Summary
Thunderstorm activity and associated low-altitude wind shear constitute a significant safety hazard to aviation, particularly during operations near airport terminals where aircraft altitude is low and flight routes are constrained. The Federal Aviation Administration (FAA) has procured several dedicated meteorological sensors (Terminal Doppler Weather Radar (TDWR), Network Expansion Low Level Wind Shear Alert System (LLWAS) at major airports to enhance the safety and efficiency of operations during convective weather. A hardware and software modification to existing Airport Surveillance Radars (ASR-9)-the Weather Systems Processor (WSP)-will provide similar capabilities at much lower cost, thus allowing the FAA to extend its protection envelope to medium density airports and airports where thunderstorm activity is less frequent. Following successful operation demonstrations of a prototype ASR-WSP, the FAA has procured approximately 35 WSP's for nationwide deployment. Lincoln Laboratory was responsible for development of all data processing algorithms, which were provided as Government Furnished Equipment (GFE), to be implemented by the full-scale development (FSD) contractor without modification. This report defines the operations that are used to produce images of atmospheric reflectivity, Doppler velocity and data quality that are used by WSP's meteorological product algorithms to generate automated information on hazardous wind shear and other phenomena. Principle requirements are suppression of interference (e.g. ground clutter, moving points targets, meteorological and ground echoes originating from beyond the radar's unambiguous range), generation of meteorologically relevant images and estimates of data quality. Hereafter, these operations will be referred to as "signal processing" and the resulting images as "base data."