Publications

Refine Results

(Filters Applied) Clear All

Initial assessment of wind forecasts for Airport Acceptance Rate (AAR) and Ground Delay Program (GDP) planning

Published in:
MIT Lincoln Laboratory Report ATC-414

Summary

The planning and execution of the Airport Acceptance Rate (AAR) for major metroplex airports is a complex and critical function of traffic managers in the National Airspace System (NAS). Despite the importance of AAR planning, traffic managers currently have no widely available decision support to provide guidance for runway selection and the determination of a sustainable AAR. The AAR Decision Support Capability (AARDSC), currently under development as part of the Collaborative Air Traffic Management Technology Work Package 4 (CATMT WP4), will provide such guidance. This report provides an initial analysis of the impacts of surface winds and winds aloft on the key factors associated with the AAR (the selection of runway configuration and aircraft ground speed and spacing on final approach) and the capabilities of currently available weather forecasts to accurately predict those impacts. The report was limited in scope by the schedule and available resources, and is intended as a foundation for a comprehensive forecast assessment in follow-on work. Surface wind forecasts from the Terminal Aerodome Forecast (TAF) and numerical prediction models (the High Resolution Rapid Refresh [HRRR], Rapid Refresh [RAP] and Rapid Update Cycle [RUC], collectively described as "MODEL") were compared to observed winds gathered from METAR reports as Newark International Airport (EWR). TAF and METAR were compared for 639 days of operations from 2011-2013. MODEL forecasts and METAR were compared for 21 days of operation, 16 of which had Traffic Management Initiatives (TMI) in place to mitigate adverse weather impacts. Winds aloft were translated into several wind impact metrics. The impacts of winds aloft forecast errors were evaluated by comparing impact metrics calculated from MODEL forecasts with those calculated from analysis fields for the 21 case days. Forecasts were evaluated at horizons of 2, 4, 6, and 8 hours.
READ LESS

Summary

The planning and execution of the Airport Acceptance Rate (AAR) for major metroplex airports is a complex and critical function of traffic managers in the National Airspace System (NAS). Despite the importance of AAR planning, traffic managers currently have no widely available decision support to provide guidance for runway selection...

READ MORE

Sector workload model for benefits analysis and convective weather capacity prediction

Published in:
10th USA/Europe Air Traffic Management Research and Development Sem., ATM 2013, 10-13 June 2013.

Summary

En route sector capacity is determined mainly by controller workload. The operational capacity model used by the Federal Aviation Administration (FAA) provides traffic alert thresholds based entirely on hand-off workload. Its estimates are accurate for most sectors. However, it tends to over-estimate capacity in both small and large sectors because it does not account for conflicts and recurring tasks. Because of those omissions it cannot be used for accurate benefits analysis of workload-reduction initiatives, nor can it be extended to estimate capacity when hazardous weather increases the intensity of all workload types. We have previously reported on an improved model that accounts for all workload types and can be extended to handle hazardous weather. In this paper we present the results of a recent regression of that model using an extensive database of peak traffic counts for all United States en route sectors. The resulting fit quality confirms the workload basis of en route capacity. Because the model has excess degrees of freedom, the regression process returns multiple parameter combinations with nearly identical sector capacities. We analyze the impact of this ambiguity when using the model to quantify the benefits of workload reduction proposals. We also describe recent modifications to the weather-impacted version of the model to provide a more stable normalized capacity measure. We conclude with an illustration of its potential application to operational sector capacity forecasts in hazardous weather.
READ LESS

Summary

En route sector capacity is determined mainly by controller workload. The operational capacity model used by the Federal Aviation Administration (FAA) provides traffic alert thresholds based entirely on hand-off workload. Its estimates are accurate for most sectors. However, it tends to over-estimate capacity in both small and large sectors because...

READ MORE

Data-driven evaluation of a flight re-route air traffic management decision-support tool

Published in:
Applied Human Factors and Ergonomics Conf., 21 July 2012.

