Publications

Refine Results

(Filters Applied) Clear All

Sensorimotor conflict tests in an immersive virtual environment reveal subclinical impairments in mild traumatic brain injury

Summary

Current clinical tests lack the sensitivity needed for detecting subtle balance impairments associated with mild traumatic brain injury (mTBI). Patient-reported symptoms can be significant and have a huge impact on daily life, but impairments may remain undetected or poorly quantified using clinical measures. Our central hypothesis was that provocative sensorimotor perturbations, delivered in a highly instrumented, immersive virtual environment, would challenge sensory subsystems recruited for balance through conflicting multi-sensory evidence, and therefore reveal that not all subsystems are performing optimally. The results show that, as compared to standard clinical tests, the provocative perturbations illuminate balance impairments in subjects who have had mild traumatic brain injuries. Perturbations delivered while subjects were walking provided greater discriminability (average accuracy ≈ 0.90) than those delivered during standing (average accuracy ≈ 0.65) between mTBI subjects and healthy controls. Of the categories of features extracted to characterize balance, the lower limb accelerometry-based metrics proved to be most informative. Further, in response to perturbations, subjects with an mTBI utilized hip strategies more than ankle strategies to prevent loss of balance and also showed less variability in gait patterns. We have shown that sensorimotor conflicts illuminate otherwise-hidden balance impairments, which can be used to increase the sensitivity of current clinical procedures. This augmentation is vital in order to robustly detect the presence of balance impairments after mTBI and potentially define a phenotype of balance dysfunction that enhances risk of injury.
READ LESS

Summary

Current clinical tests lack the sensitivity needed for detecting subtle balance impairments associated with mild traumatic brain injury (mTBI). Patient-reported symptoms can be significant and have a huge impact on daily life, but impairments may remain undetected or poorly quantified using clinical measures. Our central hypothesis was that provocative sensorimotor...

READ MORE

Predicting cognitive load and operational performance in a simulated marksmanship task

Summary

Modern operational environments can place significant demands on a service member's cognitive resources, increasing the risk of errors or mishaps due to overburden. The ability to monitor cognitive burden and associated performance within operational environments is critical to improving mission readiness. As a key step toward a field-ready system, we developed a simulated marksmanship scenario with an embedded working memory task in an immersive virtual reality environment. As participants performed the marksmanship task, they were instructed to remember numbered targets and recall the sequence of those targets at the end of the trial. Low and high cognitive load conditions were defined as the recall of three- and six-digit strings, respectively. Physiological and behavioral signals recorded included speech, heart rate, breathing rate, and body movement. These features were input into a random forest classifier that significantly discriminated between the low- and high-cognitive load conditions (AUC=0.94). Behavioral features of gait were the most informative, followed by features of speech. We also showed the capability to predict performance on the digit recall (AUC = 0.71) and marksmanship (AUC = 0.58) tasks. The experimental framework can be leveraged in future studies to quantify the interaction of other types of stressors and their impact on operational cognitive and physical performance.
READ LESS

Summary

Modern operational environments can place significant demands on a service member's cognitive resources, increasing the risk of errors or mishaps due to overburden. The ability to monitor cognitive burden and associated performance within operational environments is critical to improving mission readiness. As a key step toward a field-ready system, we...

READ MORE

Investigation of the relationship of vocal, eye-tracking, and fMRI ROI time-series measures with preclinical mild traumatic brain injury

Summary

In this work, we are examining correlations between vocal articulatory features, ocular smooth pursuit measures, and features from the fMRI BOLD response in regions of interest (ROI) time series in a high school athlete population susceptible to repeated head impact within a sports season. Initial results have indicated relationships between vocal features and brain ROIs that may show which components of the neural speech networks effected are effected by preclinical mild traumatic brain injury (mTBI). The data used for this study was collected by Purdue University on 32 high school athletes over the entirety of a sports season (Helfer, et al., 2014), and includes fMRI measurements made pre-season, in-season, and postseason. The athletes are 25 male football players and 7 female soccer players. The Immediate Post-Concussion Assessment and Cognitive Testing suite (ImPACT) was used as a means of assessing cognitive performance (Broglio, Ferrara, Macciocchi, Baumgartner, & Elliott, 2007). The test is made up of six sections, which measure verbal memory, visual memory, visual motor speed, reaction time, impulse control, and a total symptom composite. Using each test, a threshold is set for a change in cognitive performance. The threshold for each test is defined as a decline from baseline that exceeds one standard deviation, where the standard deviation is computed over the change from baseline across all subjects’ test scores. Speech features were extracted from audio recordings of the Grandfather Passage, which provides a standardized and phonetically balanced sample of speech. Oculomotor testing included two experimental conditions. In the smooth pursuit condition, a single target moving circularly, at constant speed. In the saccade condition, a target was jumped between one of three location along the horizontal midline of the screen. In both trial types, subjects visually tracked the targets during the trials, which lasted for one minute. The fMRI features are derived from the bold time-series data from resting state fMRI scans of the subjects. The pre-processing of the resting state fMRI and accompanying structural MRI data (for Atlas registration) was performed with the toolkit CONN (Whitfield-Gabrieli & Nieto-Castanon, 2012). Functional connectivity was generated using cortical and sub-cortical atlas registrations. This investigation will explores correlations between these three modalities and a cognitive performance assessment.
READ LESS

Summary

In this work, we are examining correlations between vocal articulatory features, ocular smooth pursuit measures, and features from the fMRI BOLD response in regions of interest (ROI) time series in a high school athlete population susceptible to repeated head impact within a sports season. Initial results have indicated relationships between...

READ MORE

Relation of automatically extracted formant trajectories with intelligibility loss and speaking rate decline in amyotrophic lateral sclerosis

Summary

Effective monitoring of bulbar disease progression in persons with amyotrophic lateral sclerosis (ALS) requires rapid, objective, automatic assessment of speech loss. The purpose of this work was to identify acoustic features that aid in predicting intelligibility loss and speaking rate decline in individuals with ALS. Features were derived from statistics of the first (F1) and second (F2) formant frequency trajectories and their first and second derivatives. Motivated by a possible link between components of formant dynamics and specific articulator movements, these features were also computed for low-pass and high-pass filtered formant trajectories. When compared to clinician-rated intelligibility and speaking rate assessments, F2 features, particularly mean F2 speed and a novel feature, mean F2 acceleration, were most strongly correlated with intelligibility and speaking rate, respectively (Spearman correlations > 0.70, p < 0.0001). These features also yielded the best predictions in regression experiments (r > 0.60, p < 0.0001). Comparable results were achieved using low-pass filtered F2 trajectory features, with higher correlations and lower prediction errors achieved for speaking rate over intelligibility. These findings suggest information can be exploited in specific frequency components of formant trajectories, with implications for automatic monitoring of ALS.
READ LESS

Summary

Effective monitoring of bulbar disease progression in persons with amyotrophic lateral sclerosis (ALS) requires rapid, objective, automatic assessment of speech loss. The purpose of this work was to identify acoustic features that aid in predicting intelligibility loss and speaking rate decline in individuals with ALS. Features were derived from statistics...

READ MORE

Showing Results

1-4 of 4