboratory and NOAA Earth Systems Research Laboratory (ESRL) Global Systems Division (GSD) are collaborating on developing a forecast system under funding from the FAA's Aviation Weather Research Program (AWRP). The CoSPA system combines the latest technologies in heuristic nowcasting, extrapolation, statistical techniques and numerical weather prediction to produce rapidly updating (15 min) 0-8 hour forecasts of storm locations, echo tops and intensities. The system blends highly-skillful heuristic nowcasts with output from NOAA's High Resolution Rapid Refresh (HRRR) using phase correction and statistical weighting functions. The CoSPA 0-8 hour forecasts are accessible to the aviation community via an operational situation display and a website that builds upon the FAA's Corridor Integrated Weather System (CIWS) and shows current time situational awareness products including: VIL, echo tops, lightning, growth and decay, forecasts and verification contours, as well as an animation of the weather from 8 hours in the past to 8 hours into the future. This presentation will include a brief description of the CoSPA forecast system and display, examples of forecast performance, and provide an overview of recent enhancements to CoSPA as well as ongoing research.
READ LESS

Summary

Air traffic congestion in the United States (US) is a serious national problem resulting in a critical need for timely, reliable and high quality forecasts of precipitation and echo tops with forecast time horizons of up to 8 hours. In order to address the short-term needs of the Federal Aviation...

READ MORE

Advances in the Consolidated Storm Prediction for Aviation (CoSPA)

Published in:
14th Conf. on Aviation, Range and Aviation Meteorology, American Meteorological Society, 18-21 January 2010.

Summary

Convective storms are responsible for causing a predominant number of delays in the summer when air traffic peaks. Several studies have shown that there is a critical need for timely, reliable, and high-quality forecasts of precipitation and echo tops with forecast time horizons of up to 12 hours in order to predict airspace capacity (Robinson et al. 2008; Evans et al. 2006; FAA 2007). While a variety of convective weather forecast systems are available to strategic planners of the National Airspace System (NAS), these products don't meet Air Traffic Management (ATM) needs fully. In addition, a multitude of forecast products increases the potential of having conflicting information available in the planning process, which can cause situational awareness problems between the operational facilities, ultimately leading to more potential delays and perhaps safety problems.
READ LESS

Summary

Convective storms are responsible for causing a predominant number of delays in the summer when air traffic peaks. Several studies have shown that there is a critical need for timely, reliable, and high-quality forecasts of precipitation and echo tops with forecast time horizons of up to 12 hours in order...

READ MORE

The 2008 CoSPA forecast demonstration (Collaborative Storm Prediction for Aviation)

Summary

Air traffic congestion caused by convective weather in the US has become a serious national problem. Several studies have shown that there is a critical need for timely, reliable and high quality forecasts of precipitation and echo tops with forecast time horizons of up to 12 hours in order to predict airspace capacity (Robinson et al. 2008, Evans et al. 2006 and FAA REDAC Report 2007). Yet, there are currently several forecast systems available to strategic planners across the National Airspace System (NAS) that are not fully meeting Air Traffic Management (ATM) needs. Furthermore, the use of many forecasting systems increases the potential for conflicting information in the planning process, which can cause situational awareness problems between operational facilities. One of the goals of the Next Generation Air Transportation System (NextGen) is to consolidate these redundant and sometimes conflicting forecast systems into a Single Authoritative Source (SAS) for aviation uses. The FAA initiated an effort to begin consolidating these systems in 2006, which led to the establishment of a collaboration between MIT Lincoln Laboratory (MIT LL), the National Center for Atmospheric Research (NCAR) Research Applications Laboratory (RAL), the NOAA Earth Systems Research Laboratory (ESRL) Global Systems Division (GSD) and NASA, called the Consolidated Storm Prediction for Aviation (CoSPA; Wolfson et al. 2008). The on-going collaboration is structured to leverage the expertise and technologies of each laboratory to build a CoSPA forecast capability that not only exceeds all current operational forecast capabilities and skill, but that provides enough resolution and skill to meet the demands of the envisioned NextGen decision support technology. The current CoSPA prototype for 0-6 hour forecasts is planned for operation as part of the NextGen Initial Operational Capability (IOC) in 2013. CoSPA is funded under the FAA's Aviation Weather Research Program (AWRP). The first CoSPA research prototype demonstration was conducted during the summer of 2008. Technologies from the Corridor Integrated Weather System (CIWS; Evans and Ducot 2006), National Convective Weather Forecast (NCWF; Megenhardt et al. 2004), and NOAA’s Rapid Update Cycle (RUC; Benjamin et al. 2004) and High Resolution Rapid Refresh (HRRR; Benjamin et al. 2009) models were consolidated along with new technologies into a single high-resolution forecast and display system. Historically, forecasts based on heuristics and extrapolation have performed well in the 0-2 hour window, whereas forecasts based on Numerical Weather Prediction (NWP) models have shown better performance than heuristics past 3-4 hours (Figure 1). One of the goals of CoSPA is to optimally blend heuristics and NWP models into a unified set of aviation-specific storm forecast products with the best overall performance possible. The CoSPA prototype demonstration began in July 2008 with 2-6 hr forecasts of Vertically-Integrated Liquid water (VIL) that seamlessly matched with the 0-2 hr VIL forecasts available in CIWS. These real-time forecasts have been made available to the research team and FAA management only through a web-based interface. This paper discusses the system infrastructure, the forecast display, the forecast technology and performance of the 2-6 hr VIL forecast. Our early assessment based on the 2008 demonstration is that CoSPA is showing tremendous promise for greatly improving strategic storm forecasts for the NAS. Early user feedback during CoSPA briefings suggested that the 6 hr forecast time horizon be extended to 8 hours to better meet their planning functions, and that forecasts of Echo Tops must also be included.
READ LESS

