Publications

Refine Results

(Filters Applied) Clear All

45-GHz MMIC power combining using a circuit-fed, spatially combined array

Published in:
IEEE Microw. Guid. Wave Lett., Vol. 7, No. 1, January 1997, pp. 15-17.

Summary

We describe the design and measurement of a hybrid-circuit, tile-approach subarray for use in spatial power-combined transmitters. The subarray consists of 16 monolithic millimeter-wave integrated circuit (MMIC) amplifiers, each feeding a circularly polarized cavity-backed microstrip antenna. The average performance across the 43.5-45.5 GHz band is as follows: EIRP 18.3 dBW, dc-RF efficiency 10.3%, effective transmitter power 530 mW, system gain 13.2 dB, and combining efficiency of 46.2%. The minimum axial ratio is 1.2 dB at 43.9 GHz, and the array has a 3% 3-dB axial ratio bandwidth.
READ LESS

Summary

We describe the design and measurement of a hybrid-circuit, tile-approach subarray for use in spatial power-combined transmitters. The subarray consists of 16 monolithic millimeter-wave integrated circuit (MMIC) amplifiers, each feeding a circularly polarized cavity-backed microstrip antenna. The average performance across the 43.5-45.5 GHz band is as follows: EIRP 18.3 dBW...

READ MORE

A 16-element subarray for hybrid-circuit tile-approach spatial power combining

Published in:
IEEE Trans. Microw. Theory Tech., Vol. 44, No. 11, November 1996, pp. 2093-8.

Summary

Three designs for a 4-by-4 are described for use in a spatial power-combined transmitter. The subarrays are constructed using a hybrid-circuit, tile-approach architecture and are composed of 16 cavity-backed, proximity-coupled microstrip antennas, each fed by a 0.5 watt amplifier. Both linearly and circularly polarized subarrays have been constructed for operation over a 10% band centered at 10 GHz. The linearly polarized subarray showed the following peak performance: EIRP greater than 27 dBW, effective transmitter power greater than 5 watts, dc-RF efficiency greater than 20%, and excellent graceful degradation performance.
READ LESS

Summary

Three designs for a 4-by-4 are described for use in a spatial power-combined transmitter. The subarrays are constructed using a hybrid-circuit, tile-approach architecture and are composed of 16 cavity-backed, proximity-coupled microstrip antennas, each fed by a 0.5 watt amplifier. Both linearly and circularly polarized subarrays have been constructed for operation...

READ MORE

Experimental comparison of the radiation efficiency for conventional and cavity backed microstrip antennas

Author:
Published in:
IEEE Antennas and Propagation Society Intl Symp., 21-26 July 1996.

Summary

The radiation efficiency of conventional microstrip antennas generally decreases when the substrate thickness or permittivity is increased because of loss to surface waves. However, constructing a metal cavity around the microstrip antenna prevents the surface wave propagation. Thus, the cavity backed microstrip antenna has been predicted to have increased radiation efficiency. In this paper, we compare conventional and cavity backed microstrip patch antennas on substrates with an electrical thickness of 0.067 ho and dielectric constants of ~r=2.94, 6.15, and 10.2. As one would expect, the radiation efficiency of the conventional patch decreases with increasing dielectric constant, but the efficiency remains relatively constant for the cavity backed patch. In this work, three different methods are used to measure the radiation efficiencies: a far field gain comparison, a Wheeler cap method and an input admittance method.
READ LESS

Summary

The radiation efficiency of conventional microstrip antennas generally decreases when the substrate thickness or permittivity is increased because of loss to surface waves. However, constructing a metal cavity around the microstrip antenna prevents the surface wave propagation. Thus, the cavity backed microstrip antenna has been predicted to have increased radiation...

READ MORE

Phased array calibrations using measured element patterns

Published in:
1995 IEEE Int. Symp. Digest, Antennas and Propagation, Vol. 2, 18-23 June 1995, pp. 918-921.