Summary

Air traffic delays in the U.S. are problematic and often attributable to convective (thunderstorms) weather. Air traffic management is complex, dynamic, and influenced by many factors such as projected high volume of departures and uncertain forecast convective weather at airports and in the airspace. To support the complexities of making a re-route decision, which is one solution to mitigate airspace congestion, a display integrating convective weather information with departure demand predictions was prototyped jointly by MIT Lincoln Laboratory and the MITRE Corporation. The tool was deployed to twelve air traffic facilities involved in handling New York area flights for operational evaluation during the summer of 2011. Field observations, data mining and analyses were conducted under both fair and convective weather conditions. The system performance metrics chosen to evaluate the tool's effectiveness in supporting re-route decisions include predicted wheels-off error, predicted wheels-off forecast spread, and hourly departure fix demand forecast spread. The wheels-off prediction errors were near zero for half the flights across all days, but the highest 10% errors exceeded 30 minutes on convective weather days. The wheels-off forecast spread exceeded 30 minutes for 25% of forecasts on convective weather days. The hourly departure demand forecast spread was 9 flights or less for 50% of departures across all days except one. Six out of the seven days having the highest hourly departure demand forecast spreads occurred in the presence of long-lived weather impacts.
READ LESS

Summary

Air traffic delays in the U.S. are problematic and often attributable to convective (thunderstorms) weather. Air traffic management is complex, dynamic, and influenced by many factors such as projected high volume of departures and uncertain forecast convective weather at airports and in the airspace. To support the complexities of making...

READ MORE

Evaluation of the Integrated Departure Route Planning (IDRP) Tool 2011 prototype

Published in:
MIT Lincoln Laboratory Report ATC-388

Summary

The Integrated Departure Route Planning (IDRP) tool combines convective weather impact forecasts from the Route Availability Planning Tool (RAPT) with departure demand forecasts from the MITRE tfmCore system to aid traffic managers in formulating plans to mitigate volume congestion in fair weather and during convective weather impacts. An initial prototype was deployed in the summer of 2010 for a very limited field evaluation. A second, more comprehensive field evaluation of the "Phase 2" IDRP prototype was performed in the summer of 2011. The key focus of IDRP is the planning and implementation of departure reroutes to avoid weather impacts and volume congestion on departure fixes and routes. This evaluation assesses three facets of the IDRP prototype critical to the successful realization of its concept of operations: 1. performance of weather impact forecasts from RAPT and departure demand forecasts from tfmCore, 2. effectiveness of reroute decisions, and 3. potential impacts on procedures and decision making based on observations of IDRP use in the field. The evaluation concludes with suggestions for future enhancements to improve the performance and realization of potential benefits in operational use of IDRP.
READ LESS

Summary

The Integrated Departure Route Planning (IDRP) tool combines convective weather impact forecasts from the Route Availability Planning Tool (RAPT) with departure demand forecasts from the MITRE tfmCore system to aid traffic managers in formulating plans to mitigate volume congestion in fair weather and during convective weather impacts. An initial prototype...

READ MORE

Estimation of New York departure fix capacities in fair and convective weather

Published in:
3rd Aviation, Range, and Aerospace Meteorology, 23 January 2012.

