Summary
Gust fronts produce low altitude wind shear that can be hazardous to aircraft operations, especially during takeoff and landing. Radar meteorologists have long been able to identify gust front signatures in Doppler radar data, but in order to use the radars efficiently, automatic detection of such hazards is essential. Eight gust front case studies are presented. The data include photographs of the Doppler weather radar displays, thermodynamic and wind measurements from a 440 m high tower, environmental soundings and tables of gust front characteristics. The tabulated characteristics are those thought to be most important in developing rules for automatic gust front detection such as length and height, maximum and minimum values of reflectivity, velocity and spectrum width, and estimates of radial shear. For the cases studied, outflows could be detected most reliably in the velocity field, but useful information also could be gleaned from the spectrum width and reflectivity fields. The signal-to-noise ratio threshold was found to be a major factor in the ability of an observer to discern the gust front signature in the Doppler radar displays. Detection within the spectrum width field required a higher SNR than did the radial velocity field.