Summary

A technique to compensate for differences in phased array element patterns is presented. Each measured element pattern is approximated by a virtual array whose excitation function is determined by the Woodward-Lawson synthesis technique. By extending the virtual array beyond the physical array dimensions, mutual coupling and edge diffraction effects can be separated. An example is given where calibration by coupling matrix inversion resulted in significantly reduced array pattern sidelobes.
READ LESS

Summary

A technique to compensate for differences in phased array element patterns is presented. Each measured element pattern is approximated by a virtual array whose excitation function is determined by the Woodward-Lawson synthesis technique. By extending the virtual array beyond the physical array dimensions, mutual coupling and edge diffraction effects can...

READ MORE

Low-sidelobe phased array antenna characteristics using the planar near-field scanning technique: theory and experiment

Published in:
MIT Lincoln Laboratory Report TR-870

Summary

Characteristics of a low-sidelobe phased array antenna are investigated using the technique of planar near-field scanning. The theory associated with the planar near-field scanning technique, with and without probe compensation, is reviewed and an application of the theory is made. The design of an experimental low-sidelobe phased array antenna consisting of monopole elements which are corporate-fed using high precision transmit/receive modules is described. Accurate array radiation patterns are obtained both theoretically and experimentally using centerline scanning at less than one wavelength distance from the antenna. The effects of the antenna probe on the array near-field pattern, plane-wave spectrum, and far-field pattern are demonstrated theoretically using a method of moments numerical simulation. Comparisons of the array theoretical near-zone electric field and array received voltage due to a V-dipole near-field transmitting probe are made. It is shown that a V-dipole theoretical probe antenna can accurately model a practical near-field measurement probe consisting of an open-ended rectangular waveguide surrounded with anechoic material.
READ LESS

Summary

Characteristics of a low-sidelobe phased array antenna are investigated using the technique of planar near-field scanning. The theory associated with the planar near-field scanning technique, with and without probe compensation, is reviewed and an application of the theory is made. The design of an experimental low-sidelobe phased array antenna consisting...

READ MORE

The Transportable Measurements Facility (TMF) system description

Published in:
MIT Lincoln Laboratory Report ATC-91
Topic:

Summary

This report describes the MIT Lincoln Laboratory Transportable Measurements Facility (TMF), a special purpose beacon interrogator patterned after the Discrete Address Beacon Sensor. This van-mounted experimental beacon system includes all ATCRBS/DABS reply processing and monopulse processing, but not other DABS processing. It was developed to collect data at various locations in the United States so that candidate DABS sensor antenna and processing could be evaluated in a real environment. The TMF has been installed and operated at: Logan Airport (Boston), Deer Island, MA (near Logan), Washington National Airport (DCA), Philadelphia Int. Airport (PHL), Clementon, NJ (near Philadelphia), Los Angeles Int. Airport (LAX), Brea, CA (25 miles east of LAX), Salt Lake City, UT (SLC), Layton, UT (near Salt Lake City), Las Vegas Airport (LAS), and Green Airport (Warwick, RI).
READ LESS

Summary

This report describes the MIT Lincoln Laboratory Transportable Measurements Facility (TMF), a special purpose beacon interrogator patterned after the Discrete Address Beacon Sensor. This van-mounted experimental beacon system includes all ATCRBS/DABS reply processing and monopulse processing, but not other DABS processing. It was developed to collect data at various locations...

READ MORE

Zoom antenna

Published in:
Project Report ATC-90, MIT Lincoln Laboratory

Summary

In current ATC radars, high altitude targets are at a disadvantage when competing with low altitude undesired returns such as ground clutter and birds. The "zoom antenna" technique is proposed as a means of virtually eliminating this problem. An implementation based on control of multiple elevation beams during each range sweep interval is recommended as applicable to both S-band and L-band ATC radars.
READ LESS

Summary

In current ATC radars, high altitude targets are at a disadvantage when competing with low altitude undesired returns such as ground clutter and birds. The "zoom antenna" technique is proposed as a means of virtually eliminating this problem. An implementation based on control of multiple elevation beams during each range...

