Publications

Refine Results

(Filters Applied) Clear All

Component standards for stable microgrids

Published in:
IEEE Trans. Power Syst., Vol. 34, No. 2, pp. 852-863. 2018.
R&D area:
R&D group:

Summary

This paper is motivated by the need to ensure fast microgrid stability. Modeling for purposes of establishing stability criterion and possible implementations are described. In particular, this paper proposes that highly heterogeneous microgrids comprising both conventional equipment and equipment based on rapidly emerging new technologies can be modeled as purely electric networks in order to provide intuitive insight into the issues of network stability. It is shown that the proposed model is valid for representing fast primary dynamics of diverse components (gensets, loads, PVs), assuming that slower variables are regulated by the higher-level controllers. Based on this modeling approach, an intuitively-appealing criterion is introduced requiring that components or their combined representations must behave as closed-loop passive electrical circuits. Implementing this criterion is illustrated using typical commercial feeder microgrid. Notably, these set the basis for standards which should be required for groups of components (sub grids) to ensure no fast instabilities in complex microgrids. Building the need for incrementally passive and monotonic characteristics into standards for network components may clarify the system level analysis and integration of microgrids.
READ LESS

Summary

This paper is motivated by the need to ensure fast microgrid stability. Modeling for purposes of establishing stability criterion and possible implementations are described. In particular, this paper proposes that highly heterogeneous microgrids comprising both conventional equipment and equipment based on rapidly emerging new technologies can be modeled as purely...

READ MORE

High performance computing techniques with power systems simulations

Published in:
IEEE High Performance Extreme Computing Conf., HPEC, 25-27 September 2018.
R&D area:
R&D group:

Summary

Small electrical networks (i.e., microgrids) and machine models (synchronous generators, induction motors) can be simulated fairly easily, on sequential processes. However, running a large simulation on a single process becomes infeasible because of complexity and timing issues. Scalability becomes an increasingly important issue for larger simulations, and the platform for running such large simulations, like the MIT Supercloud, becomes more important. The distributed computing network used to simulate an electrical network as the physical system presents new challenges, however. Different simulation models, different time steps, and different computation times for each process in the distributed computing network introduce new challenges not present with typical problems that are addressed with high performance computing techniques. A distributed computing network is established for some example electrical networks, and then adjustments are made in the parallel simulation set-up to alleviate the new kinds of challenges that come with modeling and simulating a physical system as diverse as an electrical network. Also, methods are shown to simulate the same electrical network in hundreds of milliseconds, as opposed to several seconds--a dramatic speedup once the simulation is parallelized.
READ LESS

Summary

Small electrical networks (i.e., microgrids) and machine models (synchronous generators, induction motors) can be simulated fairly easily, on sequential processes. However, running a large simulation on a single process becomes infeasible because of complexity and timing issues. Scalability becomes an increasingly important issue for larger simulations, and the platform for...

READ MORE

Fuel production systems for remote areas via an aluminum energy vector

Author:
Published in:
Energy Fuels, Vol. 32, no. 9, 2018, pp. 9033-9042.
R&D area:
R&D group:

Summary

Autonomous fuel synthesis in remote locations remains the Holy Grail of fuel delivery logistics. The burdened cost of delivering fuel to remote locations is often significantly more expensive than the purchase price. Here it is shown that newly developed solid aluminum metal fuel is suited for remote production of liquid diesel fuels. On a volumetric basis, aluminum has more than twice the energy of diesel fuel, making it a superb structural energy vector for remote applications. Once aluminum is treated with gallium, water of nearly any purity is used to rapidly oxidize the aluminum metal which spontaneously evolves hydrogen and heat in roughly equal energetic quantities. The benign byproduct of the reaction could, in theory, be taken to an off-site facility and recycled back into aluminum using standard smelting processes or it could be left onsite as a high-value waste. The hydrogen can easily be used as a feedstock for diesel fuel, via Fischer-Tropsch (FT) reaction mechanisms, while the heat can be leveraged for other processes, including synthesis gas compression. It is shown that as long as a carbon source, such as diesel fuel, is already present, additional diesel can be made by recovering and recycling the CO2 in the diesel exhaust. The amount of new diesel that can be made is directly related to the fraction of available CO2 that is recovered, with 100% recovery being equivalent to doubling the diesel fuel. The volume of aluminum required to accomplish this is lower than simply bringing twice as much diesel and results in a 50% increase in volumetric energy density. That is, 50% fewer fuel convoys would be required for fuel delivery. Moreover, aluminum has the potential to be exploited as a structural fuel that can be used as pallets, containers, etc., before being consumed to produce diesel. Furthermore, FT diesel production via aluminum and CO2 can be achieved without sacrificing electrical power generation.
READ LESS

Summary

Autonomous fuel synthesis in remote locations remains the Holy Grail of fuel delivery logistics. The burdened cost of delivering fuel to remote locations is often significantly more expensive than the purchase price. Here it is shown that newly developed solid aluminum metal fuel is suited for remote production of liquid...

