Publications

Refine Results

(Filters Applied) Clear All

AI enabling technologies: a survey

Summary

Artificial Intelligence (AI) has the opportunity to revolutionize the way the United States Department of Defense (DoD) and Intelligence Community (IC) address the challenges of evolving threats, data deluge, and rapid courses of action. Developing an end-to-end artificial intelligence system involves parallel development of different pieces that must work together in order to provide capabilities that can be used by decision makers, warfighters and analysts. These pieces include data collection, data conditioning, algorithms, computing, robust artificial intelligence, and human-machine teaming. While much of the popular press today surrounds advances in algorithms and computing, most modern AI systems leverage advances across numerous different fields. Further, while certain components may not be as visible to end-users as others, our experience has shown that each of these interrelated components play a major role in the success or failure of an AI system. This article is meant to highlight many of these technologies that are involved in an end-to-end AI system. The goal of this article is to provide readers with an overview of terminology, technical details and recent highlights from academia, industry and government. Where possible, we indicate relevant resources that can be used for further reading and understanding.
READ LESS

Summary

Artificial Intelligence (AI) has the opportunity to revolutionize the way the United States Department of Defense (DoD) and Intelligence Community (IC) address the challenges of evolving threats, data deluge, and rapid courses of action. Developing an end-to-end artificial intelligence system involves parallel development of different pieces that must work together...

READ MORE

FY11 Line-Supported Bio-Next Program - Multi-modal Early Detection Interactive Classifier (MEDIC) for mild traumatic brain injury (mTBI) triage

Summary

The Multi-modal Early Detection Interactive Classifier (MEDIC) is a triage system designed to enable rapid assessment of mild traumatic brain injury (mTBI) when access to expert diagnosis is limited as in a battlefield setting. MEDIC is based on supervised classification that requires three fundamental components to function correctly; these are data, features, and truth. The MEDIC system can act as a data collection device in addition to being an assessment tool. Therefore, it enables a solution to one of the fundamental challenges in understanding mTBI: the lack of useful data. The vision of MEDIC is to fuse results from stimulus tests in each of four modalitites - auditory, occular, vocal, and intracranial pressure - and provide them to a classifier. With appropriate data for training, the MEDIC classifier is expected to provide an immediate decision of whether the subject has a strong likelihood of having sustained an mTBI and therefore requires an expert diagnosis from a neurologist. The tests within each modalitity were designed to balance the capacity of objective assessment and the maturity of the underlying technology against the ability to distinguish injured from non-injured subjects according to published results. Selection of existing modalities and underlying features represents the best available, low cost, portable technology with a reasonable chance of success.
READ LESS

Summary

The Multi-modal Early Detection Interactive Classifier (MEDIC) is a triage system designed to enable rapid assessment of mild traumatic brain injury (mTBI) when access to expert diagnosis is limited as in a battlefield setting. MEDIC is based on supervised classification that requires three fundamental components to function correctly; these are...

READ MORE

Showing Results

1-2 of 2