READ MORE

MLS Multipath Studies, Phase 3, Volume II: Development and Validation of Model for MLS Techniques

Published in:
MIT Lincoln Laboratory Report ATC-88,II

Summary

This report presents work done during phase 3 of the US national Microwave Landing System (MLS) program toward developing a computer simulation model of the MLS multipath effects, the experimental validation ot the model, and the application of the model to investigate multipath performance of ICAO proposals for the new approach and landing guidance system. This second volume of the report presents the mathematical models and validation data for the MLS techniques which were assessed in detail by the All Weather Operations Panel of the Interational Civil Aviation Organization. The specific techniques modeled are: 1. The Time Reference Scanning Beam (TRSB) system proposed by the United States (US) and Australia, with prime emphasis on the US equipment implementation and field test data, 2. the Doppler scan (DMLS) proposed by the United Kingdom, and 3. the DME Based Landing System (DLS) proposed by the Federal Republic of Germany.
READ LESS

Summary

This report presents work done during phase 3 of the US national Microwave Landing System (MLS) program toward developing a computer simulation model of the MLS multipath effects, the experimental validation ot the model, and the application of the model to investigate multipath performance of ICAO proposals for the new...

READ MORE

The Aircraft Reply and Interference Environment Simulator (ARIES) volume 1: principles of operation

Author:
Published in:
MIT Lincoln Laboratory Report ATC-87,I

Summary

The Aircraft Reply and Interference Environment Simulator (ARIES) makes possible the performance assessment of a Discrete Address Beacon System (DABS) sensor under its specified maximum aircraft load. To do this ARIES operates upon a taped traffic model to generate simulated aircraft replies and fruit, feeding them to the sensor at RF. Support documentation for ARIES, of which this is the first volume, consists of: Volume 1: Principles of Operation Volume 2: Appendices to the Principles of Operation Volume 3: Programmer's Manual The Principles of Operation details the operation of ARIES hardware and software. Descriptive information, supported by block diagrams, simplified schematic diagrams and flow diagrams, is provided sufficient to permit a thorough understanding of ARIES operation.
READ LESS

Summary

The Aircraft Reply and Interference Environment Simulator (ARIES) makes possible the performance assessment of a Discrete Address Beacon System (DABS) sensor under its specified maximum aircraft load. To do this ARIES operates upon a taped traffic model to generate simulated aircraft replies and fruit, feeding them to the sensor at...

READ MORE

Airborne measurements of ATCRBS fruit

Published in:
MIT Lincoln Laboratory Report ATC-84

Summary

Airborne measurements of ATCRBS fruit (asynchronous replies from ATCRBS transponders) are described. These measurements were undertaken to provide a more firm basis for assessing the interference impact of ATCRBS fruit on airborne 1090 MHz receivers (as in BCAS). Fruit rate measurements were performed with an instrumented aircraft flying along the East Coast from Boston to Washington and in the Los Angeles Basin. The results of these measurements are reported here, with fruit rates given as a function of altitude, geographical location, and receiver threshold, for receptions on both top-mounted and bottom-mounted aircraft antenna. The highest observed fruit rates, approximately 10,000 replies/sec, occurred in the LA Basin. To complement the measurements, a first-order fruit prediction model is defined. Predictions of this model are compared with the measurements, generally showing favorable agreement in absolute fruit rate, in power distribution, and in the functional dependence on traffic density.
READ LESS

Summary

Airborne measurements of ATCRBS fruit (asynchronous replies from ATCRBS transponders) are described. These measurements were undertaken to provide a more firm basis for assessing the interference impact of ATCRBS fruit on airborne 1090 MHz receivers (as in BCAS). Fruit rate measurements were performed with an instrumented aircraft flying along the...

READ MORE