Publications

Refine Results

(Filters Applied) Clear All

Artificial intelligence: short history, present developments, and future outlook, final report

Summary

The Director's Office at MIT Lincoln Laboratory (MIT LL) requested a comprehensive study on artificial intelligence (AI) focusing on present applications and future science and technology (S&T) opportunities in the Cyber Security and Information Sciences Division (Division 5). This report elaborates on the main results from the study. Since the AI field is evolving so rapidly, the study scope was to look at the recent past and ongoing developments to lead to a set of findings and recommendations. It was important to begin with a short AI history and a lay-of-the-land on representative developments across the Department of Defense (DoD), intelligence communities (IC), and Homeland Security. These areas are addressed in more detail within the report. A main deliverable from the study was to formulate an end-to-end AI canonical architecture that was suitable for a range of applications. The AI canonical architecture, formulated in the study, serves as the guiding framework for all the sections in this report. Even though the study primarily focused on cyber security and information sciences, the enabling technologies are broadly applicable to many other areas. Therefore, we dedicate a full section on enabling technologies in Section 3. The discussion on enabling technologies helps the reader clarify the distinction among AI, machine learning algorithms, and specific techniques to make an end-to-end AI system viable. In order to understand what is the lay-of-the-land in AI, study participants performed a fairly wide reach within MIT LL and external to the Laboratory (government, commercial companies, defense industrial base, peers, academia, and AI centers). In addition to the study participants (shown in the next section under acknowledgements), we also assembled an internal review team (IRT). The IRT was extremely helpful in providing feedback and in helping with the formulation of the study briefings, as we transitioned from datagathering mode to the study synthesis. The format followed throughout the study was to highlight relevant content that substantiates the study findings, and identify a set of recommendations. An important finding is the significant AI investment by the so-called "big 6" commercial companies. These major commercial companies are Google, Amazon, Facebook, Microsoft, Apple, and IBM. They dominate in the AI ecosystem research and development (R&D) investments within the U.S. According to a recent McKinsey Global Institute report, cumulative R&D investment in AI amounts to about $30 billion per year. This amount is substantially higher than the R&D investment within the DoD, IC, and Homeland Security. Therefore, the DoD will need to be very strategic about investing where needed, while at the same time leveraging the technologies already developed and available from a wide range of commercial applications. As we will discuss in Section 1 as part of the AI history, MIT LL has been instrumental in developing advanced AI capabilities. For example, MIT LL has a long history in the development of human language technologies (HLT) by successfully applying machine learning algorithms to difficult problems in speech recognition, machine translation, and speech understanding. Section 4 elaborates on prior applications of these technologies, as well as newer applications in the context of multi-modalities (e.g., speech, text, images, and video). An end-to-end AI system is very well suited to enhancing the capabilities of human language analysis. Section 5 discusses AI's nascent role in cyber security. There have been cases where AI has already provided important benefits. However, much more research is needed in both the application of AI to cyber security and the associated vulnerability to the so-called adversarial AI. Adversarial AI is an area very critical to the DoD, IC, and Homeland Security, where malicious adversaries can disrupt AI systems and make them untrusted in operational environments. This report concludes with specific recommendations by formulating the way forward for Division 5 and a discussion of S&T challenges and opportunities. The S&T challenges and opportunities are centered on the key elements of the AI canonical architecture to strengthen the AI capabilities across the DoD, IC, and Homeland Security in support of national security.
READ LESS

Summary

The Director's Office at MIT Lincoln Laboratory (MIT LL) requested a comprehensive study on artificial intelligence (AI) focusing on present applications and future science and technology (S&T) opportunities in the Cyber Security and Information Sciences Division (Division 5). This report elaborates on the main results from the study. Since the...

READ MORE

Language, dialect, and speaker recognition using Gaussian mixture models on the cell processor

Published in:
Twelfth Annual High Performance Embedded Computing Workshop, HPEC 2008, 23-25 September 2008.

Summary

Automatic recognition systems are commonly used in speech processing to classify observed utterances by the speaker's identity, dialect, and language. These problems often require high processing throughput, especially in applications involving multiple concurrent incoming speech streams, such as in datacenter-level processing. Recent advances in processor technology allow multiple processors to reside within the same chip, allowing high performance per watt. Currently the Cell Broadband Engine has the leading performance-per-watt specifications in its class. Each Cell processor consists of a PowerPC Processing Element (PPE) working together with eight Synergistic Processing Elements (SPE). The SPEs have 256KB of memory (local store), which is used for storing both program and data. This paper addresses the implementation of language, dialect, and speaker recognition on the Cell architecture. Classically, the problem of performing speech-domain recognition has been approached as embarrassingly parallel, with each utterance being processed in parallel to the others. As we will discuss, efficient processing on the Cell requires a different approach, whereby computation and data for each utterance are subdivided to be handled by separate processors. We present a computational model for automatic recognition on the Cell processor that takes advantage of its architecture, while mitigating its limitations. Using the proposed design, we predict a system able to concurrently score over 220 real-time speech streams on a single Cell.
READ LESS

Summary

Automatic recognition systems are commonly used in speech processing to classify observed utterances by the speaker's identity, dialect, and language. These problems often require high processing throughput, especially in applications involving multiple concurrent incoming speech streams, such as in datacenter-level processing. Recent advances in processor technology allow multiple processors to...

READ MORE

Showing Results

1-2 of 2