Summary

When convective weather impacts the New York Metro airspace, traffic managers may employ several tactics to mitigate weather impacts and maintain manageable and efficient flow of traffic to and from the airports. These tactics, which include maneuvering individual flights through weather, merging and redirecting traffic flows to avoid storms, and rerouting traffic from blocked routes onto unimpacted or less-impacted routes, all affect the capacity of the affected airspace resources (departure fixes, routes, or gates). Furthermore, the location of the weather impacts can have a great influence on the amount of leeway that traffic managers have in applying these tactics. In New York, departure fixes, the gateways to en route airspace where departure traffic from several metroplex airports are merged onto en route airways, are particularly critical. When congestion (volume of traffic in excess of capacity) occurs near departure fixes as a result of weather impacts, traffic managers must resort to airborne holding or unplanned departure stops to quickly reduce traffic over the fix to manageable levels. Nonetheless, when convective weather impacts densely packed and busy metroplex airspaces, it is inevitable that traffic will need to use impacted departure fixes and routes to keep delays in check. For this reason, predictions of the weather-impacted capacity of critical airspace resources like departure fixes that are based in the reality of commonly used impact mitigation tactics, are needed to help traffic managers anticipate and avoid disruptive congestion at weather-impacted departure fixes. The Route Availability Planning Tool (RAPT) is a departure management decision support tool that has been used in the New York operations since 2003. It predicts the weather impact on departure fixes and routes based on departure times. RAPT assigns a departure status (RED, YELLOW, or GREEN) to individual departure routes based on the departure time, the predicted severity of the convective weather that will impact the route, the likelihood that a pilot will deviate to avoid the weather along the route, and the operational sensitivity to deviations in the departure airspace that the route traverses. These blockages assist traffic managers in prompt route reopening of routes closed by convective weather impacts, as well as providing situational awareness for impeding impacts on routes. RAPT also identifies the location of weather impacts along the departure route. This paper presents an analysis of observed fair weather and convective weather impacted throughput on New York departure fixes. RAPT departure status and impact location are used to characterize the severity of departure fix weather impacts, and weather-impacted fix capacity ranges are estimated as a function of RAPT impacts. The use of traffic flow merging is identified, and weather impacted capacity ranges for commonly used merged flows are also estimated.
READ LESS

Summary

When convective weather impacts the New York Metro airspace, traffic managers may employ several tactics to mitigate weather impacts and maintain manageable and efficient flow of traffic to and from the airports. These tactics, which include maneuvering individual flights through weather, merging and redirecting traffic flows to avoid storms, and...

READ MORE

Estimating the likelihood of success in departure management strategies during convective weather

Published in:
Proc. 30th IEEE/AIAA Digital Avionics Systems Conference, DASC, 16-20 October 2011, pp. 6D4.

Summary

The presence of convective weather (thunderstorms) in terminal and nearby en route airspace of major metroplex areas can have significant impacts on departure operations. Traffic on departure routes impacted by convective weather may be constrained by miles-in-trail (MIT) restrictions, to allow controllers the time needed to maneuver individual flights around thunderstorms that pilots wish to avoid. When the workload required to manage traffic flows becomes too great, departure routes may be closed. Departures still on the ground that are filed on closed or restricted routes may face significant delays as they wait for clearance on their filed route, or for a viable reroute to be implemented. The solution proposed in concepts such as the Integrated Departure Route Planning tool (IDRP) [1] is the use of weather and departure demand forecasts to plan and implement reroutes to avoid weather and volume congestion proactively, well in advance of route restrictions or closures.
READ LESS

Summary

The presence of convective weather (thunderstorms) in terminal and nearby en route airspace of major metroplex areas can have significant impacts on departure operations. Traffic on departure routes impacted by convective weather may be constrained by miles-in-trail (MIT) restrictions, to allow controllers the time needed to maneuver individual flights around...

READ MORE

Analytical workload model for estimating en route sector capacity in convective weather

Published in:
9th USA/Europe Air Traffic Management Research and Development Sem., ATM 2011, 14-17 June 2011.

Summary

We have extended an analytical workload model for estimating en route sector capacity to include the impact of convective weather. We use historical weather avoidance data to characterize weather blockage, which affects the sector workload in three ways: (1) Increase in the conflict resolution task rate via reduction in available airspace, (2) increase in the recurring task load through the rerouting of aircraft around weather, and (3) increase in the inter-sector coordination rate via reduction in the mean sector transit time. Application of the extended model to observed and forecast data shows promise for future use in network flow models.
READ LESS

Summary

We have extended an analytical workload model for estimating en route sector capacity to include the impact of convective weather. We use historical weather avoidance data to characterize weather blockage, which affects the sector workload in three ways: (1) Increase in the conflict resolution task rate via reduction in available...

