A digital focal plane array (DFPA) architecture has been developed that incorporates per-pixel full-dynamic-range analog-to-digital conversion and orthogonal-transfer-based realtime digital signal processing capability. Several long-wave infrared-optimized pixel processing focal plane readout integrated circuit (ROIC) designs have been implemented, each accommodating a 256 x 256 30-um-pitch detector array. Demonstrated in this paper is the application of this DFPA ROIC architecture to problems of background pedestal mitigation, wide-field imaging, image stabilization, edge detection, and velocimetry. The DFPA architecture is reviewed, and pixel performance metrics are discussed in the context of the application examples. The measured data reported here are for DFPA ROICs implemented in 90-nm CMOS technology and hybridized to HgxCd1-xTe (MCT) detector arrays with cutoff wavelengths ranging from 7 to 14.5 m and a specified operating temperature of 60 K-80 K.