Publications

Refine Results

(Filters Applied) Clear All

75,000,000,000 streaming inserts/second using hierarchical hypersparse GraphBLAS matrices [e-print]

Summary

The SuiteSparse GraphBLAS C-library implements high performance hypersparse matrices with bindings to a variety of languages (Python, Julia, and Matlab/Octave). GraphBLAS provides a lightweight in-memory database implementation of hypersparse matrices that are ideal for analyzing many types of network data, while providing rigorous mathematical guarantees, such as linearity. Streaming updates of hypersparse matrices put enormous pressure on the memory hierarchy. This work benchmarks an implementation of hierarchical hypersparse matrices that reduces memory pressure and dramatically increases the update rate into a hypersparse matrices. The parameters of hierarchical hypersparse matrices rely on controlling the number of entries in each level in the hierarchy before an update is cascaded. The parameters are easily tunable to achieve optimal performance for a variety of applications. Hierarchical hypersparse matrices achieve over 1,000,000 updates per second in a single instance. Scaling to 31,000 instances of hierarchical hypersparse matrices arrays on 1,100 server nodes on the MIT SuperCloud achieved a sustained update rate of 75,000,000,000 updates per second. This capability allows the MIT SuperCloud to analyze extremely large streaming network data sets.
READ LESS

Summary

The SuiteSparse GraphBLAS C-library implements high performance hypersparse matrices with bindings to a variety of languages (Python, Julia, and Matlab/Octave). GraphBLAS provides a lightweight in-memory database implementation of hypersparse matrices that are ideal for analyzing many types of network data, while providing rigorous mathematical guarantees, such as linearity. Streaming updates...

READ MORE

Large scale parallelization using file-based communications

Summary

In this paper, we present a novel and new file-based communication architecture using the local filesystem for large scale parallelization. This new approach eliminates the issues with filesystem overload and resource contention when using the central filesystem for large parallel jobs. The new approach incurs additional overhead due to inter-node message file transfers when both the sending and receiving processes are not on the same node. However, even with this additional overhead cost, its benefits are far greater for the overall cluster operation in addition to the performance enhancement in message communications for large scale parallel jobs. For example, when running a 2048-process parallel job, it achieved about 34 times better performance with MPI_Bcast() when using the local filesystem. Furthermore, since the security for transferring message files is handled entirely by using the secure copy protocol (scp) and the file system permissions, no additional security measures or ports are required other than those that are typically required on an HPC system.
READ LESS

Summary

In this paper, we present a novel and new file-based communication architecture using the local filesystem for large scale parallelization. This new approach eliminates the issues with filesystem overload and resource contention when using the central filesystem for large parallel jobs. The new approach incurs additional overhead due to inter-node...

READ MORE

Sparse Deep Neural Network graph challenge

Published in:
IEEE High Performance Extreme Computing Conf., HPEC, 24-26 September 2019.

Summary

The MIT/IEEE/Amazon GraphChallenge.org encourages community approaches to developing new solutions for analyzing graphs and sparse data. Sparse AI analytics present unique scalability difficulties. The proposed Sparse Deep Neural Network (DNN) Challenge draws upon prior challenges from machine learning, high performance computing, and visual analytics to create a challenge that is reflective of emerging sparse AI systems. The Sparse DNN Challenge is based on a mathematically well-defined DNN inference computation and can be implemented in any programming environment. Sparse DNN inference is amenable to both vertex-centric implementations and array-based implementations (e.g., using the GraphBLAS.org standard). The computations are simple enough that performance predictions can be made based on simple computing hardware models. The input data sets are derived from the MNIST handwritten letters. The surrounding I/O and verification provide the context for each sparse DNN inference that allows rigorous definition of both the input and the output. Furthermore, since the proposed sparse DNN challenge is scalable in both problem size and hardware, it can be used to measure and quantitatively compare a wide range of present day and future systems. Reference implementations have been implemented and their serial and parallel performance have been measured. Specifications, data, and software are publicly available at GraphChallenge.org.
READ LESS

Summary

The MIT/IEEE/Amazon GraphChallenge.org encourages community approaches to developing new solutions for analyzing graphs and sparse data. Sparse AI analytics present unique scalability difficulties. The proposed Sparse Deep Neural Network (DNN) Challenge draws upon prior challenges from machine learning, high performance computing, and visual analytics to create a challenge that is...

READ MORE

Survey and benchmarking of machine learning accelerators

Published in:
IEEE High Performance Extreme Computing Conf., HPEC, 24-26 September 2019.

