Publications
Tagged As
GraphChallenge.org triangle counting performance [e-print]
Summary
Summary
The rise of graph analytic systems has created a need for new ways to measure and compare the capabilities of graph processing systems. The MIT/Amazon/IEEE Graph Challenge has been developed to provide a well-defined community venue for stimulating research and highlighting innovations in graph analysis software, hardware, algorithms, and systems...
Hypersparse neural network analysis of large-scale internet traffic
Summary
Summary
The Internet is transforming our society, necessitating a quantitative understanding of Internet traffic. Our team collects and curates the largest publicly available Internet traffic data containing 50 billion packets. Utilizing a novel hypersparse neural network analysis of "video" streams of this traffic using 10,000 processors in the MIT SuperCloud reveals...
Large scale parallelization using file-based communications
Summary
Summary
In this paper, we present a novel and new file-based communication architecture using the local filesystem for large scale parallelization. This new approach eliminates the issues with filesystem overload and resource contention when using the central filesystem for large parallel jobs. The new approach incurs additional overhead due to inter-node...
Optimizing the visualization pipeline of a 3-D monitoring and management system
Summary
Summary
Monitoring and managing High Performance Computing (HPC) systems and environments generate an ever growing amount of data. Making sense of this data and generating a platform where the data can be visualized for system administrators and management to proactively identify system failures or understand the state of the system requires...
Streaming 1.9 billion hyperspace network updates per second with D4M
Summary
Summary
The Dynamic Distributed Dimensional Data Model (D4M) library implements associative arrays in a variety of languages (Python, Julia, and Matlab/Octave) and provides a lightweight in-memory database implementation of hypersparse arrays that are ideal for analyzing many types of network data. D4M relies on associative arrays which combine properties of spreadsheets...
Scaling big data platform for big data pipeline
Summary
Summary
Monitoring and Managing High Performance Computing (HPC) systems and environments generate an ever growing amount of data. Making sense of this data and generating a platform where the data can be visualized for system administrators and management to proactively identify system failures or understand the state of the system requires...
A billion updates per second using 30,000 hierarchical in-memory D4M databases
Summary
Summary
Analyzing large scale networks requires high performance streaming updates of graph representations of these data. Associative arrays are mathematical objects combining properties of spreadsheets, databases, matrices, and graphs, and are well-suited for representing and analyzing streaming network data. The Dynamic Distributed Dimensional Data Model (D4M) library implements associative arrays in...
Hyperscaling internet graph analysis with D4M on the MIT SuperCloud
Summary
Summary
Detecting anomalous behavior in network traffic is a major challenge due to the volume and velocity of network traffic. For example, a 10 Gigabit Ethernet connection can generate over 50 MB/s of packet headers. For global network providers, this challenge can be amplified by many orders of magnitude. Development of...
Large-scale Bayesian kinship analysis
Summary
Summary
Kinship prediction in forensics is limited to first degree relatives due to the small number of short tandem repeat loci characterized. The Genetic Chain Rule for Probabilistic Kinship Estimation can leverage large panels of single nucleotide polymorphisms (SNPs) or sets of sequence linked SNPs, called haploblocks, to estimate more distant...
Interactive supercomputing on 40,000 cores for machine learning and data analysis
Summary
Summary
Interactive massively parallel computations are critical for machine learning and data analysis. These computations are a staple of the MIT Lincoln Laboratory Supercomputing Center (LLSC) and has required the LLSC to develop unique interactive supercomputing capabilities. Scaling interactive machine learning frameworks, such as TensorFlow, and data analysis environments, such as...