Publications

Refine Results

(Filters Applied) Clear All

Recognizing low-altitude wind shear hazards from doppler weather radar: an artificial intelligence approach

Published in:
J. Atmos. Oceanic Technol., Vol. 4, No. 1, March 1987, pp. 5-18.

Summary

This paper describes an artificial intelligence-based approach for automated recognition of wind shear hazards. The design of a prototype system for recognizing low-altitude wind shear events from Doppler radar displays is presented. This system, called WXI, consists of a conventional expert system augmented by a specialized capability for processing radar images. The radar image processing component of the system employs numerical and computer vision techniques to extract features from radar data. The expert system carries out symbolic reasoning on these features using a set of heuristic rules expressing meteorological knowledge about wind shear recognition. Results are provided demonstrating the ability of the system to recognize microburst and gust front wind shear events.
READ LESS

Summary

This paper describes an artificial intelligence-based approach for automated recognition of wind shear hazards. The design of a prototype system for recognizing low-altitude wind shear events from Doppler radar displays is presented. This system, called WXI, consists of a conventional expert system augmented by a specialized capability for processing radar...

READ MORE

Microburst recognition: an expert system approach

Published in:
Proc. 23rd Conf. on Radar Meteorology, Vol. 1, 22-26 September 1986, pp. 26-29.
Topic:

Summary

Expert systems have gained much recent attention as a means for capturing the performance of human experts in specialized fields of knowledge. Areas in which expert systems have been successfully developed include such varied applications as mass spectrogram interpretation, disease diagnosis, geological data analysis and computer configuration (Hayes-Roth et al, 1983). The assumption behind these applications is that a body of specialized knowledge is possessed by the human expert. Expert systems attempt to capture this knowledge in an explicit form, each as a set of heuristic rules, and employ mechanisms to apply this knowledge to solve problems in the domain of expertise. Using this approach, expert systems have been able to successfully perform tasks which previously could only be carried out by human specialists. Moreover, expert systems have in some cases been able to attain levels of performance equaling that of humans (Buchanan and Shortliffe, 1984). This paper describes an expert system-based approach to the problem of recognizing microbursts from Doppler weather radar data. A prototype system based on this approach is currently being developed at Lincoln Laboratory for automated recognition of low-altitude wind shear hazards. This system, called WX1, employs artificial intelligence and computer vision techniques to emulate the symbolic reasoning and visual processing capabilities of a radar meteorologist.
READ LESS

Summary

Expert systems have gained much recent attention as a means for capturing the performance of human experts in specialized fields of knowledge. Areas in which expert systems have been successfully developed include such varied applications as mass spectrogram interpretation, disease diagnosis, geological data analysis and computer configuration (Hayes-Roth et al...

READ MORE

Mode S beacon system: functional description (revision D)

Published in:
MIT Lincoln Laboratory Report ATC-42-D

Summary

This document provides a functional description of the Mode S Beacon System, a combined secondary surveillance radar (beacon) and ground-air-ground data link system capable of providing the aircraft surveillance and communications necessary to support ATC automation in future traffic environments. Mode S is capable of common-channel interoperation with the current ATC beacon system, and may be implemented at low user cost over an extended transition period. Mode S will provide the surveillance and communication performance required by the ATC automation, the reliable communications needed to support data link services, and the capability of operating with a terminal or enroute, radar digitizer-equipped, ATC surveillance radar. The material contained in this document updates and expands the information presented in "Mode S Beacon System: Functional Description", DOT/FAA/PM-83/8, 215 July 1983.
READ LESS

Summary

This document provides a functional description of the Mode S Beacon System, a combined secondary surveillance radar (beacon) and ground-air-ground data link system capable of providing the aircraft surveillance and communications necessary to support ATC automation in future traffic environments. Mode S is capable of common-channel interoperation with the current...