Summary

Air traffic congestion caused by convective weather in the US has become a serious national problem. Several studies have shown that there is a critical need for timely, reliable and high quality forecasts of precipitation and echo tops with forecast time horizons of up to 12 hours in order to...

READ MORE

Consolidated storm prediction for aviation (CoSPA)

Published in:
Proc. of the 2008 Integrated Communications, Navigation and Surveillance Conf., 20-24 January 2008.

Summary

Research over the last 10 years primarily funded by the FAA Aviation Weather Research Program (AWRP) has led to very successful development of forecasts of both convective and winter storms, using heuristic and numerical models, for aviation applications. We have reached a point where there are several overlapping capabilities, and the smorgasbord of choices has become confusing. Moreover, aviation-impacting winter and summer conditions can exist simultaneously - even within a single terminal area - so a consolidated forecast must work equally well for all storm conditions. Advances in computing and communications allow incorporation of new observing systems and scientific advancements in data assimilation and modeling toward large-scale, very high resolution forecast systems that were prohibitive just 10 years ago. Other government agencies, in addition to FAA, have needs for aviation-oriented forecasts, including at least the National Weather Service, NASA, Homeland Defense, Air Force and other DoD agencies. Further efficiencies will be realized by consolidating such efforts as well. These goals are well-aligned with the goals of the Next Generation Air Transportation System and its Joint Program and Development Office. The FAA Aviation Weather Research Program is leading development of the new Consolidated Storm Prediction for Aviation (CoSPA) effort, which will combine aviation-oriented storm research in a coordinated fashion, with the goal of eventually replacing operational legacy storm diagnostic and forecast products, as appropriate, that are also geared toward aviation (see Appendix A). While many of the current storm prediction products are derived using NOAA model forecast data, especially from the hourly updated 13-km Rapid Update Cycle (RUC) model over CONUS, CoSPA products will be related to a new generation of NOAA models now assimilating radar reflectivity and lightning, including the Rapid Refresh, its proposed nest - the High-Resolution Rapid Refresh (HRRR), and ensemble-based products from both. A kick-off meeting was held in June 2006 to discuss AWRP?s concepts for a consolidated aviation forecast, and to understand unmet user needs, major scientific development issues, and also to begin to explore issues associated with production and dissemination of a consolidated forecast. These findings are summarized below.
READ LESS

Summary

Research over the last 10 years primarily funded by the FAA Aviation Weather Research Program (AWRP) has led to very successful development of forecasts of both convective and winter storms, using heuristic and numerical models, for aviation applications. We have reached a point where there are several overlapping capabilities, and...

READ MORE

Echo tops forecast generation and evaluation of air traffic flow management needs in the National Airspace System

Published in:
86th AMS Annual Mtg., 1st Symp. on Policy Research, 29 January - 2 February 2006.

