Correcting wind speed measurements for site obstructions
Summary
The FLOWS (FAA-Lincoln Laboratory Operational Weather Studies) Project is developing methods for automatically detecting and warning against aviation weather hazards, such as low-altitude wind shear, in airport terminal areas using NEXRAD-like Doppler weather radars. Currently, the FAA uses the Low Level Wind Shear Alert System (LLWAS), an anemometer array situated within and around an airport terminal area, for real-time detection of wind shear events. Even with the installation of Terminal Doppler Weather Radars (TDWRs) at some airports, the LLWAS systems there could still play an important role in the accurate detection of wind shear events, and at airports without TDWRs, the LLWAS will remain the primary detection system. The slowing or obstruction of wind by local obstacles is a well know n problem to those wishing to make accurate wind speed measurements. Anemometers should always be located where there will be, as nearly as passible, an unobstructed wind flow free from turbulent eddies in all directions. Because of the fairly precise required sensor configuration of the anemometers in an LLWAS system, it can occasionally be difficult or impossible to find sites with good exposure in all directions. The FLOWS project is interested in the unobstructed wind speed measurements for two main reasons. First, when analyzing a snapshot of the wind field over a mesonet (or LLWAS) for horizontal wind shear and/or for comparison with Doppler radar data, use of the measured, uncorrected winds would reveal spurious patterns of divergence or vorticity that depend little on time but greatly on the prevailing wind direction and that would, in some cases, obscure the true wind shear pattern. Second, when using surface wind measurements to estimate winds aloft that might be encountered by an aircraft on take-off or landing, an· appropriate power law can be accurately used if the original surface wind speed measurements are representative of the unobstructed flow.