Publications

Refine Results

(Filters Applied) Clear All

Artificial intelligence: short history, present developments, and future outlook, final report

Summary

The Director's Office at MIT Lincoln Laboratory (MIT LL) requested a comprehensive study on artificial intelligence (AI) focusing on present applications and future science and technology (S&T) opportunities in the Cyber Security and Information Sciences Division (Division 5). This report elaborates on the main results from the study. Since the AI field is evolving so rapidly, the study scope was to look at the recent past and ongoing developments to lead to a set of findings and recommendations. It was important to begin with a short AI history and a lay-of-the-land on representative developments across the Department of Defense (DoD), intelligence communities (IC), and Homeland Security. These areas are addressed in more detail within the report. A main deliverable from the study was to formulate an end-to-end AI canonical architecture that was suitable for a range of applications. The AI canonical architecture, formulated in the study, serves as the guiding framework for all the sections in this report. Even though the study primarily focused on cyber security and information sciences, the enabling technologies are broadly applicable to many other areas. Therefore, we dedicate a full section on enabling technologies in Section 3. The discussion on enabling technologies helps the reader clarify the distinction among AI, machine learning algorithms, and specific techniques to make an end-to-end AI system viable. In order to understand what is the lay-of-the-land in AI, study participants performed a fairly wide reach within MIT LL and external to the Laboratory (government, commercial companies, defense industrial base, peers, academia, and AI centers). In addition to the study participants (shown in the next section under acknowledgements), we also assembled an internal review team (IRT). The IRT was extremely helpful in providing feedback and in helping with the formulation of the study briefings, as we transitioned from datagathering mode to the study synthesis. The format followed throughout the study was to highlight relevant content that substantiates the study findings, and identify a set of recommendations. An important finding is the significant AI investment by the so-called "big 6" commercial companies. These major commercial companies are Google, Amazon, Facebook, Microsoft, Apple, and IBM. They dominate in the AI ecosystem research and development (R&D) investments within the U.S. According to a recent McKinsey Global Institute report, cumulative R&D investment in AI amounts to about $30 billion per year. This amount is substantially higher than the R&D investment within the DoD, IC, and Homeland Security. Therefore, the DoD will need to be very strategic about investing where needed, while at the same time leveraging the technologies already developed and available from a wide range of commercial applications. As we will discuss in Section 1 as part of the AI history, MIT LL has been instrumental in developing advanced AI capabilities. For example, MIT LL has a long history in the development of human language technologies (HLT) by successfully applying machine learning algorithms to difficult problems in speech recognition, machine translation, and speech understanding. Section 4 elaborates on prior applications of these technologies, as well as newer applications in the context of multi-modalities (e.g., speech, text, images, and video). An end-to-end AI system is very well suited to enhancing the capabilities of human language analysis. Section 5 discusses AI's nascent role in cyber security. There have been cases where AI has already provided important benefits. However, much more research is needed in both the application of AI to cyber security and the associated vulnerability to the so-called adversarial AI. Adversarial AI is an area very critical to the DoD, IC, and Homeland Security, where malicious adversaries can disrupt AI systems and make them untrusted in operational environments. This report concludes with specific recommendations by formulating the way forward for Division 5 and a discussion of S&T challenges and opportunities. The S&T challenges and opportunities are centered on the key elements of the AI canonical architecture to strengthen the AI capabilities across the DoD, IC, and Homeland Security in support of national security.
READ LESS

Summary

The Director's Office at MIT Lincoln Laboratory (MIT LL) requested a comprehensive study on artificial intelligence (AI) focusing on present applications and future science and technology (S&T) opportunities in the Cyber Security and Information Sciences Division (Division 5). This report elaborates on the main results from the study. Since the...

READ MORE

Mission assurance as a function of scale

Published in:
36th NATO Information Systems Technology Panel, 14-16 October 2015.

Summary

Since all Department of Defense (DoD) missions depend on cyber assets and capabilities, a dynamic and accurate cyber dependency analysis is a critical component of mission assurance. Mission analysis aims to identify hosts and applications that are "mission critical" so they can be monitored, and resources preferentially allocated to mitigate risks. For missions limited in duration and scale (tactical missions), dependency analysis is possible to conceptualize in principle, although currently difficult to realize in practice. However, for missions of long duration and large scale (strategic missions), the situation is murkier. In particular, cyber researchers struggle to find technologies that will scale up to large numbers of hosts and applications, since a typical strategic DoD mission might expect to leverage a large enterprise network. In this position paper, we argue that the difficulty is fundamental: as the mission timescale becomes longer and longer, and the number of hosts associated with the mission becomes larger and larger, the mission encompasses the entire network, and mission defense becomes indistinguishable from classic network defense. Concepts generally associated with mission assurance, such as fight-through, are not well suited to these long timescales and large networks. This train of thought leads us to reconsider the concept of "scalability" as it applies to mission assurance, and suggest that a hierarchical abstraction approach be applied. Large-scale, long duration mission assurance may be treated as the interaction of many small-scale, short duration tactical missions.
READ LESS

Summary

Since all Department of Defense (DoD) missions depend on cyber assets and capabilities, a dynamic and accurate cyber dependency analysis is a critical component of mission assurance. Mission analysis aims to identify hosts and applications that are "mission critical" so they can be monitored, and resources preferentially allocated to mitigate...

READ MORE

Showing Results

1-2 of 2