READ MORE

A coordinate conversion algorithm for multisensor data processing

Author:
Published in:
MIT Lincoln Laboratory Report ATC-139

Summary

Processing of aircraft surveillance data from several geographically separated radars is most easily accomplished using a common coordinate system to represent data from all sensors. The Multisensor Data Processing system currently being developed for the FAA in support of the Advanced Automation System (AAS) requires a degree of accuracy and consistency that is not available from the current NAS implementation of coordinate conversion. A study has been undertaken to design a coordinate covnersion algorithm that meets the needs of Multisensor Data Processing. The process of projection of the ellipsoidal surface of the earth onto a planar surface is examined in light of teh requirements of air traffic control systems. The effects of the non-spherical nature of the earth and of limited computational resources are considered. Several standard cartographic projection techniques are examined, and the sterographic projection is found to be the projection of choice. A specific implementation of stereographic projection that makes the needs of Multisensor Data Processing is described. This implementation makes use of several approximations to decrease the computational load. The systemic errors introduced by these approximations are removed by the addition of a correction term determined from a precomputed error surface. The performance of this conversion system is demonstrated using realistic test data.
READ LESS

Summary

Processing of aircraft surveillance data from several geographically separated radars is most easily accomplished using a common coordinate system to represent data from all sensors. The Multisensor Data Processing system currently being developed for the FAA in support of the Advanced Automation System (AAS) requires a degree of accuracy and...

READ MORE

TCAS Experimental Unit (TEU) hardware description

Published in:
MIT Lincoln Laboratory Report ATC-133

Summary

This report describes the hardware design of the TCAS Experimental Units (TEU's) constructed by Lincoln Laboratory to support the design and validation of the Traffic Alert and Collision Avoidance System (TCAS) for the FAA. Section 1.0 presents an overview of the operation of hte TEU's, in order to give some context for the hardware design. References are given to more extensive descriptions of the TCAS system operation and software design. Section 2.0 constitutes the bulk of the report, and is a detailed description of the TEU hardware design. The purpose of this description is to document the design details of the equipment which was used to develop and validate the signal processing techniques and algorithms which appear in the TCAS II Minimum Operational Performance Standard, the TCAS National Standard and various technical reports listed in the references. A second purpose is to provide design guidance to potential TCAS II manufacturers, in the form of a detailed description of a feasible design with documented performance. Finally, this document is a manual for future use and maintenance of the TEU's.
READ LESS

Summary

This report describes the hardware design of the TCAS Experimental Units (TEU's) constructed by Lincoln Laboratory to support the design and validation of the Traffic Alert and Collision Avoidance System (TCAS) for the FAA. Section 1.0 presents an overview of the operation of hte TEU's, in order to give some...

READ MORE

Pilot evaluation of TCAS in the Long Ranger helicopter

Author:
Published in:
MIT Lincoln Laboratory Report ATC-136

Summary

A specially modified version of the Traffic Alert and Collision Avoidance System (TCAS) was installed in a Bell Long Ranger helicopter in order to investigate the feasibility of TCAS operation in rotorcraft. This installation employed TCAS air-to-air surveillance to provide automated traffic advisories that were displayed in the cockpit on a color cathod ray tube display. As part of this study, 12 subject pilots evaluated the utility of the installation thorugh brief test flights in the vicinity of a major airport. Among the topics investigated were the rate of alarms, the computer logic for issuing advisories, the bearing accuracy, and the display symbology. Several recommendations for adapting TCAS to the rotorcraft environment resulted from the testing.
READ LESS

Summary

A specially modified version of the Traffic Alert and Collision Avoidance System (TCAS) was installed in a Bell Long Ranger helicopter in order to investigate the feasibility of TCAS operation in rotorcraft. This installation employed TCAS air-to-air surveillance to provide automated traffic advisories that were displayed in the cockpit on...

READ MORE

WX1 - an expert system for weather radar interpretation

Published in:
Coupling Symbolic and Numerical Computing in Expert Systems, Elsevier Science Publ. B. V., 1986.

Summary

This paper describes work performed by M.I.T. Lincoln Laboratory for the Federal Aviation Administration to investigate the use of expert system techniques for weather radar interpretation. The design of WX1, a prototype system for recognizing low-altitude wind shear hazards from Doppler weather radar data, is presented. The WX1 system consists of a rule-based expert system coupled to an object-oriented image processing package. Initial results for recognition of two types of low-altitude wind shear are provided.
READ LESS

Summary

This paper describes work performed by M.I.T. Lincoln Laboratory for the Federal Aviation Administration to investigate the use of expert system techniques for weather radar interpretation. The design of WX1, a prototype system for recognizing low-altitude wind shear hazards from Doppler weather radar data, is presented. The WX1 system consists...

