Summary
New tests and older ideas are explored to understand the origin of the pronounced contrast in lightning between land and sea. The behavior of islands as miniature continents with variable area supports the traditional thermal hypothesis over the aerosol hypothesis for lightning control. The substantial land-ocean contrast in updraft strength is supported globally by TRMM (Tropical Rainfall Measuring Mission) radar comparisons of mixed phase radar reflectivity. The land-ocean updraft contrast is grossly inconsistent with the land ocean contrast in CAPE (Convective Available Potential Energy), from the standpoint of parcel theory. This inconsistency is resolved by the scaling of buoyant parcel size with cloud base height, as suggested by earlier investigators. Strongly electrified continental convection is then favored by a larger surface Bowen ratio, and by larger, more strongly buoyant boundary layer parcels which more efficiently transform CAPE to kinetic energy of the updraft in the moist stage of conditional instability.