Publications

Refine Results

(Filters Applied) Clear All

Bringing physical construction and real-world data collection into a massively open online course (MOOC)

Summary

This Work-In-Progress paper details the process and lessons learned when converting a hands-on engineering minicourse to a scalable, self-paced Massively Open Online Course (MOOC). Online courseware has been part of academic and industry training and learning for decades. Learning activities in online courses strive to mimic in-person delivery by including lectures, homework assignments, software exercises and exams. While these instructional activities provide "theory and practice" for many disciplines, engineering courses often require hands-on activities with physical tools, devices and equipment. To accommodate the need for this type of learning, MIT Lincoln Laboratory's "Build A Small Radar" (BSR) course was used to explore teaching and learning strategies that support the inclusion of physical construction and real world data collection in a MOOC. These tasks are encountered across a range of engineering disciplines and the methods illustrated here are easily generalized to the learning experiences in engineering and science disciplines.
READ LESS

Summary

This Work-In-Progress paper details the process and lessons learned when converting a hands-on engineering minicourse to a scalable, self-paced Massively Open Online Course (MOOC). Online courseware has been part of academic and industry training and learning for decades. Learning activities in online courses strive to mimic in-person delivery by including...

READ MORE

Low cost phased array radar for applications in engineering education

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

Hands-on instruction in engineering education is beneficial to the development of a workforce that understands the complexity of building radar systems. Unfortunately, building phased array systems tends to be too costly to allow student access to the hardware necessary for developing these skills. This paper presents a low cost phased array based on a time-domain multiplexed, multiple-input, multiple-output (TDM-MIMO) approach that has been built for education. This array has been utilized in several free courses held at the Massachusetts Institute of Technology during the Independent Activity Period (IAP) between semesters. Students have built, tested, and taken home a number of these radars and continue to operate these on their own, either for recreation or as part of their undergraduate research activities.
READ LESS

Summary

Hands-on instruction in engineering education is beneficial to the development of a workforce that understands the complexity of building radar systems. Unfortunately, building phased array systems tends to be too costly to allow student access to the hardware necessary for developing these skills. This paper presents a low cost phased...

READ MORE

Multi-lithic phased array architecture for airborne sense and avoid radar

Published in:
2013 IEEE Int. Symp. On Phased Array Systems and Technology, 15-18 October 2013.

Summary

Transmit and receive Ku-band phased array designs are described for testing an airborne sense and avoid radar. The arrays are small with a size of 24 cm x 9 cm and operate from 13 to 17 GHz with electronic scanning from plus of minus 45 degrees in azimuth and plus of minus 30 degrees in elevation. A novel design architecture allows the use of multiple multilayered printed circuit boards and simple air cooling.
READ LESS

Summary

Transmit and receive Ku-band phased array designs are described for testing an airborne sense and avoid radar. The arrays are small with a size of 24 cm x 9 cm and operate from 13 to 17 GHz with electronic scanning from plus of minus 45 degrees in azimuth and plus...

READ MORE

Showing Results

1-3 of 3