READ MORE

Multi-layered interactive energy space modeling for near-optimal electrification of terrestrial, shipboard and aircraft systems

Author:
Published in:
Annual Reviews in Control, no. 45, 2018, pp. 52-75.
R&D area:
R&D group:

Summary

In this paper, we introduce a basic multi-layered modeling framework for posing the problem of safe, robust and efficient design and control that may lend itself to ripping potential benefits from electrification. The proposed framework establishes dynamic relations between physical concepts such as stored energy, useful work, and wasted energy, on one hand; and modeling, simulation, and control of interactive modular complex dynamical systems, on the other. In particular, our recently introduced energy state-space modeling approach for electric energy systems is further interpreted using fundamental laws of physics in multi-physical systems, such as terrestrial energy-systems, aircrafts and ships. The interconnected systems are modeled as dynamically interacting modules. This approach is shown to be particularly well-suited for scalable optimization of large-scale complex systems. Instead of having to use simpler models, the proposed multi-layered modeling of system dynamics in energy space offers a promising basic method for modeling and controlling inter-dependencies across multi-physics subsystems for both ensuring feasible and near-optimal operation. It is illustrated how this approach can be used for understanding fundamental physical causes of inefficiencies created either at the component level or are a result of poor matching of their interactions.
READ LESS

Summary

In this paper, we introduce a basic multi-layered modeling framework for posing the problem of safe, robust and efficient design and control that may lend itself to ripping potential benefits from electrification. The proposed framework establishes dynamic relations between physical concepts such as stored energy, useful work, and wasted energy...

READ MORE

Potential impacts of climate warming and increased summer heat stress on the electric grid: a case study for a large power transformer (LPT) in the Northeast United States

Published in:
Climatic Change, 20 November 2017, https://doi.org/10.1007/s10584-017-2114-x
R&D area:
R&D group:

Summary

Large power transformers (LPTs) are critical yet vulnerable components of the power grid. More frequent and intense heat waves or high temperatures can degrade their operational lifetime and increase the risk of premature failure. Without adequate preparedness, a widespread situation could ultimately lead to prolonged grid disruption and incur excessive economic costs. Here, we investigate the potential impact of climate warming and corresponding shifts in summertime "hot days" on a selected LPT located in the Northeast United States. We apply an analogue method, which detects the occurrence of hot days based on the salient, associated large-scale atmospheric conditions, to assess the risk of future change in their occurrence. Compared with the more conventional approach that relies on climate model simulated daily maximum temperature, the analogue method produces model medians of late twentieth century hot day frequency that are more consistent with observation and have stronger inter-model consensus. Under the climate warming scenarios, multi-model medians of both model daily maximum temperature and the analogue method indicate strong decadal increases in hot day frequency by the late twenty-first century, but the analogue method improves model consensus considerably. The decrease of transformer lifetime with temperature increase is further assessed. The improved inter-model consensus of the analogue method is viewed as a promising step toward providing actionable information for a more stable, reliable, and environmentally responsible national grid.
READ LESS

Summary

Large power transformers (LPTs) are critical yet vulnerable components of the power grid. More frequent and intense heat waves or high temperatures can degrade their operational lifetime and increase the risk of premature failure. Without adequate preparedness, a widespread situation could ultimately lead to prolonged grid disruption and incur excessive...

READ MORE

Cloud computing in tactical environments

Summary

Ground personnel at the tactical edge often lack data and analytics that would increase their effectiveness. To address this problem, this work investigates methods to deploy cloud computing capabilities in tactical environments. Our approach is to identify representative applications and to design a system that spans the software/hardware stack to support such applications while optimizing the use of scarce resources. This paper presents our high-level design and the results of initial experiments that indicate the validity of our approach.
READ LESS

Summary

Ground personnel at the tactical edge often lack data and analytics that would increase their effectiveness. To address this problem, this work investigates methods to deploy cloud computing capabilities in tactical environments. Our approach is to identify representative applications and to design a system that spans the software/hardware stack to...

READ MORE

Lessons learned from hardware-in-the-loop testing of microgrid control systems

Published in:
CIGRE 2017 Grid of the Future Symp., 22-25 Oct. 2017.
R&D area:
R&D group:

Summary

A key ingredient for the successful completion of any complex microgrid project is real-time controller hardware-in-the-loop (C-HIL) testing. C-HIL testing allows engineers to test the system and its controls before it is deployed in the field. C-HIL testing also allows for the simulation of test scenarios that are too risky or even impossible to test in the field. The results of C-HIL testing provide the necessary proof of concept and insight into any microgrid system limitations. This type of testing can also be used to create awareness among potential microgrid customers. This paper describes the modeling benefits, challenges, and lessons learned associated with C-HIL testing. The microgrid system used in this study has a 3 MW battery, 5 MW photovoltaic (PV) array, 4 MW diesel generator set (genset), and 3.5 MW combined heat and power generation system (CHP).
READ LESS

Summary

A key ingredient for the successful completion of any complex microgrid project is real-time controller hardware-in-the-loop (C-HIL) testing. C-HIL testing allows engineers to test the system and its controls before it is deployed in the field. C-HIL testing also allows for the simulation of test scenarios that are too risky...