Summary

Advances in multicore processors and accelerators have opened the flood gates to greater exploration and application of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore's Law, have prompted an explosion of processors and accelerators that promise even greater computational and machine learning capabilities. These processors and accelerators are coming in many forms, from CPUs and GPUs to ASICs, FPGAs, and dataflow accelerators. This paper surveys the current state of these processors and accelerators that have been publicly announced with performance and power consumption numbers. The performance and power values are plotted on a scatter graph and a number of dimensions and observations from the trends on this plot are discussed and analyzed. For instance, there are interesting trends in the plot regarding power consumption, numerical precision, and inference versus training. We then select and benchmark two commercially-available low size, weight, and power (SWaP) accelerators as these processors are the most interesting for embedded and mobile machine learning inference applications that are most applicable to the DoD and other SWaP constrained users. We determine how they actually perform with real-world images and neural network models, compare those results to the reported performance and power consumption values and evaluate them against an Intel CPU that is used in some embedded applications.
READ LESS

Summary

Advances in multicore processors and accelerators have opened the flood gates to greater exploration and application of machine learning techniques to a variety of applications. These advances, along with breakdowns of several trends including Moore's Law, have prompted an explosion of processors and accelerators that promise even greater computational and...

READ MORE

Streaming 1.9 billion hyperspace network updates per second with D4M

Summary

The Dynamic Distributed Dimensional Data Model (D4M) library implements associative arrays in a variety of languages (Python, Julia, and Matlab/Octave) and provides a lightweight in-memory database implementation of hypersparse arrays that are ideal for analyzing many types of network data. D4M relies on associative arrays which combine properties of spreadsheets, databases, matrices, graphs, and networks, while providing rigorous mathematical guarantees, such as linearity. Streaming updates of D4M associative arrays put enormous pressure on the memory hierarchy. This work describes the design and performance optimization of an implementation of hierarchical associative arrays that reduces memory pressure and dramatically increases the update rate into an associative array. The parameters of hierarchical associative arrays rely on controlling the number of entries in each level in the hierarchy before an update is cascaded. The parameters are easily tunable to achieve optimal performance for a variety of applications. Hierarchical arrays achieve over 40,000 updates per second in a single instance. Scaling to 34,000 instances of hierarchical D4M associative arrays on 1,100 server nodes on the MIT SuperCloud achieved a sustained update rate of 1,900,000,000 updates per second. This capability allows the MIT SuperCloud to analyze extremely large streaming network data sets.
READ LESS

Summary

The Dynamic Distributed Dimensional Data Model (D4M) library implements associative arrays in a variety of languages (Python, Julia, and Matlab/Octave) and provides a lightweight in-memory database implementation of hypersparse arrays that are ideal for analyzing many types of network data. D4M relies on associative arrays which combine properties of spreadsheets...

READ MORE

A billion updates per second using 30,000 hierarchical in-memory D4M databases

Summary

Analyzing large scale networks requires high performance streaming updates of graph representations of these data. Associative arrays are mathematical objects combining properties of spreadsheets, databases, matrices, and graphs, and are well-suited for representing and analyzing streaming network data. The Dynamic Distributed Dimensional Data Model (D4M) library implements associative arrays in a variety of languages (Python, Julia, and Matlab/Octave) and provides a lightweight in-memory database. Associative arrays are designed for block updates. Streaming updates to a large associative array requires a hierarchical implementation to optimize the performance of the memory hierarchy. Running 34,000 instances of a hierarchical D4M associative arrays on 1,100 server nodes on the MIT SuperCloud achieved a sustained update rate of 1,900,000,000 updates per second. This capability allows the MIT SuperCloud to analyze extremely large streaming network data sets.
READ LESS

Summary

Analyzing large scale networks requires high performance streaming updates of graph representations of these data. Associative arrays are mathematical objects combining properties of spreadsheets, databases, matrices, and graphs, and are well-suited for representing and analyzing streaming network data. The Dynamic Distributed Dimensional Data Model (D4M) library implements associative arrays in...

READ MORE

Hyperscaling internet graph analysis with D4M on the MIT SuperCloud

Summary

Detecting anomalous behavior in network traffic is a major challenge due to the volume and velocity of network traffic. For example, a 10 Gigabit Ethernet connection can generate over 50 MB/s of packet headers. For global network providers, this challenge can be amplified by many orders of magnitude. Development of novel computer network traffic analytics requires: high level programming environments, massive amount of packet capture (PCAP) data, and diverse data products for "at scale" algorithm pipeline development. D4M (Dynamic Distributed Dimensional Data Model) combines the power of sparse linear algebra, associative arrays, parallel processing, and distributed databases (such as SciDB and Apache Accumulo) to provide a scalable data and computation system that addresses the big data problems associated with network analytics development. Combining D4M with the MIT SuperCloud manycore processors and parallel storage system enables network analysts to interactively process massive amounts of data in minutes. To demonstrate these capabilities, we have implemented a representative analytics pipeline in D4M and benchmarked it on 96 hours of Gigabit PCAP data with MIT SuperCloud. The entire pipeline from uncompressing the raw files to database ingest was implemented in 135 lines of D4M code and achieved speedups of over 20,000.
READ LESS

Summary

Detecting anomalous behavior in network traffic is a major challenge due to the volume and velocity of network traffic. For example, a 10 Gigabit Ethernet connection can generate over 50 MB/s of packet headers. For global network providers, this challenge can be amplified by many orders of magnitude. Development of...