READ MORE

Effect of interference on the performance of a minimum TCAS II

Published in:
MIT Lincoln Laboratory Report ATC-132

Summary

Minimum TCAS II equipment is required to operate reliably in all aircraft densities up to the 0.3 transponder-equipped aircraft per square nautical mile anticipated in the Los Angeles Basin in the year 2000. Prototype TCAS equipment has been developed and shown to be capable of providing reliable surveillance in today's highest densities, which reach an average of about 0.1 aircraft per square nmi. Since there are no existing environments that reach the density of asynchronous interference anticipated for the Los Angeles Basin in the year 2000, it is necessary to generate simulated interference to determine the performance of the TCAS II design in that environment. A series of bench tests were conducted at Lincoln Laboratory for this purpose. Special sources were used to generate asynchronous ATCRBS and Mode S reply signals (Fruit) and TCAN/DME squitter and interrogation signals. Synchronous ATCRBS and Mode S reply sequences were also generated to simulate airborne encounters. The performance was evaluated by observing hoe the interference signals either degraded the ability of a TCAS II unit to receive, process, and track the desired synchronous reply sequences, or caused the TCAS II unit to generate false tracks.
READ LESS

Summary

Minimum TCAS II equipment is required to operate reliably in all aircraft densities up to the 0.3 transponder-equipped aircraft per square nautical mile anticipated in the Los Angeles Basin in the year 2000. Prototype TCAS equipment has been developed and shown to be capable of providing reliable surveillance in today's...

READ MORE

Collision avoidance for Naval training aircraft

Published in:
MIT Lincoln Laboratory Report ATC-125

Summary

Lincoln Laboratory was tasked by the FAA to assist the Naval Air Training Command in evaluating the feasibility of using the FAA's TCAS I concept as the document summarizes the results of a brief study and flight test activity conducted to that end. It begins with a review of Lincoln Laboratory's understanding of the nature of the mid-air collision problem at the Naval Air Training Center. This is followed by a brief analysis of a set of documented collisions and near-miss encounters involving aircraft of Navy Training Air Wing 5 at Whiting Naval Air Station in Florida in 1982 and 1983. Experience gained from FAA and Lincoln Laboratory flight tests of similar encounters is reviewed and applied to the Navy encounter data base. This is followed by a review of the results obtained when a Lincoln Laboratory aircraft equipped with a TCAS Experimental Unit (TEU) was flown to Whiting Field to evaluate the ability of TCAS I equipment to perform reliable surveillance in the Naval training environment. Flight test results show that the environment is quite unlike typical civil environments, but that the TCAS surveillance design would be capable of providing a significant degree of protection to Naval trainers.
READ LESS

Summary

Lincoln Laboratory was tasked by the FAA to assist the Naval Air Training Command in evaluating the feasibility of using the FAA's TCAS I concept as the document summarizes the results of a brief study and flight test activity conducted to that end. It begins with a review of Lincoln...

READ MORE

TCAS-II: design and validation of the high-traffic-density surveillance subsystem

Published in:
MIT Lincoln Laboratory Report ATC-126

Summary

Lincoln Laboratory, under FAA sponsorship, is developing an airborne collision avoidance system (TCAS II), concentrating primarily on the air-to-air surveillance subsystem. The surveillance functions required are to detect the presence of nearby transponder equipped aircraft, and then generate a surveillance track on each aircraft, issuing range and altitude reports once per second. The development effort from mid-1981 to the present has focused on the surveillance problems associated with high aircraft density. A number of surveillance techniques to deal with the high density environment have been identified and evaluated mainly through airborne measurements. A TCAS II design was synthesized, and this design was subjected to in-flight testing in the Los Angeles Basin using a Boeing 727. Results indicate that the performance objectives have been met.
READ LESS

Summary

Lincoln Laboratory, under FAA sponsorship, is developing an airborne collision avoidance system (TCAS II), concentrating primarily on the air-to-air surveillance subsystem. The surveillance functions required are to detect the presence of nearby transponder equipped aircraft, and then generate a surveillance track on each aircraft, issuing range and altitude reports once...

READ MORE