Publications

Refine Results

(Filters Applied) Clear All

Switchable electrowetting of droplets on dual-scale structured surfaces

Published in:
J. Vac. Sci. Technol. B, Microelectron. Process. Phenon., Vol. 30, No. 6, November 2012, 06F801.

Summary

The authors report on the development of surfaces containing artificially fabricated structures of dual nanometer and micrometer surfaces that allow an aqueous droplet to be reversibly switched by electrowetting from a Cassie state with low adhesion to a Wenzel state with high adhesion. A variety of geometries were fabricated to study parameters that affect switchable wetting-dewetting. Nanometer parallel corrugations, posts, and holes were fabricated and combined with micrometer features consisting of parallel corrugations, streets, and checkerboard patterns of varying widths and pitches. It was observed that many combinations of the dual-textured surfaces produced superhydrophobic wetting states and aqueous droplets on these surfaces could be electrically controlled to switch from a Cassie state to a Wenzel state. Reversible switching between these wetting states occurred on specific combinations of surface geometries, namely surfaces that had parallel corrugations.
READ LESS

Summary

The authors report on the development of surfaces containing artificially fabricated structures of dual nanometer and micrometer surfaces that allow an aqueous droplet to be reversibly switched by electrowetting from a Cassie state with low adhesion to a Wenzel state with high adhesion. A variety of geometries were fabricated to...

READ MORE

Reversible electrowetting on dual-scale-patterned corrugated microstructured surfaces

Published in:
J. of Microeletromechanical Systems, Vol. 21, No. 5, October 2012, pp. 1261-71.

Summary

The ability to reversibly switch between a hydrophobic Cassie state and a hydrophilic Wenzel state is often not possible on textured surfaces because of energy barriers which result from the geometry of the microstructure. In this paper, we report on a simple microstructure geometry that allows an aqueous droplet to be reversibly switched between these states by the application of electrowetting. We demonstrate reversible electrowetting in air on microstructured surfaces consisting of parallel corrugations and show that this geometry can be engineered to produce a Cassie state and can be electrically controlled to switch to a Wenzel wetting state having high adhesion. When the electric field was removed, we observed spontaneous dewetting along the corrugations as the droplet transitioned from the Wenzel state back to a Cassie state.
READ LESS

Summary

The ability to reversibly switch between a hydrophobic Cassie state and a hydrophilic Wenzel state is often not possible on textured surfaces because of energy barriers which result from the geometry of the microstructure. In this paper, we report on a simple microstructure geometry that allows an aqueous droplet to...

READ MORE

Contribution of photoacid generator to material roughness

Published in:
J. Vac. Sci. Technol. B, Microelectron. Process. Phenon., Vol. 24, No. 6, November/December 2006, pp. 3031-3039 (EIPBN 2006, 30 May-2 June 2006).

Summary

The authors have developed an atomic-force-microscopy-based technique to measure intrinsic material roughness after base development. This method involves performing an interrupted development of the resist film and measuring the resulting film roughness after a certain fixed film loss. Employing this technique, the authors previously established that the photoacid generator (PAG) is a major material contributor of film roughness and that PAG segregation in the resist is likely responsible for nanoscale dissolution inhomogeneities. The additional roughness imparted on a test polymer by incorporation of a series of iodonium, sulfonium, diazo, and imido PAGs was measured. The roughness was then correlated to the inhibition properties of the various PAGs. This was accomplished both through a NMR technique that measures interaction of the PAG with the polymer and by evaluating the dissolution inhibition properties of the PAG through a percolation model. Several PAGs that result in significantly lower material roughness and thus the potential for significantly reduced linewidth roughness in resist imaging have been identified.
READ LESS

Summary

The authors have developed an atomic-force-microscopy-based technique to measure intrinsic material roughness after base development. This method involves performing an interrupted development of the resist film and measuring the resulting film roughness after a certain fixed film loss. Employing this technique, the authors previously established that the photoacid generator (PAG)...

READ MORE

Showing Results

1-3 of 3