Summary

Air traffic congestion in the United States (US) National Airspace System (NAS) has increased significantly in the past ten years. This congestion has resulted in a rise of air traffic delays, which can cause massive monetary and human costs. When convective weather impacts jet routes and airport terminals, particularly within the most congested airspace sectors, it causes a reduction in traffic capacity that can lead to significant delays. In an effort to increase airspace capacity and reduce air traffic delays, the Massachusetts Institute of Technology Lincoln Laboratory (MIT LL), in collaboration with the National Center for Atmospheric Research (NCAR) and the National Oceanic and Atmospheric Administration (NOAA) are tasked by the Federal Aviation Administration (FAA) to provide aviation weather decision support tools for the air traffic management (ATM) community. To determine which weather products and data dissemination approaches will provide the greatest benefit in terms of increasing airspace capacity, MIT LL is performing ongoing marketing research analyses. The method consists of three primary steps (Ballentine 1994; Evans and Robinson 2005; Evans et al. 2003): 1) Study the system 2) Identify benefits 3) Prioritize opportunities In practice, the execution of these three steps is an iterative process. It is critical to understand how the air traffic system operates to assess the benefits of a weather product. For this reason many studies have been conducted by MIT LL where ATM users have been interviewed, use of decision support tools has been observed, and flight track data have been analyzed to extract the behavior of the pilot (Evans et al. 2003; Evans and Robinson 2005; Robinson et al. 2004; Rhoda et al. 2002; Allan et al. 2001; Bieringer et al. 1999; Rhoda and Pawlak 1999; Forman et al. 1999). These studies have provided valuable insight into how the NAS operates during weather impacts. Weather impacts on the air traffic system can be classified into three basic types: 1) Terminal impacts (≤ 5 nm) 2) En route impacts 3) Transition impacts (between Air Route Traffic Control Centers (ARTCC) sectors and terminal operations) Terminal impacts are those that occur in and around the airport, and are generally less than 5 nm from the runways. These impacts are small in dimension and occur at low altitude, and have been shown to be relatively insignificant to the overall delay problem (Evans et al. 2005). En route impacts occur within ARTCC's jet routes and sectors. These impacts can result in a route being totally or partially blocked and lead to a reduction in capacity. The en route impacts generally occur at high altitude. Transition impacts are those that occur within the zone between the ARTCC sectors and the terminal approaches. By understanding the system one can then identify elements or areas of opportunities that can be exploited to help solve the airspace capacity problem. Weber et al. (2005) identifies four key elements for maintaining capacity during convective weather events: 1) Forecasts of convective weather 2) Capacity models where weather is an input 3) Strategy tools for ATM with weather as an input 4) Airspace capacity enhancements Forman et al. (1999) studied the terminal impact problem and found that the ATM users required precipitation forecasts that were reliable, updated rapidly (5-6 minutes), had high resolution (1 km), short lead times (1-2 hours), and were issued with fine time steps (10-15 minutes). MIT LL used this information to refine its terminal convective weather forecast (TCWF) and received very positive feedback from ATM personnel (Hallowell et al. 1999). Subsequently, the precipitation forecast was extended out to 2-hourtime horizons and was provided to the traffic managers working in busy Midwest and Northeast ARTCCs as part of the Corridor Integrated Weather System (CIWS) (See Klingle-Wilson and Evans (2005) for a description of the CIWS product). However, it was quickly determined that the precipitation product alone was not sufficient for identifying usable en route airspace, since occasionally significant precipitation (≥ level 3)1 had relatively low storm tops (≤ 30 kft). Due to feedback from ATM users, MIT LL produced a high resolution (1 km) enhanced Echo Tops Mosaic weather product (Evans et al. 2003) that is used as a proxy for the cloud top height. Since the operational inception of the CIWS enhanced Echo Tops Mosaic product in August 2002, FAA and airline traffic managers have become acutely aware of the benefits of high-resolution storm top information for efficient en route air traffic control (ATC) operations. CIWS field use assessment campaigns in 2003 revealed significant benefits attributed to use of the Echo Tops Mosaic product (Robinson et al. 2004). During interviews, traffic managers explained that in the past, if an aircraft deviated around a storm in high-traffic airspace, jet routes were closed by default, since pilot behavior was the only easily assessable information available about three-dimensional storm structure. After the CIWS Echo Tops Mosaic was introduced, traffic managers were able to differentiate between isolated storm top concerns, which are easily handled by keeping routes open and absorbing occasional, local deviations, and significant high-topped storm events, which legitimately require route closures and reroutes. Post-event interviews in 2003 revealed that though FAA and airline users were very pleased with the availability and quality of the CIWS Echo Tops Mosaic product, they also needed to know both the past trend and predicted behavior of storm top heights. The CIWS Echo Tops Forecast (ETF) was introduced in May 2005 to meet some of the traffic management requests. This paper discusses the ETF product currently operational in CIWS. We will discuss the generation of the forecast algorithm and provide an initial assessment of the use of the ETF in the field.
READ LESS