READ MORE

Application of a resilience framework to military installations: a methodology for energy resilience business case decisions

Published in:
MIT Lincoln Laboratory Report TR-1216
R&D area:
R&D group:

Summary

The goal of the study was to develop and demonstrate an energy resilience framework at four DoD installations. This framework, predominantly focused on developing a business case, was established for broader application across the DoD. The methodology involves gathering data from an installation on critical energy load requirements, the energy costs and usage, quantifying the cost and performance of the existing energy resilience solution at the installation, and then conducting an analysis of alternatives to look at new system designs. Improvements in data collection at the installation level, as recommended in this report, will further increase the fidelity of future analysis and the accuracy of the recommendations. And most importantly, increased collaboration between the facility personnel and the mission operators at the installation will encourage holistic solutions that improve both the life cycle costs and the resilience of the installation's energy systems and supporting infrastructure.
READ LESS

Summary

The goal of the study was to develop and demonstrate an energy resilience framework at four DoD installations. This framework, predominantly focused on developing a business case, was established for broader application across the DoD. The methodology involves gathering data from an installation on critical energy load requirements, the energy...

READ MORE

Boston community energy study - zonal analysis for urban microgrids

Published in:
MIT Lincoln Laboratory Report TR-1201

Summary

Superstorm Sandy illustrated the economic and human impact that severe weather can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the energy infrastructure, all installed microgrids in the New York City region remained operational during Sandy, including those at Princeton University, Goldman Sachs, New York University, and Co-op City. The resilience provided by these microgrids sparked renewed interest in pursuing more microgrid deployments as means to increase resiliency throughout the nation and in the face of many potential threats including severe weather events, and potentially terrorism. MIT Lincoln Laboratory has been engaged with the Department of Homeland Security (DHS), the Department of Energy (DoE), and the City of Boston in this Community Energy Study to explore the potential for microgrid deployment within Boston's thriving neighborhoods. Using hourly simulated building energy data for every building in Boston, provided by the Sustainable Design Lab on MIT campus, MIT Lincoln Laboratory was able to develop an approach that can identify zones within the city where microgrids could be implemented with a high return on investment in terms of resiliency, offering both cost savings and social benefit in the face of grid outages. An important part of this approach leverages a microgrid optimization tool developed by Lawrence Berkeley National Laboratory, with whom the MIT Lincoln Laboratory is now collaborating on microgrid modeling work. Using the microgrid optimization tool, along with building energy use data, forty-two community microgrids were identified, including ten multiuser microgrids, ten energy justice microgrids, and twenty-two emergency microgrids.
READ LESS

Summary

Superstorm Sandy illustrated the economic and human impact that severe weather can have on urban areas such as New York City. While flooding and wind damaged or destroyed some of the energy infrastructure, all installed microgrids in the New York City region remained operational during Sandy, including those at Princeton...

READ MORE

Development of a real-time hardware-in-the-loop power systems simulation platform to evaluate commercial microgrid controllers

Summary

This report describes the development of a real-time hardware-in-the-loop (HIL) power system simulation platform to evaluate commercial microgrid controllers. The effort resulted in the successful demonstration of HIL simulation technology at a Technical Symposium organized by the Mass Clean Energy Center (CEC) for utility distribution system engineers, project developers, systems integrators, equipment vendors, academia, regulators, City of Boston officials, and Commonwealth officials. Actual microgrid controller hardware was integrated along with actual, commercial genset controller hardware in a particular microgrid configuration, which included dynamic loads, distributed energy resources (DERs), and conventional power sources. The end product provides the ability to quickly and cost-effectively assess the performance of different microgrid controllers as quantified by certain metrics, such as fuel consumption, power flow management precision at the point of common coupling, load-not-served (LNS) while islanded, peak-shaving kWh, and voltage stability. Additional applications include protection system testing and evaluation, distributed generation prime mover controller testing, integration and testing of distribution control systems, behavior testing and studies of DER controls, detailed power systems analysis, communications testing and integration, and implementation and evaluation of smart grid concepts. Microgrids and these additional applications promise to improve the reliability, resiliency, and efficiency of the nation's aging but critical power distribution systems. This achievement was a collaborative effort between MIT Lincoln Laboratory and industry microgrid controller manufacturers. This work was sponsored by the Department of Homeland Security (DHS), Science and Technology Directorate (S&T) and the Department of Energy (DOE) Office of Electricity Delivery and Energy Reliability.
READ LESS

Summary

This report describes the development of a real-time hardware-in-the-loop (HIL) power system simulation platform to evaluate commercial microgrid controllers. The effort resulted in the successful demonstration of HIL simulation technology at a Technical Symposium organized by the Mass Clean Energy Center (CEC) for utility distribution system engineers, project developers, systems...

READ MORE

Showing Results

1-10 of 13