Publications

Refine Results

(Filters Applied) Clear All

Side channel authenticity discriminant analysis for device class identification

Summary

Counterfeit microelectronics present a significant challenge to commercial and defense supply chains. Many modern anti-counterfeit strategies rely on manufacturer cooperation to include additional identification components. We instead propose Side Channel Authenticity Discriminant Analysis (SICADA) to leverage physical phenomena manifesting from device operation to match suspect parts to a class of authentic parts. This paper examines the extent that power dissipation information can be used to separate unique classes of devices. A methodology for distinguishing device types is presented and tested on both simulation data of a custom circuit and empirical measurements of Microchip dsPIC33F microcontrollers. Experimental results show that power side channels contain significant distinguishing information to identify parts as authentic or suspect counterfeit.
READ LESS

Summary

Counterfeit microelectronics present a significant challenge to commercial and defense supply chains. Many modern anti-counterfeit strategies rely on manufacturer cooperation to include additional identification components. We instead propose Side Channel Authenticity Discriminant Analysis (SICADA) to leverage physical phenomena manifesting from device operation to match suspect parts to a class of...

READ MORE

Low power sparse polynomial equalizer (SPEQ) for nonlinear digital compensation of an active anti-alias filter

Published in:
Proc. 2012 IEEE Workshop on Signal Processing Systems, 17-19 October 2012, pp. 249-253.

Summary

We present an efficient architecture to perform on-chip nonlinear equalization of an anti-alias RF filter. The sparse polynomial equalizer (SPEq) achieves substantial power savings through co-design of the equalizer and the filter, which allows including the right number of processing elements, filter taps, and bits to maximize performance and minimize power consumption. The architecture was implemented in VHDL and fabricated in CMOS 65 nm technology. Testing results show that undesired spurs are suppressed to near the noise floor, improving the system's spur-free dynamic range by 25 dB in the median case, and consuming less than 12 mW of core power when operating at 200 MHz.
READ LESS

Summary

We present an efficient architecture to perform on-chip nonlinear equalization of an anti-alias RF filter. The sparse polynomial equalizer (SPEq) achieves substantial power savings through co-design of the equalizer and the filter, which allows including the right number of processing elements, filter taps, and bits to maximize performance and minimize...

READ MORE

On-chip nonlinear digital compensation for RF receiver

Published in:
HPEC 2011: Conf. on High Performance Embedded Computing, 21-22 September 2011.

Summary

A system-on-chip (SOC) implementation is an attractive solution for size, weight and power (SWaP) restricted applications, such as mobile devices and UAVs. This is partly because the individual parts of the system can be designed for a specific application rather than for a broad range of them, like commercial parts usually must be. Co-design of the analog hardware and digital processing further enhances the benefits of SOC implementations by allowing, for example, nonlinear digital equalization to further enhance the dynamic range of a given front-end component. This paper presents the implementation of nonlinear digital compensation for an active anti-aliasing filter, which is part of a low-power homodyne receiver design. The RF front-end circuitry and the digital compensation will be integrated in the same chip. Co-design allows the front-end to be designed with known dynamic range limitations that will later be compensated by nonlinear equalization. It also allows nonlinear digital compensation architectures matched to specific circuits and dynamic range requirements--while still maintaining some flexibility to deal with process variation--as opposed to higher power general purpose designs.
READ LESS

Summary

A system-on-chip (SOC) implementation is an attractive solution for size, weight and power (SWaP) restricted applications, such as mobile devices and UAVs. This is partly because the individual parts of the system can be designed for a specific application rather than for a broad range of them, like commercial parts...

READ MORE

Extending the dynamic range of RF receivers using nonlinear equalization

Summary

Systems currently being developed to operate across wide bandwidths with high sensitivity requirements are limited by the inherent dynamic range of a receiver's analog and mixed-signal components. To increase a receiver's overall linearity, we have developed a digital NonLinear EQualization (NLEQ) processor which is capable of extending a receiver's dynamic range from one to three orders of magnitude. In this paper we describe the NLEQ architecture and present measurements of its performance.
READ LESS

Summary

Systems currently being developed to operate across wide bandwidths with high sensitivity requirements are limited by the inherent dynamic range of a receiver's analog and mixed-signal components. To increase a receiver's overall linearity, we have developed a digital NonLinear EQualization (NLEQ) processor which is capable of extending a receiver's dynamic...