Summary

Air traffic congestion in the United States (US) National Airspace System (NAS) has increased significantly in the past ten years. This congestion has resulted in a rise of air traffic delays, which can cause massive monetary and human costs. When convective weather impacts jet routes and airport terminals, particularly within...

READ MORE

FAA tactical weather forecasting in the United States National Airspace

Published in:
World Weather Research Program Symp. on Nowcasting and Very Short Term Forecasts, 5-9 September 2005.

Summary

This paper describes the Tactical 0-2 hour Convective Weather Forecast (CWF) algorithm developed by the MIT LL for the FAA. We will address the algorithm and focus on the key scientific developments. Future directions will also be discussed.
READ LESS

Summary

This paper describes the Tactical 0-2 hour Convective Weather Forecast (CWF) algorithm developed by the MIT LL for the FAA. We will address the algorithm and focus on the key scientific developments. Future directions will also be discussed.

READ MORE

Tactical 0-2 hour convective weather forecasts for FAA

Published in:
11th Conf. on Aviation, Range and Aerospace Meteorology, 4-8 October 2004.

Summary

Major airlines and FAA Traffic Flow Managers alike would prefer to plan their flight routes around convective weather and thereby avoid the tactical maneuvering that results when unforecasted thunderstorms occur. Strategic planning takes place daily and 2-6 hr forecasts are utilized, but these early plans remain unaltered in only the most predictable of convective weather scenarios. More typically, the ATC System Command Center and the Air Route Traffic Control Centers together with airline dispatchers will help flights to utilize jet routes that remain available within regions of convection, or facilitate major reroutes around convection, according to the available "playbook" routes. For this tactical routing in the presence of convective weather to work, both a precise and timely shared picture of current weather is required as well as an accurate, reliable short term (0-2 hr) forecast. This is crucial to containing the system-wide and airport-specific delays that are so prevalent in the summer months (Figure 1), especially as traffic demands approach full capacity at the pacing airports. This paper describes the Tactical 0-2 hr Convective Weather Forecast (CWF) algorithm developed by the MIT Lincoln Laboratory for the FAA, principally sponsored by the Aviation Weather Research Program (AWRP). This CWF technology is currently being utilized in both the Integrated Terminal Weather System (ITWS; Wolfson et al., 2004) and the Corridor Integrated Weather System (CIWS; Evans et al., 2004) proof-of-concept demonstrations. Some of this technology is also being utilized in the National Convective Weather Forecast from the Aviation Weather Center (Megenhardt, 2004), the NCAR Autonowcaster (Saxen et al., 2004), and in various private-vendor forecast systems.
READ LESS

Summary

Major airlines and FAA Traffic Flow Managers alike would prefer to plan their flight routes around convective weather and thereby avoid the tactical maneuvering that results when unforecasted thunderstorms occur. Strategic planning takes place daily and 2-6 hr forecasts are utilized, but these early plans remain unaltered in only the...

READ MORE

An automated, operational two hour convective weather forecast for the Corridor Integrated Weather

Published in:
10th Conf. on Aviation, Range and Aerospace Meteorology, 13-16 May 2002, pp. 116-119.