READ MORE

Interactive supercomputing on 40,000 cores for machine learning and data analysis

Summary

Interactive massively parallel computations are critical for machine learning and data analysis. These computations are a staple of the MIT Lincoln Laboratory Supercomputing Center (LLSC) and has required the LLSC to develop unique interactive supercomputing capabilities. Scaling interactive machine learning frameworks, such as TensorFlow, and data analysis environments, such as MATLAB/Octave, to tens of thousands of cores presents many technical challenges – in particular, rapidly dispatching many tasks through a scheduler, such as Slurm, and starting many instances of applications with thousands of dependencies. Careful tuning of launches and prepositioning of applications overcome these challenges and allow the launching of thousands of tasks in seconds on a 40,000-core supercomputer. Specifically, this work demonstrates launching 32,000 TensorFlow processes in 4 seconds and launching 262,000 Octave processes in 40 seconds. These capabilities allow researchers to rapidly explore novel machine learning architecture and data analysis algorithms.
READ LESS

Summary

Interactive massively parallel computations are critical for machine learning and data analysis. These computations are a staple of the MIT Lincoln Laboratory Supercomputing Center (LLSC) and has required the LLSC to develop unique interactive supercomputing capabilities. Scaling interactive machine learning frameworks, such as TensorFlow, and data analysis environments, such as...

READ MORE

GraphChallenge.org: raising the bar on graph analytic performance

Summary

The rise of graph analytic systems has created a need for new ways to measure and compare the capabilities of graph processing systems. The MIT/Amazon/IEEE Graph Challenge has been developed to provide a well-defined community venue for stimulating research and highlighting innovations in graph analysis software, hardware, algorithms, and systems. GraphChallenge.org provides a wide range of preparsed graph data sets, graph generators, mathematically defined graph algorithms, example serial implementations in a variety of languages, and specific metrics for measuring performance. Graph Challenge 2017 received 22 submissions by 111 authors from 36 organizations. The submissions highlighted graph analytic innovations in hardware, software, algorithms, systems, and visualization. These submissions produced many comparable performance measurements that can be used for assessing the current state of the art of the field. There were numerous submissions that implemented the triangle counting challenge and resulted in over 350 distinct measurements. Analysis of these submissions show that their execution time is a strong function of the number of edges in the graph, Ne, and is typically proportional to N4=3 e for large values of Ne. Combining the model fits of the submissions presents a picture of the current state of the art of graph analysis, which is typically 108 edges processed per second for graphs with 108 edges. These results are 30 times faster than serial implementations commonly used by many graph analysts and underscore the importance of making these performance benefits available to the broader community. Graph Challenge provides a clear picture of current graph analysis systems and underscores the need for new innovations to achieve high performance on very large graphs.
READ LESS

Summary

The rise of graph analytic systems has created a need for new ways to measure and compare the capabilities of graph processing systems. The MIT/Amazon/IEEE Graph Challenge has been developed to provide a well-defined community venue for stimulating research and highlighting innovations in graph analysis software, hardware, algorithms, and systems...

READ MORE

TabulaROSA: tabular operating system architecture for massively parallel heterogeneous compute engines

Summary

The rise in computing hardware choices is driving a reevaluation of operating systems. The traditional role of an operating system controlling the execution of its own hardware is evolving toward a model whereby the controlling processor is distinct from the compute engines that are performing most of the computations. In this context, an operating system can be viewed as software that brokers and tracks the resources of the compute engines and is akin to a database management system. To explore the idea of using a database in an operating system role, this work defines key operating system functions in terms of rigorous mathematical semantics (associative array algebra) that are directly translatable into database operations. These operations possess a number of mathematical properties that are ideal for parallel operating systems by guaranteeing correctness over a wide range of parallel operations. The resulting operating system equations provide a mathematical specification for a Tabular Operating System Architecture (TabulaROSA) that can be implemented on any platform. Simulations of forking in TabularROSA are performed using an associative array implementation and compared to Linux on a 32,000+ core supercomputer. Using over 262,000 forkers managing over 68,000,000,000 processes, the simulations show that TabulaROSA has the potential to perform operating system functions on a massively parallel scale. The TabulaROSA simulations show 20x higher performance as compared to Linux while managing 2000x more processes in fully searchable tables.
READ LESS

Summary

The rise in computing hardware choices is driving a reevaluation of operating systems. The traditional role of an operating system controlling the execution of its own hardware is evolving toward a model whereby the controlling processor is distinct from the compute engines that are performing most of the computations. In...

READ MORE

Showing Results

1-10 of 20