READ MORE

Multi-function phased array radar for U.S. civil-sector surveillance needs

Summary

This paper is a concept study for possible future utilization of active electronically scanned radars to provide weather and aircraft surveillance functions in U.S. airspace. If critical technology costs decrease sufficiently, multi-function phased array radars might prove to be a cost effective alternative to current surveillance radars, since the number of required radars would be reduced, and maintenance and logistics infrastructure would be consolidated. A radar configuration that provides terminal-area and long-range aircraft surveillance and weather measurement capability is described and a radar network design that replicates or exceeds current airspace coverage is presented. Key technology issues are examined, including transmit-receive elements, overlapped sub-arrays, the digital beamformer, and weather and aircraft post-processing algorithms. We conclude by discussing implications relative to future national weather and non-cooperative aircraft target surveillance needs. The U.S. Government currently operates four separate ground based surveillance radar networks supporting public and aviation-specific weather warnings and advisories, and primary or "skin paint" aircraft surveillance. The separate networks are: (i) The 10-cm wavelength NEXRAD or WSR88-D (Serafin and Wilson, 2000) national-scale weather radar network. This is managed jointly by the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the Department of Defense (DoD). (ii) The 5-cm wavelength Terminal Doppler Weather Radars (TDWR) (Evans and Turnbull, 1989) deployed at large airports to detect low-altitude wind-shear phenomena. (iii) The 10-cm wavelength Airport Surveillance Radars (ASR-9 and ASR-11) (Taylor and Brunins, 1985) providing terminal area primary aircraft surveillance and vertically averaged precipitation reflectivity measurements. (iv) The 30-cm wavelength Air Route Surveillance Radars (ARSR-1, 2, 3 and 4) (Weber, 2005) that provide national-scale primary aircraft surveillance. The latter three networks are managed primarily by the FAA, although the DoD operates a limited number of ASRs and has partial responsibility for maintenance of the ARSR network. In total there are 513 of these radars in the contiguous United States (CONUS), Alaska, and Hawaii. The agencies that maintain these radars conduct various "life extension" activities that are projected to extend their operational life to approximately 2020. At this time, there are no defined programs to acquire replacement radars. The NWS and FAA have recently begun exploratory research on the capabilities and technology issues related to the use of multi-function phased array radar (MPAR) as a possible replacement approach. A key concept is that the MPAR network could provide both weather and primary aircraft surveillance, thereby reducing the total number of ground-based radars. In addition, MPAR surveillance capabilities would likely exceed those of current operational radars, for example, by providing more frequent weather volume scans and by providing vertical resolution and height estimates for primary aircraft targets. Table 1 summarizes the capabilities of current U.S. surveillance radars. These are approximations and do not fully capture variations in capability as a function, for example, of range or operating mode. A key observation is that significant variation in update rates between the aircraft and weather surveillance functions are currently achieved by using fundamentally different antenna patterns--low-gain vertical "fan beams" for aircraft surveillance that are scanned in azimuth only, versus high-gain weather radar "pencil beams" that are scanned volumetrically at much lower update rates. Note also that, if expressed in consistent units, the power-aperture products of the weather radars significantly exceed those of the ASRs and ARSRs. In the next section, we present a concept design for MPAR and demonstrate that it can simultaneously provide the measurement capabilities summarized in Table 1. In Section 3 we present an MPAR network concept that duplicates the airspace coverage provided by the current multiple radar networks. Section 4 discusses technology issues and associated cost considerations. We conclude in Section 5 by discussing implications relative to future national weather and non-cooperative aircraft target surveillance needs.
READ LESS

Summary

This paper is a concept study for possible future utilization of active electronically scanned radars to provide weather and aircraft surveillance functions in U.S. airspace. If critical technology costs decrease sufficiently, multi-function phased array radars might prove to be a cost effective alternative to current surveillance radars, since the number...

READ MORE

Showing Results

1-5 of 5