Summary

The FAA Aviation Weather Research Program (AWRP) is an initiative of the Weather and Flight Service Systems Integrated Product Team, AUA400. One of the goals of the AWRP is to create accurate and accessible forecasts of hazardous weather tailored to the needs of the aviation community. Pursuant to this goal, the AWRP has sponsored the collaboration of the Research Applications Program (RAP) of the National Center for Atmospheric Research (NCAR), the Aviation and Forecast Research Divisions at the NOAA Forecast Systems Laboratory (FSL), the Weather Sensing Group of the Massachusetts Institute of Technology's Lincoln Laboratory (MIT/LL) and the National Severe Storm Laboratory (NSSL) on a Product Development Team (PDT). This Convective Weather PDT is developing an automated system that combines real-time weather- radar data with the current "state-of-the-art" convective weather prediction algorithms to produce forecasts of convective weather for the heavily traveled air traffic routes in the Great Lakes/Northeast corridor (Chicago to New York). This Regional Convective Weather Forecast (RCWF) will be provided to traffic flow management decision-makers as part of the proof-of-concept Corridor Integrated Weather System (CIWS), which began operations in July 2001 with a l-hr animated Regional Convective Weather Forecast (RCWF).
READ LESS

Summary

The FAA Aviation Weather Research Program (AWRP) is an initiative of the Weather and Flight Service Systems Integrated Product Team, AUA400. One of the goals of the AWRP is to create accurate and accessible forecasts of hazardous weather tailored to the needs of the aviation community. Pursuant to this goal...

READ MORE

Forecasting convective weather using multi-scale detectors and weather Classification - enhancements to the MIT Lincoln Laboratory Terminal Weather Forecast

Published in:
10th Conf. on Aviation, Range, and Aerospace Meteorology, 13-16 May 2002, pp. 132-135.

Summary

Over the past decade the United States has seen drastic increases in air traffic delays resulting in enormous economic loses. Analysis shows that more then 50% of air traffic delays are due to convective weather. In response the FAA has assembled scientific and engineering teams from MIT Lincoln Laboratory, NCAR. NSSL, FSL and several universities to develop convective weather forecast systems to aid air traffic managers in delay reduction. A user-needs study conducted by Lincoln Laboratory identified that a major source of air traffic delay was due to line thunderstorms (Forman et al., 1999). Recognizing that the line storm envelope motion was distinct from the local cell motion was the impetus for developing the Growth and Decay Storm Tracker' (Wolfson et al., 1999). The algorithm produces forecasts by extracting large-scale features from two dimensional precipitation images. These images are tracked, using either correlation techniques (Terminal Convective Weather Forecast or TCWF) or centroid techniques (National Convective Weather Forecast or NCWF). In TCWF, the track vector field is used to advect the current precipitation images formed to produce a series of forecasts into minute increments up to 60 minutes. The TCWF forecasts are highly skilled for large scale persistent line storms. However, detailed performance analysis of the algorithm has shown that in cases dominated by airmass storms, the algorithm occasionally performed poorly (Theriault et al., 2001). In this paper we describe the sources of error discovered in the TCWF algorithm during the Memphis 2000 performance evaluation, and describe recent enhancements designed to address these problems.
READ LESS

Summary

Over the past decade the United States has seen drastic increases in air traffic delays resulting in enormous economic loses. Analysis shows that more then 50% of air traffic delays are due to convective weather. In response the FAA has assembled scientific and engineering teams from MIT Lincoln Laboratory, NCAR...

READ MORE

TCWF algorithm assessment - Memphis 2000

Summary

This report describes a formal Assessment of the Terminal Convective Weather Forecast (TCWF) algorithm, developed under the FAA Aviation Weather Research Program by MIT Lincoln Laboratory as part of the Convective Weather Product Development Team (PDT). TCWF is proposed as a Pre-Planned Product Improvement (P3I) enhancement to the operational ITWS currently scheduled for deployment at major airports in 2002. The TCWF Assessment in Memphis, TN ran from 24 March to 30 September 2000. The performance of TCWF was excellent on the large scale, organized storm systems it was designed to predict, and the software was extremely stable during the Assessment. Small changes to the algorithm parameters were made as a result of the 2000 testing. The TCWF performance can be improved on airmass storms and on forecasting new growth and subsequent decay of large-scale storms. These are active areas of research for future ITWS P3I builds.
READ LESS

Summary

This report describes a formal Assessment of the Terminal Convective Weather Forecast (TCWF) algorithm, developed under the FAA Aviation Weather Research Program by MIT Lincoln Laboratory as part of the Convective Weather Product Development Team (PDT). TCWF is proposed as a Pre-Planned Product Improvement (P3I) enhancement to the operational ITWS...

READ MORE

Showing Results

1-10 of 10