READ MORE

Estimation of potential IDRP benefits during convective weather SWAP

Published in:
MIT Lincoln Laboratory Report ATC-381

Summary

This document presents a preliminary analysis of potential departure delay reduction benefits in New York as the result of the use of the Integrated Departure Route Planning (IDRP) tool during convective severe weather avoidance programs (SWAP). The analysis is based on weather impact and air traffic data from operations between May and September 2010 in the New York metroplex region. Two methodologies were employed in the analysis: "flight pool" and "resource pool." In the flight pool methodology, individual flights with excessive taxi times were identified, and opportunities to find potential alternative reroutes using information that IDRP will provide were assessed. In the resource pool methodology, route impact minutes were tallied over several days, based on the judgment of a human analysis, and opportunities to recover capacity lost to route impacts via IDRP-identified reroutes were estimated. The flight pool methodology estimated that approximately 156 hours of delay could be saved through the use of IDRP over a full SWAP season. The resource pool methodology estimated that approximately 15% of capacity lost to convective weather impacts could be recovered via IDRP-based reroutes. It should be noted that the potential benefits are based on several assumptions that are described in detail in the text of the report. The estimation of delay savings due to reroute is also speculative. It is very difficult to ascertain when the assignment of a reroute actually makes use of underutilized capacity and when the reroute simply shifts the problem from one congested resource to another. Further research is needed to develop reliable metrics that can guide the assessment of reroute impacts on overall traffic management performance.
READ LESS

Summary

This document presents a preliminary analysis of potential departure delay reduction benefits in New York as the result of the use of the Integrated Departure Route Planning (IDRP) tool during convective severe weather avoidance programs (SWAP). The analysis is based on weather impact and air traffic data from operations between...

READ MORE

Making departure management weather impact models airspace-adaptable: adapting the New York Route Availability Planning Tool (RAPT) to Chicago departure airspace

Summary

The Route Availability Planning Tool (RAPT) operational prototype was deployed to Chicago in the summer of 2010, the first RAPT deployment outside of the New York departure airspace for which it was originally developed. The goal of the deployment was to evaluate the adaptability of RAPT's airspace definition, departure management and weather impact models to different terminal areas throughout the National Airspace System (NAS). This report presents the results of a summer-long evaluation of the Chicago RAPT operational prototype, in which the performance of RAPT algorithms and the effectiveness of the RAPT Concept of Operations were assessed. The evaluation included observations made by researchers simultaneously stationed at O'Hare terminal (ORD), the Chicago TRACON (C90), and the Chicago Air Route Traffic Control Center (ZAU) during several days of convective weather impact and post-event analysis of air traffic data from the Enhanced Traffic Management System (ETMS) and RAPT weather impact predictions and departure management guidance. The study found that significant departure delay reduction could be achieved through the use of RAPT in Chicago, and that RAPT effectiveness in "typical" corner post airspaces like Chicago could be further increased with some modifications to the Concept of Operations, user training, and site adaptation.
READ LESS

Summary

The Route Availability Planning Tool (RAPT) operational prototype was deployed to Chicago in the summer of 2010, the first RAPT deployment outside of the New York departure airspace for which it was originally developed. The goal of the deployment was to evaluate the adaptability of RAPT's airspace definition, departure management...

READ MORE

Route availability planning tool evaluation vizualizations for the New York and Chigaco departure flows

Published in:
AIAA Infotech at Aerospace Conf. and Exhibit, 29-31 March 2011.

Summary

When operationally significant weather affects a region of the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated for that region. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. On the day following a SWAP, the SWAP events are reviewed by FAA and airline representatives as part of the daily planning teleconference, and the TFM initiatives used are evaluated to understand their impact on the traffic flows, benefits, and disadvantages. Due to the complexity of the situation various exploratory visualizations were designed in order to evaluate aspects of the aviation environment and the responsive actions of the NAS during outbreaks of convective weather as well as to gain insights on the interaction of weather and traffic operations. From these visualizations, analyses and metrics were developed that could be used to objectively evaluate the effectiveness of TMIs. This paper will present three visualizations that have directly resulted in the development of analyses for TMIs or lead to insights into air traffic operations.
READ LESS

Summary

When operationally significant weather affects a region of the National Airspace System (NAS) a Severe Weather Avoidance Program (SWAP) is initiated for that region. Each SWAP event is a unique mix of demand, weather conditions, traffic flow management (TFM) initiatives and traffic movement. On the day following a SWAP, the...

READ MORE

Showing Results

1-10 of 13