Summary
Estimations of ankle moments can provide clinically helpful information on the function of lower extremities and further lead to insight on patient rehabilitation and assistive wearable exoskeleton design. Current methods for estimating ankle moments leave room for improvement, with most recent cutting-edge methods relying on machine learning models trained on wearable sEMG and IMU data. While machine learning eliminates many practical challenges that troubled more traditional human body models for this application, we aim to expand on prior work that showed the feasibility of using LSTM models by employing an ensemble of LSTM networks. We present an adaptive weighted LSTM ensemble network and demonstrate its performance during standing, walking, running, and sprinting. Our result show that the LSTM ensemble outperformed every single LSTM model component within the ensemble. Across every activity, the ensemble reduced median root mean squared error (RMSE) by 0.0017-0.0053 N. m/kg, which is 2.7 – 10.3% lower than the best performing single LSTM model. Hypothesis testing revealed that most reductions in RMSE were statistically significant between the ensemble and other single models across all activities and subjects. Future work may analyze different trajectory lengths and different combinations of LSTM submodels within the ensemble.